首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Phytoremediation is the use of plants for the treatment of environmental pollution, including chlorinated organics. although conceptually very attractive, removal and biodegradation of chlorinated pollutants by plants is a rather slow and inefficient process resulting in incomplete treatment and potential release of toxic metabolites into the environment. In order to overcome inherent limitations of plant metabolic capabilities, plants have been genetically modified, following a strategy similar to the development of transgenic crops: genes from bacteria, fungi, and mammals involved in the metabolism of organic contaminants, such as cytochrome p-450 and glutathione substrate catabolic genes, natural or engineered, for the simultaneous remediation of a range of pollutants, such as usually found in contaminated sites, e.g., chlorinated solvent, metals, and nitroaromatics. In addition, biodegradation of many xenobiotics are catalyzed by similar, broad-substrate enzymes, such as cytochrome P-450 monoxygenases, glutathione S-transferases, and fungal peroxidases, that can potentially be used for the treatment of multiple pollutants. Moreover, the introduction of multiple transgenes involved in different phases of the metabolism of xenobiotics in plants, i.e., uptake by roots and the different phases of the green liver model, would allow enhancing both the removal and metabolism of several toxic compounds and could therefore help overcome a major limitation inherent to phytoremediation, i.e., the threat that accumulated toxic compounds would volatilize or otherwise contaminate the food chain. An important barrier to the application of transgenic plants for bioremediation in the field is associated with the true or perceived risk of horizontal gene transfer to related wild or cultivated plants. Therefore, it is likely that the next generation of transgenic plants will involve systems preventing such a transfer, for instance by the introduction of transgenes into chloroplastic DNA or the use of conditional lethality genes (Davison, 2005). Since bacteria naturally exchange plasmids via conjugation, endophytes that gain genes involved in pollutant degradation might not be considered ‘genetically modified’ and may be subject to fewer restrictions in usage.  相似文献   

2.
Plants are increasingly being employed to clean up environmental pollutants such as heavy metals; however, a major limitation of phytoremediation is the inability of plants to mineralize most organic pollutants. A key component of organic pollutants is halogenated aliphatic compounds that include 1,2-dichloroethane (1,2-DCA). Although plants lack the enzymatic activity required to metabolize this compound, two bacterial enzymes, haloalkane dehalogenase (DhlA) and haloacid dehalogenase (DhlB) from the bacterium Xanthobacter autotrophicus GJ10, have the ability to dehalogenate a range of halogenated aliphatics, including 1,2-DCA. We have engineered the dhlA and dhlB genes into tobacco (Nicotiana tabacum 'Xanthi') plants and used 1,2-DCA as a model substrate to demonstrate the ability of the transgenic tobacco to remediate a range of halogenated, aliphatic hydrocarbons. DhlA converts 1,2-DCA to 2-chloroethanol, which is then metabolized to the phytotoxic 2-chloroacetaldehyde, then chloroacetic acid, by endogenous plant alcohol dehydrogenase and aldehyde dehydrogenase activities, respectively. Chloroacetic acid is dehalogenated by DhlB to produce the glyoxylate cycle intermediate glycolate. Plants expressing only DhlA produced phytotoxic levels of chlorinated intermediates and died, while plants expressing DhlA together with DhlB thrived at levels of 1,2-DCA that were toxic to DhlA-expressing plants. This represents a significant advance in the development of a low-cost phytoremediation approach toward the clean-up of halogenated organic pollutants from contaminated soil and groundwater.  相似文献   

3.
There is a duality in plant tolerance to pollutants and its response to the pollutants’ stress.On the one hand some plants, (hyper)tolerant to heavy metals, are able to hyperaccumulate these metals in shoots, which could be beneficial for phytoremediation purposes to clean-up soil and water. On the other hand tolerant food crops, exposed to heavy metals in their growth medium, may be dangerous as carriers of toxic metals in the food chain leading to food toxicity. There is an additional duality in plant tolerance to heavy metals and that is in food crops that are tolerant and/or hyperaccumulators, which could be used on one hand for phytoremediation, under controlled conditions and on the other hand for food fortification with essential metals.Similarly, plants are also exposed to a large number of xenobiotic organic pollutants. Because they generally cannot avoid these compounds, plants take up, translocate, metabolize and detoxify many of them. There is a large variability in tolerance (defence) mechanisms against organic pollutants among plant species. This includes production of reductants but also scavenger molecules like ascorbate and glutathione and expression of the P-450 defence system, and superfamilies of the enzymes glutathione- and glucosyl-transferases. Again, with view to organic pollutants, plant detoxification mechanisms might well protect the plant itself, but produce compounds with some deleterious potential for other organisms.In this review we discuss these dualities on the basis of examples of agricultural and ‘wild’ species exposed to metal contaminants (mainly Cd) and organic pollutants. Differences in uptake and translocation of various pollutants and their consequences will be considered. We will separately outline the effects of the organic and non-organic pollutants on the internal metabolism and the detoxification mechanisms and try to indicate the differences between both types of pollutants. Finally the consequences and solutions of these dualities in plant tolerance to pollutants will be discussed.  相似文献   

4.
Phytoremediation-the use of plants for cleaning up of xenobiotic compounds-has received much attention in the last few years and development of transgenic plants tailored for remediation will further enhance their potential. Although plants have the inherent ability to detoxify some xenobiotic pollutants, they generally lack the catabolic pathway for complete degradation/mineralization of these compounds compared to microorganisms. Hence, transfer of genes involved in xenobiotic degradation from microbes/other eukaryotes to plants will further enhance their potential for remediation of these dangerous groups of compounds. Transgenic plants with enhanced potential for detoxification of xenobiotics such as trichloro ethylene, pentachlorophenol, trinitro toluene, glycerol trinitrate, atrazine, ethylene dibromide, metolachlor and hexahydro-1,3,5-trinitro-1,3,5-triazine are a few successful examples of utilization of transgenic technology. As more genes involved in xenobiotic metabolism in microorganisms/eukaryotes are discovered, it will lead to development of novel transgenic plants with improved potential for degradation of recalcitrant contaminants. Selection of suitable candidate plants, field testing and risk assessment are important considerations to be taken into account while developing transgenic plants for phytoremediation of this group of pollutants. Taking advantage of the advances in biotechnology and 'omic' technologies, development of novel transgenic plants for efficient phytoremediation of xenobiotic pollutants, field testing and commercialization will soon become a reality.  相似文献   

5.
The CYP2E1 protein belongs to the P450 enzymes family and plays an important role in the metabolism of small molecular and organic pollutants. In this study we generated CYP2E1 transgenic plants of Petunia using Agrobacterium rhizogenes K599. PCR analysis confirmed that the regenerated plants contained the CYP2E1 transgene and the rolB gene of the Ri plasmid. Southern blotting revealed the presence of multiple copies of CYP2E1 in the genome of transgenic plants. Fluorescent quantitative PCR revealed exogenous CYP2E1 gene expression in CYP2E1 transgenic plants at various levels, whereas no like expression was detected in either GUS transgenic plants or wild-types. The absorption of benzene and toluene by transgenic plants was analyzed through quantitative gas chromatography. Transgenic plants with high CYP2E1 expression showed a significant increase in absorption capacity of environmental benzene and toluene, compared to control GUS transgenic and wild type plants. Furthermore, these plants also presented obvious improved resistance to formaldehyde. This study, besides being the first to reveal that the CYP2E1 gene enhances plant resistance to formaldehyde, also furnishes a new method for reducing pollutants, such as benzene, toluene and formaldehyde, by using transgenic flowering horticultural plants.  相似文献   

6.
Phytoremediation — the use of plants to clean up polluted soil and water resources — has received much attention in the last few years. Although plants have the inherent ability to detoxify xenobiotics, they generally lack the catabolic pathway for the complete degradation of these compounds compared to microorganisms. There are also concerns over the potential for the introduction of contaminants into the food chain. The question of how to dispose of plants that accumulate xenobiotics is also a serious concern. Hence the feasibility of phytoremediation as an approach to remediate environmental contamination is still somewhat in question. For these reasons, researchers have endeavored to engineer plants with genes that can bestow superior degradation abilities. A direct method for enhancing the efficacy of phytoremediation is to overexpress in plants the genes involved in metabolism, uptake, or transport of specific pollutants. Furthermore, the expression of suitable genes in root system enhances the rhizodegradation of highly recalcitrant compounds like PAHs, PCBs etc. Hence, the idea to amplify plant biodegradation of xenobiotics by genetic manipulation was developed, following a strategy similar to that used to develop transgenic crops. Genes from human, microbes, plants, and animals are being used successfully for this venture. The introduction of these genes can be readily achieved for many plant species using Agrobacterium tumefaciens-mediated plant transformation or direct DNA methods of gene transfer. One of the promising developments in transgenic technology is the insertion of multiple genes (for phase 1 metabolism (cytochrome P450s) and phase 2 metabolism (GSH, GT etc.) for the complete degradation of the xenobiotics within the plant system. In addition to the use of transgenic plants overexpressed with P450 and GST genes, various transgenic plants expressing bacterial genes can be used for the enhanced degradation and remediation of herbicides, explosives, PCBs etc. Another approach to enhancing phytoremediation ability is the construction of plants that secrete chemical degrading enzymes into the rhizosphere. Recent studies revealed that accelerated ethylene production in response to stress induced by contaminants is known to inhibit root growth and is considered as major limitation in improving phytoremediation efficiency. However, this can be overcome by the selective expression of bacterial ACC deaminase (which regulates ethylene levels in plants) in plants together with multiple genes for the different phases of xenobiotic degradation. This review examines the recent developments in use of transgenic-plants for the enhanced metabolism, degradation and phytoremediation of organic xenobiotics and its future directions.  相似文献   

7.
Biodegradation and biotransformation of explosives   总被引:1,自引:0,他引:1  
Explosives now contaminate millions of hectares of land in the US alone, with global levels of contamination difficult to fully assess. Understanding the biology behind the metabolism of these toxic compounds by microorganisms and plants is imperative for managing these pollutants in the environment. Towards this aim, recent studies have identified, and are now characterizing, plant genes involved in 2,4,6-trinitrotoluene detoxification and the biochemical pathways of nitramine degradation in microorganisms. A key scientific goal continues to be identification of enzymes capable of degrading 2,4,6-trinitrotoluene and this still remains elusive, although recent reports give insights into the origin of nitrite released during biotransformation of this major contaminant. Promising phytoremediation research using transgenic model plant systems has now been transferred to poplar, a species with field applicability.  相似文献   

8.
Phytoremediation is the use of plants to remove xenobiotic compounds from the environment. Plants have the inherent ability to detoxify xenobiotic pollutants, but they are generally poor at degrading them. The introduction of genes involved in xenobiotic degradation is aimed at enhancing plants' potential further. Rice (Oryza sativa) is a good candidate for this purpose and has been transformed with genes encoding cytochrome P450 monooxygenases CYP1A1, CYP2B6, and CYP2C19. The transgenic plants were more tolerant to various herbicides than nontransgenic Nipponbare rice plants, owing to enhanced metabolism by the introduced P450 enzymes. Transgenic plants were able to remove atrazine and metolachlor from soil. Field testing and risk assessment are very important for developing transgenic plants for phytoremediation. Transgenic rice plants should become useful as herbicide-tolerant crops and for phytoremediation of xenobiotic pollutants in future.  相似文献   

9.
Phytoremediation of toxic aromatic pollutants from soil   总被引:9,自引:0,他引:9  
The enormous growth of industrialization, and the use of numerous aromatic compounds in dyestuffs, explosives, pesticides and pharmaceuticals has resulted in serious environmental pollution and has attracted considerable attention continuously over the last two decades. Many aromatic hydrocarbons, nitroaromatic compounds, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, diauxins and their derivatives are highly toxic, mutagenic and/or carcinogenic to natural microflora as well as to higher systems including humans. The increasing costs and limited efficiency of traditional physicochemical treatments of soil have spurred the development of new remediation technologies. Phytoremediation is emerging as an efficient treatment technology that uses plants to bioremediate pollutants from soil environments. Various modern tools and analytical devices have provided insight into the selection and optimization of remediation processes by various plant species. Sites heavily polluted with organic contaminants require hyperaccumulators, which could be developed by genetic engineering approaches. However, efficient hyperaccumulation by naturally occurring plants is also feasible and can be made practical by improving their nutritional and environmental requirements. Thus, phytoremediation of organics appears a very promising technology for the removal of contaminants from polluted soil. In this review, certain aspects of plant metabolism associated with phytoremediation of organic contaminants and their relevant phytoremediation efforts are discussed.IMTECH Communication No. 013/2002  相似文献   

10.
Constructed wetlands are a natural alternative to technical methods of wastewater treatment. However, our understanding of the complex processes caused by the plants, microorganisms, soil matrix and substances in the wastewater, and how they all interact with each other, is still rather incomplete. In this article, a closer look will be taken at the mechanisms of both plants in constructed wetlands and the microorganisms in the root zone which come into play when they remove contaminants from wastewater. The supply of oxygen plays a crucial role in the activity and type of metabolism performed by microorganisms in the root zone. Plants' involvement in the input of oxygen into the root zone, in the uptake of nutrients and in the direct degradation of pollutants as well as the role of microorganisms are all examined in more detail. The ways in which these processes act to treat wastewater are dealt with in the following order: Technological aspects; The effect of root growth on the soil matrix; Gas transport in helophytes and the release of oxygen into the rhizosphere; The uptake of inorganic compounds by plants; The uptake of organic pollutants by plants and their metabolism; The release of carbon compounds by plants; Factors affecting the elimination of pathogenic germs.  相似文献   

11.
转基因植物对有机污染物的吸收、转化和降解   总被引:7,自引:0,他引:7  
有机污染物是土壤、水体和大气环境的重要污染物.利用和加强植物修复作用是控制环境污染的有效途径.近年来,一些具有修复功能的外源基因被陆续引入到植物中,使转基因植物的生物修复能力大大增强.文章介绍了植物对污染环境中有机污染物,尤其是持久性有机污染物(POPs)的吸收、转化和降解作用,阐述了转基因植物用于被污染环境修复方面的研究进展和应用前景.  相似文献   

12.
Liao Y  Zhou X  Yu J  Cao Y  Li X  Kuai B 《Plant physiology》2006,142(2):620-628
Transgenic exploitation of bacterial degradative genes in plants has been considered a favorable strategy for degrading organic pollutants in the environment. The aromatic ring characteristic of these pollutants is mainly responsible for their recalcitrance to degradation. In this study, a Plesiomonas-derived chlorocatechol 1,2-dioxygenase (TfdC) gene (tfdC), capable of cleaving the aromatic ring, was introduced into Arabidopsis (Arabidopsis thaliana). Morphology and growth of transgenic plants are indistinguishable from those of wild-type plants. In contrast, they show significantly enhanced tolerances to catechol. Transgenic plants also exhibit strikingly higher capabilities of removing catechol from their media and high efficiencies of converting catechol to cis,cis-muconic acid. As far-less-than-calculated amounts of cis,cis-muconic acid were accumulated within the transgenic plants, existence of endogenous TfdD- and TfdE-like activities was postulated and, subsequently, putative orthologs of bacterial tfdD and tfdE were detected in Arabidopsis. However, no TfdC activity and no putative orthologs of either tfdC or tfdF were identified. This work indicates that the TfdC activity, conferred by tfdC in transgenic Arabidopsis, is a key requirement for phytoremoval and degradation of catechol, and also suggests that microbial degradative genes may be transgenically exploited in plants for bioremediation of aromatic pollutants in the environment.  相似文献   

13.
Decontamination of polluted soils using plants is based on the ability of plant species (including transgenic plants) to enhance bioavailability of pollutants in the rhizosphere and support growth of pollutant‐degrading microorganisms via root exudation and plant species‐specific composition of the exudates. In this work, we review current knowledge of enantiomers of low‐molecular‐weight (LMW) organic compounds with emphasis on their use in phytoremediation. Many research studies have been performed to search for plants suitable for decontamination of polluted soils. Nevertheless, the natural occurrence of L‐ versus D‐enantiomers of dominant compounds of plant root exudates which play different roles in the complexation of heavy metals, chemoattraction, and support of pollutant‐degrading microorganisms were not included in these studies. D‐enantiomers of aliphatic organic acids and amino acids or L‐enantiomers of carbohydrates occur in high concentrations in root exudates of some plant species, especially under stress, and are less stimulatory for plants to extract heavy metals or for rhizosphere microflora to degrade pollutants compared with L‐enantiomers (organic acids and amino acids) or D‐carbohydrates. Determining the ratio of L‐ versus D‐enantiomers of organic compounds as a criterion of plant suitability for decontamination of polluted soils and development of other types of bioremediation technologies need to be subjects of future research. Chirality 26:1–20, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
根际圈在污染土壤修复中的作用与机理分析   总被引:62,自引:9,他引:62  
根际圈以植物根系为中心聚集了大量的生命物质及其分泌物,构成了极为独特的“生态修复单元”。本文叙述了根在根际圈污染土壤修复中的生理生态作用,富集、固定重金属,吸收、降解有机污染物等功能;菌根真菌对根际圈内重金属的吸收、屏障及螯合作用,对有机污染物的降解作用;根际圈内细菌对重金属的吸附与固定,对有机污染物的降解作用以及根际圈真菌和细菌的联合修复作用等,同时对可能存在的机理进行了分析,认为根际圈对污染土壤的修复作用是植物修复的重要组成部分和主要理论基础之一,并指出利用重金属超富集植物修复重金属污染土壤具有广阔的应用前景;筛选对水溶性有机污染物高吸收富集及其根 发泌能力强的特异植物,同时接种利于有机污染物降解的专性或非专性真菌和细菌可能会成为有机污染土壤植物修复研究的重要方向之一。  相似文献   

15.
细胞色素P450基因及其在植物改良中的应用   总被引:6,自引:0,他引:6  
杨致荣  毛雪  杨致芬  李润植 《遗传》2003,25(2):237-240
细胞色素P450是一类含血红素的氧化还原酶类,它参与多种生化反应,在防御生物免受病虫害及逆境胁迫等方面具有重要作用。生物基因组序列分析表明,它是一个基因超家族。许多细胞色素P450基因已被鉴定和克隆,并应用于植物遗传改良;在转基因培育多抗性植物、创造植物雄性不育系,提高植物降解化学农药残留等污染物的能力和有效生产具有药用价值的化合物等方面已取得可喜进展,显示出广阔的应用前景。 Abstract:Cytochrome P450s are heme-containing mixed-function oxidases,involving in lots of biochemical reactions.They play an important role in preventing plants from pathogen and insect attacks and environmental stress.Sequence analysis of genomes has revealed that P450 is a gene super-family.Many cytochrome P450s have been characterized and cloned.Some of them have been used in plant genetic improvement.A great progress has been made in using these P450 genes to create the transgenic plants with multiple resistances,male sterility,higher capability to dissolve toxic chemicals and pollutants and effective productivity of high valuable compounds,indicating P450 genes have a broad prospect with great potential application.  相似文献   

16.
Lindane (γ-hexachlorocyclohexane), a persistent organo-chlorine insecticide widely used in developing countries, has a negative effect as a polluting agent of soil and surface waters. Plants can be used for remediation of organic pollutants and their efficiency can be enhanced by introduction of heterologous genes. Mammalian cytochrome P4502E1 (CYP2E1), an important monooxygenase is involved in the degradation of a wide range of xenobiotics including environmental pollutants/herbicides and pesticides. Here, we report the development of transgenic tobacco plants expressing human CYP2E1 and the efficacy of plants for remediation of lindane. Transgenic tobacco plants with CYP2E1 showed enhanced tolerance to lindane when grown in hydroponic medium and soil compared to control plants. Remediation of (14)C-labeled lindane from hydroponic medium was higher in transgenic plants compared to that of control plants, with the best performing line showing 25% higher removal of lindane from solution than control plants. Similar results were seen in plants grown in soil spiked with lindane. The present study has shown that transgenic plants expressing CYP2E1 gene have potential use for remediation of lindane from contaminated solutions and soil.  相似文献   

17.
Plants exposed to biotic and abiotic stresses generate more reactive oxygen species (ROS) than their capacity to scavenge them. Biological molecules are susceptible to attack by ROS, including several proteins, polyunsaturated fatty acids and nucleic acids. The cellular arsenal for scavenging ROS and toxic organic radicals include ascorbate, glutathione, tocopherol, carotenoids, polyphenols, alkaloids and other compounds. Enzymatic antioxidants including superoxide dismutase, peroxidase, catalase and glutathione reductase detoxify either by quenching toxic compounds or regenerating antioxidants involving reducing power. Various aspects relating to sensors for ROS and signaling role of ROS in plants, improvement of antioxidant systems in transgenic plants and functional genomics approaches used to unravel the reactive oxygen gene network has been discussed.  相似文献   

18.
Removals of pollutants and toxic organic compounds and reduction in bio-toxicity of leachate along an operating full-scale leachate treatment system utilizing chemical coagulation, sand filtration, microfiltration (MF) and reverse osmosis (RO) membrane were evaluated. High pollutant removals were achieved mainly by coagulation and sand filtration. Major toxic organic pollutants, i.e. DEHP, DBP and bisphenol A were removed by 100%, 99.6% and 98.0%. Acute toxicity test using water flea, Nile Tilapia and common carp and genotoxicity (Comet assay) were conducted to determine toxicity reduction in leachate along the treatment. Ammonia was found to be the main acute toxic compounds in leachate as determined by LC50 but the effect of organic substances was also observed. DNA damage in fish exposed to diluted raw leachate (10% of LC50) was found to be 8.9-24.3% and it was subsequently decreased along the treatment. Correlation between pollutants and its bio-toxicity was established using multivariable analyses.  相似文献   

19.
Organophosphorus (OP) compounds are widely used as pesticides in agriculture but cause broad-area environmental pollution. In this work, we have expressed a bacterial organophosphorus hydrolase (OPH) gene in tobacco plants. An assay of enzyme activity showed that transgenic plants could secrete OPH into the growth medium. The transgenic plants were resistant to methyl parathion (Mep), an OP pesticide, as evidenced by a toxicity test showing that the transgenic plants produced greater shoot and root biomass than did the wild-type plants. Furthermore, at 0.02% (v/v) Mep, the transgenic plants degraded more than 99% of Mep after 14 days of growth. Our work indicates that transgenic plants expressing an OPH gene may provide a new strategy for decontaminating OP pollutants.  相似文献   

20.
Microbial degradation of pollutants at high salt concentrations   总被引:4,自引:0,他引:4  
Though our knowledge on microbial degradation of organic pollutants at high salt concentrations is still limited, the list of toxic compounds shown to be degraded or transformed in media of high salinity is growing. Compounds transformed aerobically include saturated and aromatic hydrocarbons (by certain archaeobacteria), certain aromatic compounds, organophosphorus compounds, and formaldehyde (by halotolerant eubacteria). Anaerobic microbial transformations of toxic compounds occurring at high salt concentrations include reduction of nitroaromatic compounds, and possibly transformation of chlorinated aromatic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号