首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In this study, nitriles were used as sole sources of nitrogen in the enrichments to isolate nitrile-converting microorganisms. A novel fungus named ZJB-09150 possessing nitrile-converting enzymes was obtained with 3-cyanopyridine as sole source of nitrogen, which was identified by morphology, biology and 18S rDNA gene sequence as Fusarium proliferatum. It was found that F. proliferatum had ability to convert nitriles to corresponding acids or amides and showed wide substrate specificity to aliphatic nitriles, aromatic nitriles and ortho-substituted heterocyclic nitriles. The nitrile converting enzymes including nitrilase and nitrile hydratase in ZJB-09150 were induced by ε-caprolactam. Nitrilase obtained in this study showed high activity toward 3-cyanopyridine. It was active within pH 3.0–12.0 and temperature ranging from 25 to 65 °C with optimal at pH 9.0 and temperature 50–55 °C. The enzyme was thermostable and its half-life was 12.5 and 6 h at 45 and 55 °C, respectively. Under optimized reaction conditions, 60 mM 3-cyanopyridine was converted to nicotinic acid in 15 min, which indicated ZJB-09150 has potentials of application in large scale production of nicotinic acid.  相似文献   

2.
We have previously described the isolation of the new bacterial species, Ralstonia/Burkholderia sp. strain DSM 6920, which grows with 6-methylnicotinate and regioselectively hydroxylates this substrate in the C2 position by the action of 6-methylnicotinate-2-oxidoreductase to yield 2-hydroxy-6-methylnicotinate (Tinschert et al. 1997). In the present study we show that this enzymatic activity can be used for the preparation of a series of hydroxylated heterocyclic carboxylic acid derivatives. The following products were obtained from the unhydroxylated educts by biotransformation using resting cells: 2-hydroxynicotinic acid, 2-hydroxy-6-methylnicotinic acid, 2-hydroxy-6-chloronicotinic acid, 2-hydroxy-5,6-dichloronicotinic acid, 3-hydroxypyrazine-2-carboxylic acid, 3-hydroxy-5-methylpyrazine-2-carboxylic acid and 3-hydroxy-5-chloropyrazine-2-carboxylic acid. Thus the respective educts were all regioselectively mono-hydroxylated at the carbon atom between the ring-nitrogen and the ring-carbon atom carrying the carboxyl group. In contrast to its relatively broad biotransformation abilities, the strain shows a limited heterocyclic nutritional spectrum. It could grow only with three of the seven transformed educts: 6-methylnicotinate, 2-hydroxy-6-methylnicotinate and 5-methylpyrazine-2-carboxylate. 2-Hydroxynicotinate, 2-hydroxy-6-chloronicotinate, 2-hydroxy-5,6-dichloronicotinate, 3-hydroxypyrazine-2-carboxylate and 3-hydroxy-5-chloropyrazine-2-carboxylate were not degraded by the strain. Therefore, unlike 6-methylnicotinate-2-oxidoreductase, which has a broad substrate spectrum, the second enzyme of the 6-methylnicotinate pathway seems to have a much more limited substrate range. Among 28 aromatic heterocyclic compounds tested as the sole source of carbon and energy, only pyridine-2,5-dicarboxylate was found as a further growth substrate, and this was degraded by a pathway which did not involve 6-methylnicotinate-2-oxidoreductase. To the best of our knowledge the microbial production of 2-hydroxy-6-chloronicotinic acid, 2-hydroxy-5,6-dichloronicotinic acid and 3-hydroxy-5-methylpyrazine-2-carboxylic acid have not been reported before. Strain DSM 6920 is so far the only known strain which allows the microbial production of both these compounds and 3-hydroxypyrazine-2-carboxylic acid and 3-hydroxy-5-chloroypyrazine-2-carboxylic acid. Received: 18 June 1999 / Received revision: 30 August 1999 / Accepted: 3 September 1999  相似文献   

3.
《Process Biochemistry》2010,45(10):1632-1637
The production of pyruvate using biotransformation from dl-lactate has been recently drawn more and more attentions due to the wide applications of pyruvate in chemicals, drugs, and agrochemicals industries. In the current study, a strain ZJB-07166, which was capable of converting dl-lactate to pyruvate, was newly isolated and characterized and later identified as Serratia marcescens based on the morphology, physiological tests, ATB system and its 16S rDNA sequence. The strain S. marcescens ZJB-07166 was applied in biotransformation of dl-lactate to pyruvate and the detailed time courses for cultivation and biotransformation were investigated. The optimum nitrogen source and carbon source in the microorganism culture for production of lactate dehydrogenase were NH4Cl and dl-lactate, respectively. The optimum substrate concentration for biotransformation was around 40 mM and EDTA had an obvious stabilizing effect on pyruvate in biotransformation process. The pyruvate production concentration of 210 mM was achieved under the optimum conditions. These results demonstrated that the newly isolated S. marcescens ZJB-07166 was a promising strain for pyruvate production in industrial scale.  相似文献   

4.
利用改进的羟肟酸铁分光光度比色法建立了一种简单、快速、高通量的腈水解酶筛选方法.应用该方法从土壤中筛选获得1株具有3-氰基吡啶水解酶活性的菌株CCZU10 -1,经16S rDNA序列分析,鉴定该菌为红球菌属Rhodococcus sp.;同时确定了最适反应温度、pH和金属离子添加剂分别为30℃、7.0和Ca2+ (0.1 mmol/L).在最适催化反应条件下,催化转化50 mmol/L烟腈36 h,烟酸的产率可达到93.5%.  相似文献   

5.
Arora PK  Jain RK 《Biodegradation》2012,23(2):325-331
Decolourization, detoxification and biotransformation of 4-chloro-2-nitrophenol (4C2NP) by Bacillus sp. strain MW-1 were studied. This strain decolorized 4C2NP only in the presence of an additional carbon source. On the basis of thin layer chromatography (TLC), high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS), 4-chloro-2-aminophenol, 4-chloro-2-acetaminophenol and 5-chloro-2-methylbenzoxazole were identified as metabolites. Resting cells depleted 4C2NP with stoichiometric formation of 5-chloro-2-methyl benzoxazole. This is the first report of the formation of 5-chloro-2-methylbenzoxazole from 4C2NP by any bacterial strain.  相似文献   

6.
A nitrile-converting enzyme activity was induced in Aspergillus niger K10 by 3-cyanopyridine. The whole cell biocatalyst was active at pH 3–11 and hydrolyzed the cyano group into acid and/or amide functions in benzonitrile as well as in its meta- and para-substituted derivatives, cyanopyridines, 2-phenylacetonitrile and thiophen-2-acetonitrile. Amides constituted a significant part of the total biotransformation products of 2- and 4-cyanopyridine, 4-chlorobenzonitrile, 4-tolunitrile and 1,4-dicyanobenzene, while -substituted acrylonitriles gave amides as the sole products.  相似文献   

7.
In this study a novel strain was isolated with the capability to grow on eugenol as a source of carbon and energy. This strain was identified as Pseudomonas resinovorans (GenBank accession no. HQ198585) based on phenotypic characterization and phylogenetic analysis of 16S rDNA gene. The intermediates coniferyl alcohol, coniferyl aldehyde, ferulic acid, vanillin and vanillic acid were detected in the culture supernatant during eugenol biotransformation with this strain. The products were confirmed by thin layer chromatography (TLC), high performance liquid chromatography (HPLC) and spectral data achieved from UV-vis, FTIR and mass spectroscopy. Using eugenol as substrate and resting cells of P. resinovorans SPR1, which were harvested at the end of the exponential growth phase, without further optimization 0.24 g/L vanillin (molar yield of 10%) and 1.1g/L vanillic acid (molar yield of 44%) were produced after 30 h and 60 h biotransformation, respectively. The current work gives the first evidence for the eugenol biotransformation by P. resinovorans.  相似文献   

8.
氧化葡糖杆菌(Gluconobacter oxydans)来源的山梨醇脱氢酶可催化N-羟乙基葡萄糖胺合成6-脱氧-6-氨基(N-羟乙基)-α-L-呋喃山梨糖,即合成降血糖药物米格列醇的关键中间体。本文采用适应性驯化策略,以甘油为唯一碳源,通过40 g/L、60 g/L、80 g/L和100 g/L甘油梯度连续传代培养,筛选获得了一株以甘油为碳源的高活力菌株G.oxydans A-3-D,扫描电镜结果表明该细胞表面褶皱较原始菌株有显著增加。在80 g/L甘油培养基摇瓶培养24 h后,菌体浓度为4.58 g DCW/L,山梨醇脱氢酶的发酵体积酶活与比酶活分别为原始菌株G.oxydans ZJB-605的1.3倍及1.5倍。此外,在摇瓶培养条件下对影响催化反应进程的关键因素进行了考查,结果表明在摇瓶体系中,G.oxydans A-3-D的最适催化反应条件为80.0 g/L底物、2.0 g DCW/L菌体细胞、20 mmol/L Mg~(2+)浓度,15℃反应48 h后底物转化率达到90.8%,6NSL累积浓度为72.6 g/L,较G.oxydans ZJB-605有显著提升。  相似文献   

9.
Ethyl (S)-4-chloro-3-hydroxybutyrate is an intermediate for the synthesis of Atorvastatin, a chiral drug used for hypercholesterolemia. A Rhodococcus erythropolis strain (No. 7) able to convert 4-chloro-3-hydroxybutyronitrile into 4-chloro-3-hydroxybutyric acid has recently been isolated from soil. This activity has been regarded as having been caused by the successive actions of the nitrile hydratase and amidase. In this instance, the corresponding amidase gene was cloned from the R. erythropolis strain and expressed in Escherichia coli cells. A soluble active form of amidase enzyme was obtained at 18 degrees . The Ni column-purified recombinant amidase was found to have a specific activity of 3.89 U/mg toward the substrate isobutyramide. The amidase was found to exhibit a higher degree of activity when used with midchain substrates than with short-chain ones. Put differently, amongst the various amides tested, isobutyramide and butyramide were found to be hydrolyzed the most rapidly. In addition to amidase activity, the enzyme was found to exhibit acyltransferase activity when hydroxyl amine was present. This dual activity has also been observed in other enzymes belonging to the same amidase group (E.C. 3.5.1.4). Moreover, the purified enzyme was proven to be able to enantioselectively hydrolyze 4-chloro-3-hydroxybutyramide into the corresponding acid. The e.e. value was measured to be 52% when the conversion yield was 57%. Although this e.e. value is low for direct commercial use, molecular evolution could eventually result in this amidase being used as a biocatalyst for the production of ethyl (S)-4-chloro-3-hydroxybutyrate.  相似文献   

10.
A strain ofPseudomonas stutzeri KS25 utilizing 2-chlorobenzoic and 2,5-dichlorobenzoic acids as the sole carbon and energy source was isolated from polychlorophenol-contaminated soil and sewage, using the method of enrichment cultures. This strain was also able to grow on 2-fluoro-, 2-iodo-, 2-bromo- and 2,5-dihydroxybenzoate, but did not utilize 3-, 4-chloro-, 2,4- and 2,6-dichlorobenzoates as the sole carbon and energy source, however, it cometabolized 3-chloro-, 2,4-and 2,6-dichlorobenzoates, but not 4-chlorobenzoate. The yield of released chlorine during utilization of 2-chloro- and 2,5-dichlorobenzoates amounted to 100 % of the theoretical. The concentration of 2-chloro- and 2,5-dichlorobenzoates, not substantially inhibiting the isolated microorganism, was within the range 0.25–0.5 and 2.5–3.0 g/L, respectively.  相似文献   

11.
Gasoline-contaminated soil from Isfahan, Iran was selected to isolate a bacterium capable of desulfurizing dibenzothiophene (DBT). The isolated strain was named R1 and identified as Rhodococcus erythropolis through biochemical tests as well as sequencing of 16S rRNA gene. This strain could efficiently produce 2-hydroxybiphenyl (HBP) from DBT via the 4S metabolic pathway. The highest HBP amount was produced at 2 mM DBT with addition of glucose (10 g l(-1)), ethanol (3 g l(-1)), glycerol (2 g l(-1)) or succinate (10 g l(-1)) as carbon sources at pH 7. Highest respiration and growth rates were observed by microplate titration on 0.1 mM HBP, and addition of 0.2 mM HBP to glucose (1 g l(-1)) and DBT (0.3 mM) could inhibite the respiration of the isolate. The isolated strain could grow up to 0.4 mM of HBP when it is used with mineral sulfur as sole sulfur source. To the best of our knowledge this is the first report on a microtiter assay for the production and utilization of HBP by Rhodococcus.  相似文献   

12.
The aqueous substrate and product toxicity thresholds in the microbial biotransformation of (-)-trans-carveol to the fragrance/flavor compound (R)-(-)-carvone by Rhodococcus erythropolis were determined. Above aqueous phase concentrations of approx. 500 mg carveol/l and 200-600 mg carvone/l, the biotransformation activity of the biocatalyst was inhibited. This biotransformation was undertaken in a single aqueous phase 3 l [corrected] reactor in which a total of 5 ml carveol (mixture of isomers) was added before the biotransformation rate decreased significantly. The carvone volumetric productivity was 31 mg/lh. Although the growth of the organism post-exposure was not affected, dramatic morphological changes in response to the accumulation of the inhibitory substrate and product were observed.  相似文献   

13.
Candida galli strain PGO6 isolated from oil-contaminated water is the first isolated yeast strain which is capable to form vanillin and vanillic acid during isoeugenol biotransformation. The products were confirmed by thin-layer chromatography (TLC), changes in the UV absorption pattern and high-performance liquid chromatography (HPLC). The phenotypic and physiochemical characteristics as well as molecular phylogenetic analysis based on amplification the ITS1-5.8S-ITS2 rDNA regions indicated the isolated strain PGO6 was identified as C. galli (GenBank accession number HM641231). Resting cells of C. galli PGO6 from the late-exponential of growth phase were used as biocatalysts for the biotransformation of isoeugenol. The optimal molar conversion of vanillin (48%) and vanillic acid (19%) was obtained after a 30 h incubation using 0.1% (v/v) of isoeugenol and 6 mg of dry weight of cells per ml without further optimization. Under these conditions, the total amount of vanillin and vanillic acid was 583 mg l(-1). Further biotransformation was carried out using 0.5% (v/v) of isoeugenol under the resting cells conditions, yielding a vanillin concentration of 1.12 g l(-1) (molar yield 25.7%) after 60 h incubation. This study brings the first evidence for biotransformation of isoeugenol to vanillin and vanillic acid by a yeast strain.  相似文献   

14.
A bacterial strain capable of utilizing E-pyridine-3-aldoxime as a nitrogen source was isolated from soil after a 4-month acclimation period and was identified as Rhodococcus sp. The strain contained a novel aldoxime dehydration activity that catalyzed a stoichiometric dehydration of E-pyridine-3-aldoxime to form 3-cyanopyridine. The enzyme activity was induced by various aldoximes and nitriles. The strain metabolized the aldoxime as follows: E-pyridine-3-aldoxime was dehydrated to form 3-cyanopyridine, which was converted to nicotinamide by a nitrile hydratase, and the nicotinamide was successively hydrolyzed to nicotinic acid by an amidase. Received: 21 January 1998 / Accepted: 12 May 1998  相似文献   

15.
从土样中分离得到一株具有差向选择性还原(R)-6-氰基-5-羟基-3-羰基己酸叔丁酯活性的微生物菌株ZJB-09225,经生理生化特征鉴定和18S rDNA测序后鉴定为卡里比克毕赤酵母(Pichia caribbic ZJB-09225)。研究结果发现,在最适发酵条件下培养32 h,生物量为8.8 g/L,体积酶活达7.2 U/L;P.caribbic ZJB-09225最适作用温度、最适作用pH值分别为35℃和7.5。在最适的催化条件下,P.caribbic ZJB-09225细胞催化50.0 g/L(R)-6-氰基-5-羟基-3-羰基己酸叔丁酯3 h后,产物6-氰基-(3R,5R)-二羟基己酸叔丁酯得率3.4%,产物d.e.值99.5%以上。  相似文献   

16.
Biphasic systems can overcome the problem of low productivity in conventional media and have been exploited for biocatalysis. Solvent-tolerant microorganisms are useful in biotransformation with whole cells in biphasic reactions. A solvent-tolerant desulfurizing bacterium, Pseudomonas putida A4, was constructed by introducing the biodesulfurizing gene cluster dszABCD, which was from Rhodococcus erythropolis XP, into the solvent-tolerant strain P. putida Idaho. Biphasic reactions were performed to investigate the desulfurization of various sulfur-containing heterocyclic compounds in the presence of various organic solvents. P. putida A4 had the same substrate range as R. erythropolis XP and could degrade dibenzothiophene at a specific rate of 1.29 mM g (dry weight) of cells(-1) h(-1) for the first 2 h in the presence of 10% (vol/vol) p-xylene. P. putida A4 was also able to degrade dibenzothiophene in the presence of many other organic solvents at a concentration of 10% (vol/vol). This study is a significant step in the exploration of the biotechnological potential of novel biocatalysts for developing an efficient biodesulfurization process in biphasic reaction mixtures containing toxic organic solvents.  相似文献   

17.
Rhodococcus rhodochrous strain CTM co-metabolized 2-methylaniline and some of its chlorinated isomers in the presence of ethanol as additional carbon source. Degradation of 2-methylaniline proceeded via 3-methylcatechol, which was metabolized mainly by meta-cleavage. In the case of 3-chloro-2-methylaniline, however, only a small proportion (about 10%) was subjected to meta-cleavage; the chlorinated meta-cleavage product was accumulated in the culture fluid as a dead-end metabolite. In contrast, 4-chloro-2-methylaniline was degraded via ortho-cleavage exclusively. Enzyme assays showed the presence of catechol 1,2-dioxygenase and catechol 2,3-dioxygenase as inducible enzymes in strain CTM. Extended cultivation of strain CTM with 2-methylaniline and 3-chloro-2-methylaniline yielded mutants, including R. rhodochrous strain CTM2, that had lost catechol 2,3-dioxygenase activity; these mutants degraded the aromatic amines exclusively via the ortho-cleavage pathway. DNA hybridization experiments using a gene probe revealed the loss of the catechol 2,3-dioxygenase gene from strain CTM2.  相似文献   

18.
Gluconobacter oxydans is widely used in several biotechnological applications, where sorbitol or mannitol is commonly used as carbon source at high concentration. In this study, a membrane-bound glucose dehydrogenase-deficient strain (GDHK) was constructed to eliminate growth problems on glucose caused by direct oxidation of glucose in the medium. To achieve improved growth properties for the GDHK strain on glucose, a laboratory adaptive evolution experiment was performed with glucose as the sole carbon source. Results indicated evident, albeit modest, improvements in cell growth after a 50-day (about 430 generations) experimental evolution on glucose. The maximum specific growth rate and biomass yield of the resulting GDHE50 strain were increased around 1.35- to 1.4-fold compared with those of the GDHK strain. Meanwhile, two types of biotransformation reactions using resting cells of G. oxydans were investigated. Significant elevations in biotransformation performance of the GHDE50 strain were observed in comparison with that of the wild-type strain. In addition, resting cells of the GDHE50 strain grown on a relatively low concentration of glucose (10 g/l) could catalyze the biotransformation of glycerol to dihydroxyacetone and ethylene glycol to glycolic acid as efficient as the wild-type G. oxydans cultured on higher concentration of sorbitol or other carbon sources. These results suggest very favorable prospects of using glucose to lower production cost in many important industrial biocatalysis and biotransformation processes.  相似文献   

19.
A gram-negative prototrophic bacterial species, strain MC1, was isolated from the vicinity of herbicide-contaminated building rubble and identified by 16S rDNA sequence analysis, its physiological properties, GC content, and fatty acid composition as Comamonas acidovorans. This strain displays activity for the productive degradation of the two enantiomers of dichlorprop [(RS)-2-(2,4-dichlorophenoxy-)propionate; (RS)-2,4-DP] and mecoprop [(RS)-2-(4-chloro-2-methyl-) phenoxypropionate; (RS)-MCPP] in addition phenoxyacetate herbicides, i.e. 2,4-dichlorophenoxyacetate (2,4-D) and 4-chloro-2-methylphenoxyacetate (MCPA), and various chlorophenols were utilized. Rates amounted to 1.2 mmoles/h g dry mass (2,4-D) and 2.7 mmoles/h g dry mass [(RS)-2,4-DP]. Degradation of (RS)-2,4-DP was not inhibited up to concentrations of 500 mg/l, nor of 2,4-D up to 200 mg/l. The optimum pH value of (RS)-2,4-DP degradation was around 8. The application of respective primers for PCR amplification revealed the presence of tfdB and tfdC genes.  相似文献   

20.
Iminodiacetic acid (IDA) has been widely used as an important intermediate in the fine chemical industry. In this study, a novel synthesis route of IDA from iminodiacetonitrile by whole microorganisms was investigated. A strain with the capability of producing nitrilase, ZJB-09133, was isolated and identified, and later named Alcaligenes faecalis ZJB-09133. In addition, the detailed biocatalysis of iminodiacetonitrile to produce IDA using ZJB-09133 was investigated. The results showed that the conversion reached 65.3% in Na(2)HPO(4)-NaH(2)PO(4) buffer of pH 8.0 under the following conditions: cells in the amount of 0.075-g DCW/L, 1.5% substrate, conversion time of 8 h, and a reaction temperature of 35°C. To the best of our knowledge, this is the first time that the production of IDA using a biocatalysis method has been reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号