首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Cyanophycin is a bacterial storage polymer for carbon, nitrogen and energy with emerging industrial applications. As efficient cyanophycin production is enhanced by peptone, but commercial peptones are very expensive, thereby increasing the overall production cost, an enzymatically produced feather hydrolysate (FH) is assessed as a cheap replacement of peptone to lower the costs and make cyanophycin production more economically feasible. Keratinase production using feather as the sole carbon/nitrogen source by S.pactum 40530 at 30-L fermentation scale was achieved within 93?h with degradation rate of 96.5%. A concentration of 60?g/L of FH, generated by keratinolytic activity (8?×?103?U?g?1L?1d?1) within 24?h, was used as the main carbon/peptone source to produce cyanophycin. The growth performances of E. coli DapE/L using FH was compared to that of casamino acids (CA) and up to 7.1?±?0.4 and 5.3?±?0.3?g/L of cell mass were obtained after 72?h from FH and CA, respectively. Cyanophycin production yielded 1.4?±?0.1g/L for FH with average molecular mass of 28.8 and 1.4?±?0.2 for CA with average molecular mass of 35.3, after 60?h. For the first time, FH generated by biotechnological methods from environmentally problematic, abundant and renewable feather bioresource was successfully used for cyanophycin biopolymer production.  相似文献   

2.
Cyanophycin is an attractive biopolymer with chemical and material properties that are suitable for industrial applications in the fields of food, medicine, cosmetics, nutrition, and agriculture. For efficient production of cyanophycin, considerable efforts have been exerted to characterize cyanophycin synthetases (CphAs) and optimize fermentations and downstream processes. In this paper, we review the characteristics of diverse CphAs from cyanobacteria and non-cyanobacteria. Furthermore, strategies for cyanophycin production in microbial strains, including Escherichia coli, Pseudomonas putida, Ralstonia eutropha, Rhizopus oryzae, and Saccharomyces cerevisiae, heterologously expressing different cphA genes are reviewed. Additionally, chemical and material properties of cyanophycin and its derivatives produced through biological or chemical modifications are reviewed in the context of their industrial applications. Finally, future perspectives on microbial production of cyanophycin are provided to improve its cost-effectiveness.  相似文献   

3.
Cyanophycin or cyanophycin granule peptide is a protein that results from non-ribosomal protein synthesis in microorganisms such as cyanobacteria. The amino acids in cyanophycin can be used as a feedstock in the production of a wide range of chemicals such as acrylonitrile, polyacrylic acid, 1,4-butanediamine, and urea. In this study, an auxotrophic mutant (Rhizopus oryzae M16) of the filamentous fungus R. oryzae 99-880 was selected to express cyanophycin synthetase encoding genes. These genes originated from Synechocystis sp. strain PCC6803, Anabaena sp. strain PCC7120, and a codon optimized version of latter gene. The genes were under control of the pyruvate decarboxylase promoter and terminator elements of R. oryzae. Transformants were generated by the biolistic transformation method. In only two transformants both expressing the cyanophycin synthetase encoding gene from Synechocystis sp. strain PCC6803 was a specific enzyme activity detected of 1.5 mU/mg protein. In one of these transformants was both water-soluble and insoluble cyanophycin detected. The water-soluble fraction formed the major fraction and accounted for 0.5% of the dry weight. The water-insoluble CGP was produced in trace amounts. The amino acid composition of the water-soluble form was determined and constitutes of equimolar amounts of arginine and aspartic acid.  相似文献   

4.
(1)H NMR spectroscopy was used to compare the uptake of nitrogen into cyanobacterial cyanophycin from two sources: from the breakdown of intracellular proteins and amino acids, and directly from the external growth medium. Cells grown initially in medium containing (14)N-nitrate were transferred to (15)N-nitrate medium in the presence of chloramphenicol in both low (4 microE m(-2) s(-1)) and normal (100 microE m(-2) s(-1)) light, and in low light alone. Cyanophycin was separated from cells and analyzed by (1)H NMR spectroscopy. Cyanophycin is synthesized both from (14)N (degradation of cellular proteins) and from (15)N in the medium, the latter at a faster rate and to a greater extent under all conditions. SDS-PAGE showed that cyanophycin synthesis takes place by addition of monomers to already synthesized polymer.  相似文献   

5.
Cyanophycin is non-ribosomally synthesized protein-like copolymer. Synthesis of cyanophycin is catalyzed by cyanophycin synthetase (CphA). In this study, a novel cyanophycin synthetase CphA49 belonging to NOR5 clade of Gammaproteobacteria was identified with primer-based screening from a deep-sea sediment metagenomic library. The cphA49 gene contained an open reading frame of 2,637 bp and encoded a protein with a predicted molecular mass of 100 kDa. A recombinant CphA49 was obtained by the functional expression of cphA49 in Escherichia coli BL21 (DE3). The biochemical properties of the purified CphA49 were determined. The optimum pH and temperature of the recombinant CphA49 were 9.0 and 40 °C, respectively. The enzyme was stable at temperatures below 40 °C. The recombinant CphA49 exhibited strict primer dependency and broad substrate specificities. Cyanophycin catalyzed by CphA49 exhibited homogenous molecular mass. The amino acid composition of cyanophycin was determined and constitutes arginine, aspartic acid, and lysine.  相似文献   

6.
Cyanophycin synthesis is catalyzed by cyanophycin synthetase (CphA). It was believed that CphA requires l-aspartic acid (Asp), l-arginine (Arg), ATP, Mg2+, and a primer (low-molecular mass cyanophycin) for cyanophycin synthesis and catalyzes the elongation of a low-molecular mass cyanophycin. Despite extensive studies of cyanophycin, the mechanism of primer supply is still unclear, and already-known CphAs were primer-dependent enzymes. In the present study, we found that recombinant CphA from Thermosynechococcus elongatus BP-1 (Tlr2170 protein) catalyzed in vitro cyanophycin synthesis in the absence of a primer. The Tlr2170 protein showed strict substrate specificity toward Asp and Arg. The optimum pH was 9.0, and Mg2+ or Mn2+ was essential for cyanophycin synthesis. KCl enhanced the cyanophycin synthesis activity of the Tlr2170 protein; in contrast, dithiothreitol did not. The Tlr2170 protein appeared to be a 400 ± 9 kDa homo-tetramer. The Tlr2170 protein showed thermal stability and retained its 80% activity after a 60-min incubation at 50°C. In addition, we examined cyanophycin synthesis at 30°C, 40°C, 50°C, and 60°C. SDS-PAGE analysis showed that the molecular mass of cyanophycin increased with increased reaction temperature.  相似文献   

7.
Cyanophycin (multi-L-arginyl-poly-L-aspartic acid) is a nitrogen storage polymer found in most cyanobacteria and some heterotrophic bacteria. The cyanobacterium Synechocystis sp. strain PCC 6803 accumulates cyanophycin following a transition from nitrogen-limited to nitrogen-excess conditions. Here we show that the accumulation of cyanophycin depends on the activation of the key enzyme of arginine biosynthesis, N-acetyl-L-glutamate kinase, by signal transduction protein PII.  相似文献   

8.
The production of biodegradable polymers in transgenic plants in order to replace petrochemical compounds is an important challenge for plant biotechnology. Polyaspartate, a biodegradable substitute for polycarboxylates, is the backbone of the cyanobacterial storage material cyanophycin. Cyanophycin, a copolymer of l-aspartic acid and l-arginine, is produced via non-ribosomal polypeptide biosynthesis by the enzyme cyanophycin synthetase. A gene from Thermosynechococcus elongatus BP-1 encoding cyanophycin synthetase has been expressed constitutively in tobacco and potato. The presence of the transgene-encoded messenger RNA (mRNA) correlated with changes in leaf morphology and decelerated growth. Such transgenic plants were found to produce up to 1.1% dry weight of a polymer with cyanophycin-like properties. Aggregated material, able to bind a specific cyanophycin antibody, was detected in the cytoplasm and the nucleus of the transgenic plants.  相似文献   

9.
Cyanophycin is a natural source of polypetide consisting of aspartic acid as a backbone and arginine as its side chain. After the removal of arginine, the remaining poly-aspartate can be served in numerous industrial and biomedical applications. The synthesis of cyanophycin is catalyzed by cyanophycin synthetase. In this study, we used lactic acid bacteria to produce cyanophycin by nisin-controlled gene expression system (NICE). The cyanophycin synthetase gene cphA of Synechocystis sp. strain PCC6803 was cloned to the vector pNZ8149 followed by transformation into Lactococcus lactis subsp. cremoris NZ3900. The effects of nisin concentrations and the amounts of supplemented aspartic acid and arginine were examined for the production of cyanophycin. Alterations of the terminus of cphA gene were also conducted in an attempt to increase the yield of cyanophycin. An optimal cyanophycin production was noted under a culture condition of log phase induced at 250 ng/mL nisin in M17L medium supplemented with 20 mM arginine and 10 mM aspartic acid. An insertion of glycine residue at the C terminus of cyanophycin synthetase resulted in a yield of 20% of dry cell weight, a 10-fold increase when compared with the wild type. The results showed that recombinant lactic acid bacteria, a GRAS system, could provide an alternative approach of producing cyanophycin suitable for agricultural and biomedical applications.  相似文献   

10.
Cyanophycin granule polypeptide content increased by 2- to 3-fold, soluble protein content decreased by 1.5-fold, and carbohydrate content increased by 2-fold within 6 h of chloramphenicol addition to exponentially growing cells of Aphanocapsa sp. strain 6308. Analysis of 14C- and 3H-labeled cells transferred to unlabeled medium and analysis of pulse-labeled cells both suggested cyanophycin granule synthesis from preformed protein breakdown.  相似文献   

11.
Cyanophycin, inclusions in cyanobacteria discovered by the Italian scientist Borzi in 1887, were characterized as a polyamide consisting of aspartic acid and arginine. Its synthesis in cyanobacteria was analyzed regarding growth conditions, responsible gene product, requirements, polymer structure and properties. Heterologous expression of diverse cyanophycin synthetases (CphA) in Escherichia coli enabled further enzyme characterization. Cyanophycin is a polyamide with variable composition and physiochemical properties dependent on host and cultivation conditions in contrast to the extracellular polyamides poly-γ-glutamic acid and poly-ε-l-lysine. Furthermore, recombinant prokaryotes and transgenic eukaryotes, including plants expressing different cphA genes, were characterized as suitable for production of insoluble cyanophycin regarding higher yields and modified composition for other requirements and applications. In addition, cyanophycin was characterized as a source for the synthesis of polyaspartic acid or N-containing bulk chemicals and dipeptides upon chemical treatment or degradation by cyanophycinases, respectively. Moreover, water-soluble cyanophycin derivatives with altered amino acid composition were isolated from transgenic plants, yeasts and recombinant bacteria. Thereby, the range of dipeptides could be extended by biological processes and by chemical modification, thus increasing the range of applications for cyanophycin and its dipeptides, including agriculture, food supplementations, medical and cosmetic purposes, synthesis of the polyacrylate substitute poly(aspartic acid) and other applications.  相似文献   

12.
The temporal and spatial accumulation of cyanophycin was studied in two unicellular strains of cyanobacteria, the diazotrophic Cyanothece sp. strain ATCC 51142 and the non-diazotrophic Synechocystis sp. strain PCC 6803. Biochemistry and electron microscopy were used to monitor the dynamics of cyanophycin accumulation under nitrogen-sufficient and nitrogen-deficient conditions. In Cyanothece sp. ATCC 51142 grown under 12 h light/12 h dark nitrogen-fixing conditions, cyanophycin was temporally regulated relative to nitrogenase activity and accumulated in granules after nitrogenase activity commenced. Cyanophycin granules reached a maximum after the peak of nitrogenase activity and eventually were utilized completely. Knock-out mutants were constructed in Synechocystis sp. PCC 6803 cphA and cphB genes to analyze the function of these genes and cyanophycin accumulation under nitrogen-deficient growth conditions. The mutants grew under such conditions, but needed to degrade phycobilisomes as a nitrogen reserve. Granules could be seen in some wild-type cells after treatment with chloramphenicol, but were never found in Delta cphA and Delta cphB mutants. These results led to the conclusion that cyanophycin is temporally and spatially regulated in nitrogen-fixing strains such as Cyanothece sp. ATCC 51142 and represents a key nitrogen reserve in these organisms. However, cyanophycin appeared to play a less important role in the non-diazotrophic unicellular strains and phycobilisomes appeared to be the main nitrogen reserve.  相似文献   

13.
Two different recombinant plasmids both containing the cyanophycin synthetase gene (cphA) of Synechocystis sp. strain PCC6308 but differing concerning the resistance marker gene were tested for their suitability to produce high amounts of cyanophycin in recombinant strains of Ralstonia eutropha. Various cultivation experiments at the 30-L scale revealed very low cyanophycin contents of the cells ranging from 4.6% to 6.2% (w/w) of cellular dry weight (CDW) only, most probably because most cells had lost the corresponding plasmid during cultivation. To establish a cost effective and high efficient system for production of cyanophycin at larger scales using recombinant strains of R. eutropha, we applied two strategies: First, we integrated cphA into the dispensable chromosomal l-lactate dehydrogenase gene (ldh) of R. eutropha. Depending on the cultivation conditions used, relatively low cyanophycin contents between 2.2% and 7.7% (w/w) of CDW were reproducibly detected, which might be due to weak expression or low gene dosage in the single cphA copy strain of R. eutropha. In a second strategy we constructed a KDPG-aldolase gene (eda)-dependent addiction system, which combined features of a multi-copy plasmid with stabilized expression of cphA. Flasks experiments revealed that the cells accumulated extraordinarily high amounts of cyanophycin between 26.9% and 40.0% (w/w) of CDW even under cultivation conditions lacking cyanophycin precursor substrates or plasmid stabilizing antibiotics. Cyanophycin contents of up to 40.0% (w/w) of CDW were also obtained at a 30-L scale or a 500-L pilot-plant scale under such non-selective conditions. This demonstrates impressively that the stabilizing effect of the constructed eda-dependent addiction system can be used for production of enhanced amounts of cyanophycin at a larger scale in recombinant strains of R. eutropha.  相似文献   

14.
A method has been devised for the quantitative analysis of cyanophycin, based on (1)H nuclear magnetic resonance (NMR) spectroscopy, allowing determination of the nitrogen status of cyanobacteria. Cyanophycin is extracted with minimal washing from small volumes of cells and quantified by integration of the NMR peak attributed to the protons attached to the delta-carbon of arginine. Linear relationships were found between the amount of cyanophycin determined by this method and both known concentrations of cyanophycin solutions and the amount of cyanophycin determined using the standard chemical arginine assay.  相似文献   

15.
The process of N2 fixation in the filamentous cyanobacterium Anabaena sp. PCC 7120 is known to occur in terminally differentiated cells called heterocysts. This study is concerned with a morphological and immunocytochemical analysis of the developing heterocysts. The heterocysts continue a developmental process after synthesis of the specialized cell wall and the formation of the proheterocyst. The initial stages were described by Wilcox et al. (1973) and designated stages 1 through 7, with stages 5–7 associated with the maturing heterocyst. We now designate a stage 8 as the postmaturation stage, based on physiological and ultrastructural evidence. Immunocytochemistry to detect the nitrogenase protein NifH and the nonribosomally synthesized polypeptide cyanophycin demonstrated a complementary accumulation of these polypeptides. Accumulation of the nitrogenase protein was greatest at stages 5 and 6 and then declined precipitously. Cyanophycin was more prevalent after late stage 6 and was primarily associated with the polar nodule (polar plug) and the neck connecting the heterocyst with the adjoining vegetative cell. We suggest that the cyanophycin-containing polar plug is a key intermediate in the storage of fixed nitrogen in the heterocyst, a result consistent with the suggestion first made by Carr (1988) that cyanophycin exists as a dynamic reservoir of fixed nitrogen within the heterocysts.  相似文献   

16.
The numerous physiological functions of the nonessential amino acid L-aspartate, the semi-essential amino acid L-arginine, and the essential amino acid L-lysine, made them attractive for a wide range of nutritional and/or therapeutic applications. Furthermore, the administration of these amino acids as mixtures or as dipeptides for higher bioavailability is scientifically approved, and various commercial products of these forms are already available on the market. Although the industrial production of dipeptides is, with few exceptions, in an early stage, several strategies have been established and are compared in this review. Additionally, the recent developments in the technical production of aspartate–arginine and aspartate–lysine dipeptides from the biopolymer cyanophycin produced in microorganisms are discussed. Cyanophycin-derived dipeptides are produced exclusively by biotechnological procedures, probably possess higher bioavailability and may be used as better alternatives to the widely applied amino acid mixtures. Thus, the pivotal advantages and the potential applications of these dipeptides as well as of their constituting amino acids in nutrition and therapy are also discussed. Special emphasis is dedicated to arginine due to its numerous physiological roles in many cardiovascular, genitourinary, gastrointestinal, and immune disorders.  相似文献   

17.
Seventy-two pigs, initially weighing 4–5 kg, were fed on wheat-based diets supplemented with soya bean meal and/or meat meal in two experiments each of 4 weeks' duration.In the first experiment, 0, 25, 50 or 100% replacement of soya bean meal protein supplement with meat meal was associated with a linear decrease in weight gains (341-280 g/d), a linear increase in feed conversion ratios (1.64–2.35) and a linear decrease in apparent digestibility of dry matter (80.1–73.4%). There was no change in the apparent digestibility of nitrogen.In the second experiment, bone meal was added to provide 0.80, 1.55 and 3.05% calcium in diets in which the protein supplements were either soya bean meal or meat meal. The addition of bone meal to the diets containing soya bean meal did not affect the performance of the pigs, but it caused a linear decrease in the apparent digestibility of dry matter, nitrogen and calcium. The addition of bone meal to the diet containing meat meal reduced the feed intakes of the pigs from 617 to 516 g/d and the weight gains from 414 to 324 g/d.Weight gains of pigs were similar when their diets contained soya bean meal or meat meal as the protein supplement in the second experiment when the calcium content of the diets was 0.8%. The meat meal included in the diet was manufactured from soft offal.  相似文献   

18.
Two experiments were conducted with 72 pigs between 28 and 56 days of age to study the effect of tryptophane supplementation on their performance when fed on diets containing wheat and meat meal.In the first experiment, pigs were fed on a basal diet (Diet 1) or on the same diet supplemented with calcium dihydrogen phosphate (Diet 2), bone meal (Diet 3) or bone meal plus tryptophane (Diet 4), all to 3.1% calcium. The weight gains of the pigs (315 g day?1) fed on Diet 3 were significantly lower than that of the pigs fed on the other three diets (363 g day?1). The feed conversion ratios showed a similar trend. Diet 3 contained 0.16% tryptophane while the other diets contained 0.18–0.19% tryptophane. The crude protein, lysine and methionine contents of all diets were similar.In the second experiment, a basal diet containing meat meal and bone meal was supplemented with tryptophane, lysine plus methionine or all three amino acids. Feed intake was increased by all amino acid supplements. Weight gains were improved significantly (57%) by the addition of all three amino acids to the diets, but the improvements due to tryptophane alone (28%) or methionine plus lysine (35%) were not significant. Tryptophane supplementation alone or with lysine plus methionine increased the nitrogen retention of the pigs.It was concluded that the requirement for tryptophane of pigs between 28 and 56 days of age was greater than 0.16% of diets containing wheat and meat meal.  相似文献   

19.
The apparent digestibility coefficients of the energy and nitrogen of diets containing lupin-seed meal (LSM) were similar to those of diets containing fish meal, despite the comparatively high fibre content of the former.In pigs of 25–85 kg, barley-based diets containing LSM as the sole protein concentrate supported similar rates of gain and efficiency of gain as those containing mixtures of LSM and either fish meal or meat and bone meal, and at least as fast and efficient gains as those containing fish meal or meat and bone meal alone as the source of supplementary protein. However, they depressed dressing percentage. Pigs growing from 12 to 25 kg on barley diets in which up to 45% of the supplementary lysine was supplied in the form of LSM grew as well as those given diets containing various mixtures of dried blood, fish meal and skim-milk powder.  相似文献   

20.
A methodology is proposed for calculating the net land area requirement for European biofuels, accounting for the substitution impact of animal feed protein coproducts such as dried distillers grains and solubles (DDGS) and rape meal. For example, when bioethanol is produced from cereal grain starch, grain protein is preserved in the DDGS coproduct. Each tonne of wheat DDGS has the potential to replace 0.59 tonnes of soy meal and 0.39 tonnes of cereals in EU animal feed, and the land area required for soy and cereal feed production offsets much of the land requirement for wheat bioethanol feedstock. While the land area needed for bioethanol from feed wheat in North West Europe is 0.40 ha t?1, the net requirement after accounting for coproducts is just 0.03ha t?1 of bioethanol produced, 6% of the gross land requirement. Calculated in this way, the net land area required to produce biofuel from EU cereal, rapeseed and sugar beet crops is much lower than the gross land requirement, and from cereal and sugar beet crops is less than the land requirement of biofuel from oil palm and sugar cane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号