首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Electrospray mass spectrometry was used to investigate the mechanism of tetramolecular G-quadruplex formation by the DNA oligonucleotide dTG5T, in ammonium acetate. The intermediates and products were separated according to their mass (number of strands and inner cations) and quantified. The study of the temporal evolution of each species allows us to propose the following formation mechanism. (i) Monomers, dimers and trimers are present at equilibrium already in the absence of ammonium acetate. (ii) The addition of cations promotes the formation of tetramers and pentamers that incorporate ammonium ions and therefore presumably have stacked guanine quartets in their structure. (iii) The pentamers eventually disappear and tetramers become predominant. However, these tetramers do not have their four strands perfectly aligned to give five G-quartets: the structures contain one ammonium ion too few, and ion mobility spectrometry shows that their conformation is more extended. (iv) At 4°C, the rearrangement of the kinetically trapped tetramers with presumably slipped strand(s) into the perfect G-quadruplex structure is extremely slow (not complete after 4 months). We also show that the addition of methanol to the monomer solution significantly accelerates the cation-induced G-quadruplex assembly.  相似文献   

2.
The ADP-l-glycero-β-d-manno-heptose and the GDP-6-deoxy-α-d-manno-heptose biosynthesis pathways play important roles in constructing lipopolysaccharide of Gram-negative bacteria. Blocking the pathways is lethal or increases antibiotic susceptibility to pathogens. Therefore, the enzymes involved in the pathways are novel antibiotic drug targets. Here, we designed an efficient method to assay the whole enzymes in the pathways using mass spectrometry and screened 148 compounds. One promising lead is (?)-nyasol targeting d-glycero-α-d-manno-heptose-1-phosphate guanylyltransferase (HddC) included in the GDP-6-deoxy-α-d-manno-heptose biosynthesis pathway from Burkholderia pseudomallei. The inhibitory activity of the lead compound against HddC has been confirmed by blocking the system transferring the guanosine monophosphate (GMP) moiety to α-d-glucose-1-phosphate. (?)-Nyasol exhibits the half maximal inhibitory concentration (IC50) value of 17.6 μM. A further study is going on using (?)-nyasol derivatives to find better leads with high affinity.  相似文献   

3.
The interactions of self-complementary oligonucleotides with a group of metal-mediated DNA-binding drugs, including chromomycin A3, mithramycin and the novel compound UK-1, were examined via electrospray ionization quadrupole ion trap mass spectrometry. Both chromomycin and mithramycin were shown to bind preferentially to GC-rich oligonucleotide duplexes in a 2:1 drug:metal ratio, while UK-1 was shown to bind in a 1:1 drug:metal stoichiometric ratio without a strong sequence preference. These trends were observed in the presence of Co2+, Ni2+ and Zn2+, with the exception that chromomycin–Zn2+ complexes were not readily observed. The binding stoichiometries as well as the sequence specificities are in agreement with literature reports for solution studies. Binding selectivities and stabilities of the complexes were also probed using electrospray ionization mass spectrometry. Both of the GC-rich oligomers 5′-GCGCGC-3′ and 5′-GCGCATGCGC-3′ exhibited a binding preference for chromomycin over mithramycin in the presence of Co2+ and Ni2+. Energy-variable collisionally activated dissociation of the complexes was employed to determine the stabilities of the complexes. The relative metal-dependent binding energies were Ni2+ > Zn2+ > Co2+ for UK-1–oligomer complexes and Ni2+ > Co2+ for both mithramycin and chromomycin complexes.  相似文献   

4.
Desorption electrospray ionization (DESI) was utilized to monitor the presence of targeted central carbon metabolites within bacterial cell extracts and the quench supernatant of Escherichia coli. The targeted metabolites were identified through tandem mass spectrometry (MS/MS) product ion scans using collision-induced dissociation in the negative ion mode. Picogram detection limits were achieved for a majority of the metabolites during MS/MS analysis of standard metabolite solutions. In a [U-(13)C]glucose pulse experiment, where uniformly labeled glucose was fed to E. coli, the corresponding fragment ions from labeled metabolites in extracts were generally observed. There was evidence of matrix effects including moderate suppression by other metabolites within the spectra of the labeled and unlabeled extracts. To improve the specificity and sensitivity of detection, optimized in situ ambient chemical reactions using DESI and extractive electrospray ionization (EESI) were carried out for targeted compounds. This study provides the first indication of the potential to perform in situ targeted metabolomics of a bacterial sample via ambient ionization mass spectrometry.  相似文献   

5.
Lipoproteins are of fundamental importance for the lipid transport and cardiovascular disease. The function and metabolism of lipoproteins is intimately linked to the biophysical properties of their surface lipids. Although a number of disease associations were found for lipid species in plasma, only a few studies reported lipid profiles of lipoproteins. Here, we provide an overview of techniques for lipoprotein separation, methods for lipid species analysis based on electrospray ionization tandem mass spectrometry (ESI-MS/MS) as well as data from recent lipidomic studies on lipoprotein fractions. We also discuss the different analytical strategies and how lipid profiling can expand our understanding of the biology and structures of lipoproteins.  相似文献   

6.
Mass spectral measurements by electrospray ionization mass spectrometry (ESI-MS) detected the ions of beta-cyclodextrin (betaCD) or branched betaCDs (glucosyl-, galactosyl-, mannosyl- and maltosyl-betaCD)-prostaglandins (PGs: PGA(2), PGD(2), PGE(1), PGE(2), PGF(2alpha) and PGJ(2)) complexes, i.e., betaCD-PG complexes, with a host:guest ratio of 1:1 in the negative ion mode. This is the first study to report the ions of branched betaCD-PG complexes using ESI-MS. The inclusion complexes were determined by a flow injection analysis using acetonitrile/water. We could confirm by this method the presence of a betaCD-PGE(2) complex with a host:guest ratio of 1:1 in a solution-dissolved pharmaceutical formulation consisting of betaCD-PGE(2) (Prostarmon E tablet).  相似文献   

7.
Electrospray ionization mass spectrometry (ESI-MS) is employed to directly analyze the limited trypsinolysis products of wild-type tumor necrosis factor-alpha (wtTNF-alpha) and its mutant, M3S. To determine the charge numbers of peaks of relatively small peptides in the ESI mass spectrum of a digest, a series of sodium-adduct ion peaks of each peptide are generated by adding a small quantity of NaCl to the digest before taking the spectrum. From the monitoring of the composition of proteolytic mixture as the incubation time is lengthened, it has been learned that the proteolysis of wtTNF-alpha by trypsin occurs sequentially: Arg2, Arg6, Arg32, Arg31, and Arg44, and that M3S is strongly resistant to the proteolysis. Since the cleavage sequence of wtTNF-alpha and the mutation-induced resistance of M3S are consistent with the structural features of the proteins, we can suggest a mutant more resistant to proteolysis than M3S, which has an additional point mutation, Ala35Leu or Ala35Ile.  相似文献   

8.
Nanoelectrospray ionization mass spectrometry has been used to measure the binding of ATP and ADP to the active site of rabbit skeletal myosin-S1. Increases in the molecular mass of myosin-S1 of 425 +/- 10 Da were obtained with the binding of ADP to the active site and by 530 +/- 10 Da with either ATP or hydrolysis products ADP and phosphate. Active site titrations of myosin-S1 with ADP gave a stoichiometry of approximately 1 ADP/S1 with an affinity in the micromolar range. The binding of ATP to myosin-S1 could be observed in the presence of up to 60 muM of excess MgATP without nonspecific binding of MgATP to the myosin. Conversion of the nucleotide complex containing an equilibrium mixture of ATP and ADP-Pi bound to myosin-S1 to one containing only bound ADP occurs at a rate consistent with that of the known steady-state rate of ATP hydrolysis. We expect this method to be of considerable use in the analysis of ligand binding and hydrolysis by the active sites of expressed myosin and myosin subfragments, which are not available in sufficient quantities for conventional methods of measurement of ligand binding.  相似文献   

9.
Differences in charge state distributions of hairpin versus linear strands of oligonucleotides are analyzed using electrospray ionization mass spectrometry (ESI-MS) in the negative ion detection mode. It is observed that the linear structures show lower charge state distribution than the hairpin strands of the same composition. The concentration of ammonium acetate and the cone voltage are major factors that cause the shift of the negative ions in the charge states. The ESI data presented here are supported by UV spectra of strands acquired at 260 nm wavelength in aqueous ammonium acetate solution. We will show that the strands that demonstrate a higher charge state distribution in the gas phase also have a higher melting temperature in solution.  相似文献   

10.
A fast and direct method for the monitoring of enzymatic DNA hydrolysis was developed using electrospray ionization mass spectrometry. We incorporated the use of a robotic chip-based electrospray ionization source for increased reproducibility and throughput. The mass spectrometry method allows the detection of DNA fragments and intact non-covalent protein–DNA complexes in a single experiment. We used the method to monitor in real-time single-stranded (ss) DNA hydrolysis by colicin E9 DNase and to characterize transient non-covalent E9 DNase–DNA complexes present during the hydrolysis reaction. The mass spectra showed that E9 DNase interacts with ssDNA in the absence of a divalent metal ion, but is strictly dependent on Ni2+ or Co2+ for ssDNA hydrolysis. We demonstrated that the sequence selectivity of E9 DNase is dependent on the ratio protein:ssDNA or the ssDNA concentration and that only 3′-hydroxy and 5′-phosphate termini are produced. It was also shown that the homologous E7 DNase is reactive with Zn2+ as transition metal ion and that this DNase displays a different sequence selectivity. The method described is of general use to analyze the reactivity and specificity of nucleases.  相似文献   

11.
A rapid and sensitive electrospray ionization (ESI) tandem mass spectrometry (MS–MS) procedure was developed for the determination of iodide (I). A gold (Au) and I complex was formed immediately after the addition of the chelating agent NaAuCl4 to I solution, and was extracted with methyl isobutyl ketone. One to five microliters of the extract were injected directly into an ESI–MS–MS instrument. I quantification was performed by selecting reaction monitoring of the product ion I at m/z 127 derived from the precursor ion 197AuI2 at m/z 451. I concentration was measured in the quantification range from 10−7 to 10−5 M using 50 μL of solution within 10 min. Iodate was reduced to I with ascorbic acid and determined. I concentration in reference urine 2670a was measured after treatments.  相似文献   

12.
Cationic peanut peroxidase (CP) was isolated from peanut (Arachis hypogaea) cell suspension culture medium. CP is a glycoprotein with three N-linked glycan sites at Asn60, Asn144, and Asn185. ESI-MS of the intact purified protein reveals the microheterogeneity of the glycans. Tryptic digestion of CP gave a near complete sequence coverage by ESI-MS. The glycopeptides from the tryptic digestion were separated by RP HPLC identified by ESI-MS and the structure of the glycan chains determined by ESI-MS/MS. The glycans are large structures of up to 16 sugars, but most of their non-reducing ends have been modified giving a mixture of shorter chains at each site. Good agreement was found with the one glycan previously analyzed by (1)H NMR. This work is the basis for the future studies on the role of the glycans on stability and folding of CP and is another example of a detailed structural characterization of complex glycoproteins by mass spectrometry.  相似文献   

13.
14.
We report here on the analysis of synthetic oligonucleotides by electrospray ionization mass spectrometry (ESI-MS). After intensive removal of salt ions (especially sodium cations), negative ion mass spectra, allowing mass measurement with an accuracy of 0.01%, were obtained on several oligonucleotides up to 80 nucleotides. In most cases, the resolution was sufficient to observe n-1 and n-2 forms due to internal deletions during automated synthesis, and to identify the missing nucleotides. A 132-mer, whose size is close to the limit of automated chemical synthesis, was also successfully mass measured. A quantitative study showed that ESI-MS can provide quantitative data on oligonucleotides of similar size and structure. The described methodology is used to characterize oligonucleotide analogues such as phosphorothioate oligonucleotides designed for antisense applications. Finally, analyses in the positive ion mode on a trimer TpTpT in the presence of different amine bases were performed and allowed a better understanding of the influence of these bases on the ions formation.  相似文献   

15.
In view of the fact that memory effects associated with instrument calibration hinder the use of many mass-to-charge (m/z) ratios and tuning standards, identification of robust, comprehensive, inexpensive, and memory-free calibration standards is of particular interest to the mass spectrometry community. Glucose and its isomers are known to have a residue mass of 162.05282 Da; therefore, both linear and branched forms of polyhexose oligosaccharides possess well-defined masses, making them ideal candidates for mass calibration. Using a wide range of maltooligosaccharides (MOSs) derived from commercially available beers, ions with m/z ratios from approximately 500 to 2500 Da or more have been observed using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and time-of-flight mass spectrometry (TOF-MS). The MOS mixtures were further characterized using infrared multiphoton dissociation (IRMPD) and nano-liquid chromatography/mass spectrometry (nano-LC/MS). In addition to providing well-defined series of positive and negative calibrant ions using either electrospray ionization (ESI) or matrix-assisted laser desorption/ionization (MALDI), the MOSs are not encumbered by memory effects and, thus, are well-suited mass calibration and instrument tuning standards for carbohydrate analysis.  相似文献   

16.
Low molecular weight glutenin subunits (LMW-GS) are typically subdivided into three groups, according to their molecular weights and isoelectric points, namely the B-, C-, and D groups. Enriched B- and C-type LMW-GS fractions extracted from the bread wheat cultivar Chinese Spring were characterized using high performance liquid chromatography (HPLC) directly interfaced with electrospray ionization mass spectrometry and HPLC coupled off-line with matrix-assisted laser desorption/ionization mass spectrometry, in order to ascertain the number and relative molecular masses of the components present in each fraction and determine the number of cysteine residues. About 70 components were detected in each of the fractions examined by the combined use of these two techniques, with 18 components common to both fractions. Analysis of the fractions after alkylation with 4-vinylpyridine allowed determination of the number of the cysteines present in about 40 subunits. The proteins detected were tentatively classified based on the relative molecular masses and number of cysteine residues. Cross-contamination was found in both B- and C- fractions, along with the presence of D-type LMW-GS. The two fractions also contained unexpected components, probably lipid transfer proteins and omega-gliadins. The presence of extensive microheterogeneity was suggested by the detection of several co-eluting proteins with minor differences in their molecular masses.  相似文献   

17.
Desorption electrospray ionization mass spectrometry (DESI-MS) imaging of biological samples allows untargeted analysis and structural characterization of lipids ionized from the near-surface region of a sample under ambient conditions. DESI is a powerful and sensitive MS ionization method for 2D and 3D imaging of lipids from direct and unmodified complex biological samples. This review describes the strengths and limitations of DESI-MS for lipid characterization and imaging together with the technical workflow and a survey of applications. Included are discussions of lipid mapping and biomarker discovery as well as a perspective on the future of DESI imaging.  相似文献   

18.
Large-scale manufacturing of therapeutic cells requires bioreactor technologies with online feedback control enabled by monitoring of secreted biomolecular critical quality attributes (CQAs). Electrospray ionization mass spectrometry (ESI-MS) is a highly sensitive label-free method to detect and identify biomolecules, but requires extensive sample preparation before analysis, making online application of ESI-MS challenging. We present a microfabricated, monolithically integrated device capable of continuous sample collection, treatment, and direct infusion for ESI-MS detection of biomolecules in high-salt solutions. The dynamic mass spectrometry probe (DMSP) uses a microfluidic mass exchanger to rapidly condition samples for online MS analysis by removing interfering salts, while concurrently introducing MS signal enhancers to the sample for sensitive biomolecular detection. Exploiting this active conditioning capability increases MS signal intensity and signal-to-noise ratio. As a result, sensitivity for low-concentration biomolecules is significantly improved, and multiple proteins can be detected from chemically complex samples. Thus, the DMSP has significant potential to serve as an enabling portion of a novel analytical tool for discovery and monitoring of CQAs relevant to therapeutic cell manufacturing.  相似文献   

19.
Harvey DJ 《Proteomics》2005,5(7):1774-1786
This paper reviews methods for the analysis of N-linked glycans by mass spectrometry with emphasis on studies conducted at the Oxford Glycobiology Institute. Topics covered are the release of glycans from sodium dodecyl sulphate-polyacrylamide gel electrophoresis gels, their purification for analysis by mass spectrometry, methods based on matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization for producing fragment ions, and details of their fragmentation. MALDI mass spectrometry provided a rapid method for profiling neutral N-linked glycans as their [M + Na](+) ions which could be fragmented by collision-induced decomposition to give spectra containing both glycosidic and cross-ring fragments. Electrospray ionization mass spectrometry was more versatile in that it was relatively easy to change the type of ion that was formed and, furthermore, unlike MALDI, electrospray did not cause extensive loss of sialic acids from sialylated glycans. Negative ions formed by addition of anions such as chloride and, particularly, nitrate, to the electrospray solvent were stable and enabled singly charged ions to be obtained from larger glycans than was possible in positive ion mode. Fragmentation of negative ions followed specific pathways that defined structural details of the glycans that were difficult to obtain by classical methods such as exoglycosidase digestion.  相似文献   

20.
Electrospray ionization mass spectrometry (ESI-MS) has been used to determine the dissociation constants (K(D)s) and binding stoichiometry for tobramycin and paromomycin with a 27-nucleotide RNA construct representing the A-site of the 16S ribosomal RNA. K(D) values determined by holding the ligand concentration fixed are compared with K(D) values derived by holding the RNA target concentration fixed. Additionally, the effect of solution conditions such as the amount of organic solvent present and the amount of salt present in the solution on the K(D) measurement is investigated. It is shown that the preferred method for determining dissociation constants using ESI-MS is holding the RNA target concentration fixed below the expected K(D) and titrating the ligand. K(D) measurements should also be carried out at as high as possible salt concentration to minimize nonspecific binding due primarily to electrostatic interactions. For tobramycin, two nonequivalent binding sites were found with K(D1) = 352 nM and K(D2) = 9 microM. For paromomycin, there is only one binding site with K(D) = 52 nM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号