首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the expression and function of gap junctions in two rat osteoblastic cell lines, ROS 17/2.8 and UMR 106-01. The pattern of expression of gap junction proteins in these two cell lines was distinct: ROS cells expressed only connexin43 on their cell surface, while UMR expressed predominantly connexin45. Immunoprecipitation and RNA blot analysis confirmed the relative quantitation of these connexins. Microinjected ROS cells passed Lucifer yellow to many neighboring cells, but UMR cells were poorly coupled by this criterion. Nevertheless, both UMR and ROS cells were electrically coupled, as characterized by the double whole cell patch-clamp technique. These studies suggested that Cx43 in ROS cells mediated cell-cell coupling for both small ions and larger molecules, but Cx45 in UMR cells allowed passage only of small ions. To demonstrate that the expression of different connexins alone accounted for the lack of dye coupling in UMR cells, we assessed dye coupling in UMR cells transfected with either Cx43 or Cx45. The UMR/Cx43 transfectants were highly dye coupled compared with the untransfected UMR cells, but the UMR/Cx45 transfectants demonstrated no increase in dye transfer. These data demonstrate that different gap junction proteins create channels with different molecular permeabilities; they suggest that different connexins permit different types of signalling between cells.  相似文献   

2.
Connexins (Cx) 40 and 43 are coexpressed by several cell types at ratios that vary as a function of development, aging, and disease. Because these connexins form heteromeric channels, changes in expression ratio might be expected to significantly alter the connexin composition of the gap junction channel population and, therefore, gap junction function. To examine this possibility, we stably transfected A7r5 cells, which naturally coexpress Cx43 and Cx40, with a vector encoding antisense Cx43. Cx43 mRNA continued to be expressed in the antisense transfected clones, although levels were inversely related to the number of copies of antisense DNA incorporated into the genome. Protein levels, quantified in the clones with the highest and lowest Cx43:Cx40 mRNA ratios, were not well predicted by the mRNA levels, although the trends predicted by the Cx43:Cx40 mRNA ratio were preserved. Electrical coupling did not differ significantly between clones, but the clone with elevated Cx43:Cx40 protein expression ratio and unchanged Cx43 banding pattern was significantly better dye coupled than the parental A7r5 cells. These results suggest that as the Cx43:Cx40 ratio increases, provided alterations of Cx43 banding pattern (phosphorylation) have not occurred, permeability to large molecules increases even though electrical coupling remains nearly constant.  相似文献   

3.
4.
Transition of arterial smooth muscle cells from the contractile to the synthetic phenotype in vivo is associated with up-regulation of the gap-junctional protein, connexin43 (Cx43). However, the role of increased Cx43 expression in relation to the characteristic features of the synthetic phenotype – altered growth, differentiation or synthetic activity – has not previously been defined. In the present study, growth was induced in cultured human aortic smooth muscle cells by treatment with thrombin and with PDGF-bb; growth arrest was induced by serum deprivation and contact inhibition. Alterations in Cx43 expression and gap-junctional communication were analyzed in relation to expression of markers for contractile differentiation and extracellular matrix synthesis. Treatment with thrombin, but not PDGF-bb, led to up-regulation of Cx43 gap junctions, increased synthetic activity yet also enhanced contractile differentiation. Inhibition of growth by deprivation of serum growth factors in sub-confluent cultures had no effect on Cx43 expression or contractile differentiation. Growth arrest by contact inhibition led to progressive reduction in Cx43 expression, in parallel with progressive increase in expression of differentiation markers but no alteration in synthetic activity. Of a range of stimuli examined, only thrombin had the combined effect of increasing Cx43 gap-junction communication, growth and synthesis, yet it also enhanced contractile differentiation. Down-regulation of Cx43 and improved contractile differentiation occurred only when growth arrest was induced through the contact–inhibition pathway, though, in this instance, synthesis remained undiminished. We conclude that Cx43 levels, though having common correlates, are not exclusively linked to the cell phenotype or the state of growth.  相似文献   

5.
6.
研究过表达的趋化因子CXCL12是否通过PI3K/Akt信号途径促进了骨髓基质干细胞膜上缝隙连接蛋白Connexin40、Connexin43和Connexin45的表达。采用重组DNA技术使骨髓基质干细胞过表达趋化因子CXCL12,采用Western blot法测定趋化因子CXCL12过表达后骨髓基质干细胞Connexin40、Connexin43、Connexin45、Akt、pAkt表达的变化情况,并用CXCL12受体和Akt途径阻断剂明确CXCL12和PI3K/Akt途径在这一过程中的作用。基因重组后骨髓干细胞过表达了趋化因子CXCL12,CXCL12过表达使骨髓基质干细胞膜上Connexin40、Connexin43和Connexin45表达明显增多,且CXCL12的这一作用是通过PI3K/Akt这一途径实现的。趋化因子CXCL12通过PI3K/Akt途径使骨髓基质干细胞膜上Connexin40、Connexin43和Connexin45的表达增加,可促进移植后干细胞与宿主心肌细胞形成有效的电耦合,从而有利于移植后干细胞的存活并发挥治疗作用。  相似文献   

7.
Geng S  Sun B  Liu S  Wang J 《Cell biology international》2007,31(11):1420-1427
Gap junctions, formed by connexin (Cx) family proteins, permit direct exchange of regulatory ions and small signal molecules between neighbouring cells. Gap junctional intercellular communication (GJIC) plays an important role in maintaining the homeostasis and preventing cell transformation. Most of the tumour cells feature deficient or aberrant connexin expression and GJIC level, and restoration of connexin expression and GJIC is correlated with cell growth control. Numerous researches has suggested the possibility of connexins as potential anti-tumour targets for chemoprevention and chemotherapy. We investigated the ability of Coleusin Factor (CF, also named FSK88) to regulate the Cx43 expression and GJIC level in rat osteosarcoma UMR106 cells. The results have demonstrated that CF increased the mRNA and protein expression of Cx43 in both in a dose- and timedependent manner, and concomitant with up-regulation of Cx43, CF treatment up-regulated the diminished GJIC level in UMR106 cells as assayed by dye transfer experiments. In addition, Cx43 distribution at the plasma membrane was also enhanced dramatically by CF treatment. Furthermore, we discovered that CF was potent to inhibit the growth and proliferation of UMR106 cells. These results provide the first evidence that CF can regulate connexin and GJIC, indicating that Cx43 may be a target of CF to exert its anti-tumour effects.  相似文献   

8.
Recent studies using mice with genetically engineered gap junction protein connexin (Cx) genes have provided evidence that reduced gap-junctional coupling in ventricular cardiomyocytes predisposes to ventricular arrhythmia. However, the pathological processes of arrhythmogenesis due to abnormalities in gap junctions are poorly understood. We have postulated a hypothesis that dysfunction of gap junctions at the single-cell level may affect synchronization of calcium transients among cardiomyocytes. To examine this hypothesis, we developed a novel system in which gap-junctional intercellular communication in primary neonatal rat cardiomyocytes was inhibited by a mutated (Delta130-137) Cx43 fused with enhanced green fluorescent protein (Cx43-EGFP), and calcium transients were imaged in real time while the mutated Cx43-EGFP-expressing cardiomyocytes were identified. The mutated Cx43-EGFP inhibited dye coupling not only in the liver epithelial cell line IAR 20 but also in primary neonatal rat cardiomyocytes in a dominant-negative manner, whereas wild-type Cx43-EGFP made functional gap junctions in otherwise communication-deficient HeLa cells. The mutated Cx43-EGFP induced desynchronization of calcium transients among cardiomyocytes with significantly higher frequency than wild-type Cx43-EGFP. These results suggest that dysfunction of gap-junctional intercellular communication at the single-cell level could hamper synchronous beating among cardiomyocytes as a result of desynchronization of calcium transients.  相似文献   

9.
10.
Little is known about connexin expression and function in murine cardiac fibroblasts. The authors isolated native ventricular fibroblasts from adult mice and determined that although they expressed both connexin43 (Cx43) and connexin45 (Cx45), the relative abundance of Cx45 was greater than that of Cx43 in fibroblasts compared to myocytes, and the electrophoretic mobility of both Cx43 and Cx45 differed in fibroblasts and in myocytes. Increasing Cx43 expression by adenoviral infection increased intercellular coupling, whereas decreasing Cx43 expression by genetic ablation decreased coupling. Interestingly, increasing Cx43 expression reduced fibroblast proliferation, whereas decreasing Cx43 expression increased proliferation. These data demonstrate that native fibroblasts isolated from the mouse heart exhibit intercellular coupling via gap junctions containing both Cx43 and Cx45. Fibroblast proliferation is inversely related to the expression level of Cx43. Thus, connexin expression and remodeling is likely to alter fibroblast function, maintenance of the extracellular matrix, and ventricular remodeling in both normal and diseased hearts.  相似文献   

11.
We have initiated a series of experiments to analyze the biosynthesis and oligomerization of Cx43 in cells containing other connexins through the expression of site-directed mutants and chimeric connexin polypeptides. Here we report studies concerning a mutant of Cx43 (Cx43tr) that has been truncated after amino acid 251 to remove most of the Cx43 carboxy-terminal region. In stably transfected HeLa cells, full length Cx43 localized primarily to appositional membranes while much more Cx43tr was observed in the cytoplasm. Both Cx43 and Cx43tr showed similar oligomerization profiles based on centrifugation through sucrose gradients. HeLaCx43tr cells showed limited transfer of microinjected Lucifer Yellow but did show electrical coupling. Co-expression of Cx43tr with Cx43 or Cx45 led to Cx43tr localization at appositional membranes and co-localization with the other connexins. Moreover, cells co-expressing Cx43tr with Cx43 or Cx45 showed extensive intercellular dye coupling. Thus, Cx43tr was able to oligomerize and form functional channels when expressed alone or with a compatible connexin, but it only formed plaques when co-expressed. These results suggest that the carboxyl tail of Cx43 is not important for oligomerization, but they implicate critical residues in the formation of gap junction plaques.  相似文献   

12.
We have initiated a series of experiments to analyze the biosynthesis and oligomerization of Cx43 in cells containing other connexins through the expression of site-directed mutants and chimeric connexin polypeptides. Here we report studies concerning a mutant of Cx43 (Cx43tr) that has been truncated after amino acid 251 to remove most of the Cx43 carboxy-terminal region. In stably transfected HeLa cells, full length Cx43 localized primarily to appositional membranes while much more Cx43tr was observed in the cytoplasm. Both Cx43 and Cx43tr showed similar oligomerization profiles based on centrifugation through sucrose gradients. HeLaCx43tr cells showed limited transfer of microinjected Lucifer Yellow but did show electrical coupling. Co-expression of Cx43tr with Cx43 or Cx45 led to Cx43tr localization at appositional membranes and co-localization with the other connexins. Moreover, cells co-expressing Cx43tr with Cx43 or Cx45 showed extensive intercellular dye coupling. Thus, Cx43tr was able to oligomerize and form functional channels when expressed alone or with a compatible connexin, but it only formed plaques when co-expressed. These results suggest that the carboxyl tail of Cx43 is not important for oligomerization, but they implicate critical residues in the formation of gap junction plaques.  相似文献   

13.
The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx43 (UMR/Cx43) we confirmed that nifedipine sensitivity of ICW required Cx43 expression. In human osteoblastic cells, gap junction-dependent ICW also required activation of L-type calcium channels and influx of extracellular calcium.  相似文献   

14.
We have analyzed the effect of basic fibroblast growth factor (bFGF) on junctional communication (coupling) and connexin 43 (Cx43) expression in bovine microvascular endothelial (BME) cells. In control confluent cultures, the incidence of coupling, as assessed by the intercellular transfer of microinjected Lucifer Yellow, was limited to 13% of injected cells, and decreased to 0% with time in culture. After exposure to bFGF (3ng/ml), the incidence of coupling was increased in a time-dependent manner, reaching a maximum of 38% of microinjected cells after 10-12 hours. The extent of coupling, as assessed by scrape loading, was maximally increased 2.1-fold 8-9 hours after addition of bFGF. bFGF also induced a 2-fold increase in Cx43 as assessed by Western blotting, and increased Cx43 immunolabelling at contacting interfaces of adjacent BME cells. Cx43 mRNA was likewise increased after exposure to bFGF in a time- and dose-dependent manner, with a maximal 6-7-fold increase after a 4 hour exposure to 3-10ng/ml. Finally, the increase in coupling and Cx43 mRNA expression observed after mechanically wounding a confluent monolayer of BME cells was markedly reduced by antibodies to bFGF, which have previously been shown to inhibit migration. Taken together, these results indicate that exogenous and endogenous bFGF increase intercellular communication and Cx43 expression in microvascular endothelial cells. We propose that the bFGF-mediated increase in coupling is necessary for the coordination of endothelial cells during angiogenesis and other vessel wall functions.  相似文献   

15.
16.
Zhong G  Mantel PL  Jiang X  Jarry-Guichard T  Gros D  Labarrere C  Moreno AP 《BioTechniques》2003,34(5):1034-9, 1041-4, 1046
Metabolic and electrical coupling through gap junction channels is implicated in cell differentiation, tissue homeostasis, and electrotonic propagation of signals in excitable tissues. The characterization of gating properties of these channels requires electrophysiological recordings at both single- and multiple-channel levels. Hence, a system that is able to control connexin expression by external means would provide a useful tool. To regulate the expression of connexins in cells, plasmids encoding a transactivator and/or a lac-operon IPTG response-dependent Cx43 target gene were transfected into communication-deficient N2a neuroblastoma cells. Immunoblotting, dye coupling, and electrophysiological methods revealed that expression of Cx43 in selected clones could be tightly regulated. After 15-20 h of acute induction with IPTG, cell-to-cell communication reached its peak with junctional conductances of 15-30 nS. Chronic induction at specific doses of IPTG produced constant, controlled levels of Cx43 expression, which were reflected by predictable junctional coupling levels. These conditions allowed prolonged recordings from either lowly or highly coupled cells, making lac operon an ideal regulatory system for channel gating studies at a single-channel level.  相似文献   

17.
Many cells express multiple connexins, the gap junction proteins that interconnect the cytosol of adjacent cells. Connexin43 (Cx43) channels allow intercellular transfer of Lucifer Yellow (LY, MW = 443 D), while connexin45 (Cx45) channels do not. We transfected full-length or truncated chicken Cx45 into a rat osteosarcoma cell line ROS-17/2.8, which expresses endogenous Cx43. Both forms of Cx45 were expressed at high levels and colocalized with Cx43 at plasma membrane junctions. Cells transfected with full-length Cx45 (ROS/Cx45) and cells transfected with Cx45 missing the 37 carboxyl-terminal amino acids (ROS/Cx45tr) showed 30-60% of the gap junctional conductance exhibited by ROS cells. Intercellular transfer of three negatively charged fluorescent reporter molecules was examined. In ROS cells, microinjected LY was transferred to an average of 11.2 cells/injected cell, while dye transfer between ROS/Cx45 cells was reduced to 3.9 transfer between ROS/Cx45 cells was reduced to 3.9 cells. In contrast, ROS/Cx45tr cells transferred LY to > 20 cells. Transfer of calcein (MW = 623 D) was also reduced by approximately 50% in ROS/Cx45 cells, but passage of hydroxycoumarin carboxylic acid (HCCA; MW = 206 D) was only reduced by 35% as compared to ROS cells. Thus, introduction of Cx45 altered intercellular coupling between cells expressing Cx43, most likely the result of direct interaction between Cx43 and Cx45. Transfection of Cx45tr and Cx45 had different effects in ROS cells, consistent with a role of the carboxyl-terminal domain of Cx45 in determining gap junction permeability or interactions between connexins. These data suggest that coexpression of multiple connexins may enable cells to achieve forms of intercellular communication that cannot be attained by expression of a single connexin.  相似文献   

18.
Follicle-stimulating hormone is the major regulator of growth and development of antral follicles in the ovary. Granulosa cells (GCs) in these follicles are coupled via gap junctions (GJs) consisting of connexin 43 (Cx 43). Because we and others have found that Cx 43 and GJs, respectively, are more abundant in large antral follicles compared with small antral and preantral follicles, we hypothesized that FSH may control Cx 43 gene expression, GJ formation, and intercellular communication. To directly address these points, we chose a rat GC line (GFSHR-17) expressing the FSH receptor and the Cx 43 gene. The functionality of FSH receptors was shown by the effects of porcine FSH, namely cell rounding, reduced cellular proliferation, and stimulation of progesterone production of GFSHR-17 cells, which are effects that were detectable within hours. Treatment with FSH also statistically significantly increased Cx 43 mRNA levels, as shown after 6 to 9 h in Northern blots. These effects were antedated by altered GJ communication, which was observed within seconds. Using a single-cell/whole-cell patch clamp technique, we showed that FSH rapidly and reversibly enhanced electrical cell coupling of GFSHR-17 cells. Increased GJ communication was associated with statistically significantly decreased phosphorylation of Cx 43, which was observed within 10 min after FSH addition, during immunoprecipitation experiments. Our results demonstrate, to our knowledge for the first time, that the gonadotropin FSH acutely and directly stimulates intercellular communication of GFSHR-17 cells through existing GJs. Moreover, FSH also increases levels of Cx 43 mRNA. These changes are associated with reduced proliferation and enhanced differentiation of GFSHR-17 cells. In vivo factors in addition to FSH may be involved in the regulation of GJ/GJ communication between GCs in the follicle, but our results suggest that improved cell-to-cell coupling, enhanced Cx 43 gene expression, and possibly, formation of new GJs are direct consequences of FSH receptor activation and may antedate and/or initiate the pivotal effects of FSH on GCs.  相似文献   

19.
A typical feature of astrocytes is their high degree of intercellular communication through gap junction channels. Using different models of astrocyte cultures and astrocyte/neuron cocultures, we have demonstrated that neurons upregulate gap-junctional communication and the expression of connexin 43 (Cx43) in astrocytes. The propagation of intercellular calcium waves triggered in astrocytes by mechanical stimulation was also increased in cocultures. This facilitation depends on the age and number of neurons, indicating that the state of neuronal differentiation and neuron density constitute two crucial factors of this interaction. The effects of neurons on astrocytic communication and Cx43 expression were reversed completely after neurotoxic treatments. Moreover, the neuronal facilitation of glial coupling was suppressed, without change in Cx43 expression, after prolonged pharmacological treatments that prevented spontaneous synaptic activity. Altogether, these results demonstrate that neurons exert multiple and differential controls on astrocytic gap-junctional communication. Since astrocytes have been shown to facilitate synaptic efficacy, our findings suggest that neuronal and astrocytic networks interact actively through mutual setting of their respective modes of communication.  相似文献   

20.
Gap junctions, composed of connexins, have been shown to suppress transformation in a variety of malignancies and transformed cell types. In addition, transforming factors such as the src oncogene have been shown to directly phosphorylate some connexins (e.g., Cx43) and inhibit coupling. To investigate the role of gap junctions in cell transformsation by v-src, we utilized a clonal cell line derived from Cx43 knockout mice (KoA) that was immortalized, but not transformed. Transfection by v-src induced a marked transformed phenotype characterized by growth in low serum and anchorage-independent conditions. Subsequent transfections by Cx43, Cx32 or vector alone were then tested for their effects on growth. Activity of pp60v - src was confirmed in all transfectants as well as the ability of pp60v - src to phosphorylate Cx43 in several clones. Despite the documented effect of pp60v - src on Cx43 channel closure, modest coupling was still retained in many of the Cx43 and Cx32 transfectants. However, none of the four Cx43 transfected clones showed significant inhibitory effects on proliferation in either anchorage-independent or low serum growth conditions. Of the Cx32 clones, only one in five showed effects on growth in both assays, which was the same ratio observed for the control transfectants. Thus, based on the levels of expression achieved, which were comparable to endogenous levels in established cell lines, neither Cx43 nor Cx32 serve as effective suppressors of the transformed growth phenotype of this v-src expressing cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号