首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The isthmus of typical mucous units of the pyloric antrum was investigated in 3- to 4-month-old CD1 mice using light and electron microscopy as well as 3H-thymidine radioautography. On the average, the isthmus measured 25 microns in length and was composed of 36 isthmal cells and two enteroendocrine cells. Isthmal cells generally displayed features found in embryonic cells, such as many free ribosomes, scant organelles, and a large reticulated nucleolus, and were, therefore, at an immature stage of development. Isthmal cells could be devoid of secretory granules ("granule-free cells," 2%) or contain a few small, spherical, PA-Schiff-positive, mucous granules in their apex. The granules in some of the cells had a variegated appearance and a diameter averaging 235 nm ("mottled granule cells," 39%); in other cells, the granules had a large diameter, 278 nm, with a pale background and a dense core ("core granule cells," 28%); while in still others they were homogeneously dark and measured 264 nm ("dense granule cells," 12%). Finally, some cells included a mixture of core and dense granules ("mixed granule cells," 14%). One hour after a single injection of 3H-thymidine, 37% of the isthmal cells were labeled. Each of the five isthmal cell types could acquire label and, therefore, divide. After one or more days of continuous 3H-thymidine infusion, all isthmal cells were labeled. Their turnover time was estimated to be 16.1 hr (t1/2 = 11.2 hr). The isthmus is thus composed of several cell types which are turning over rapidly. While all are relatively immature, the various types are thought to represent different developmental stages in the life history of an isthmal cell. A model devised on this basis proposes that the granule-free cells are stem cells, from which mottled granule cells are derived. These in turn evolve into either the dense granule cells of the upper isthmus or the core granule cells of the lower isthmus, or into the mixed granule cells (which are believed to develop eventually into dense granule cells or core granule cells). Maintenance of a steady state requires that the rapid production of isthmal cells be associated with rapid emigration; the dense granule cells presumably going to the pit and the core granule cells to the gland. The turnover of isthmal cells is accordingly described as following a "bidirectional pattern" of renewal.  相似文献   

2.
The renewal of gland cells was investigated by three-dimensional reconstruction of typical mucous units of the pyloric antrum using electron microscopy and 3H-thymidine radioautography in 3 to 4 month-old CD1 mice. Based on analysis of 42 units, the average gland measured 31 micron in length and was composed of 37 (mucous) gland cells with eight enteroendocrine cells scattered among them. The gland neck cells located close to the isthmus showed the cytoplasmic and nuclear features characteristic of differentiating cells. The mid-gland cells occupying the central portion of the gland appeared to be at a more advanced stage of development and completing differentiation. The gland base cells comprising the blunt end of the gland were fully mature. To quantify the renewal process, the percent of gland cell nuclei carrying label was determined at several times following 3H-thymidine administration. The rate of proliferation was found to be greatest in the gland neck, lower in the mid-gland, and even lower within the gland base. Furthermore, the isthmus contributed to gland-cell renewal by providing an estimated 12.4 cells per day. Labeled cells migrated toward the blunt end of the gland. The migration rate became progressively slower with their descent, and many cells were lost along the migration pathway, mainly in the gland neck. The loss took place without being preceded by gradual cell degeneration, but occurred as a result of rapid extrusion to the lumen or, less frequently by pyknosis, which could be followed by phagocytosis. It is concluded that the rapid rate of mitosis within the isthmus and gland neck generates a pressure causing downward migration of the cells toward the blunt end of the gland. The rate of migration, however, gradually diminishes as cells descend into the gland, presumably owing both to decreasing proliferation rate and to cell loss. Thus, while cells migrate down toward the gland base, many are lost before reaching it. This sequence is described as "the cascade pattern" of renewal.  相似文献   

3.
Adult male mice were given a continuous infusion of about 0.5 muCi of 3H-thymidine per gram body weight per day for periods varying from 1 to 60 days. Semithin sections of descending colon were cut from/plastic-embedded blocks and stained by a method combining silver impregnation and iron hematoxylin, by which argentaffin entero-endocrine cells and caveolated cells could be identified. From radioautographs, the labeling index of these cells was determined. One to three days after the beginning of 3H-thymidine infusion, label is observed in some of the stained entero-endocrine cells in the bottom of the crypts; the apices of these cells reach the crypt lumen and are joined to neighboring cells by terminal bars (junctional complexes). After five to seven days, labeled entero-endocrine cells are seen on the sides of the crypts, where their base stretches along the basement membrane and their apex has lost its terminal bar connections to neighboring cells. Finally, by 13 and 24 days, labeled cells are observed within the epithelium at the mucosal surface. The turnover time, which is taken to be equal to the mean time required for migration from site of origin to site of loss on the mucosal surface, has been estimated at 23.3 days. This is much longer than the 4.6 days required by the two main cell types of the epithelium -- vacuolated-columnar and mucous cells -- to travel the same route. It is likely that, after entero-endocrine cells lose their terminal bar attachment to other epithelial cells, they migrate independently and very slowly. Labeled caveolated cells are first seen in the crypt bottom one day after the beginning of 3H-thymidine infusion. By three to five days, they are on the sides of the crypts; their base is stretched along the basement membrane, but their apex retains its attachment to neighboring cells by terminal bars. By seven days, labeled caveolated cells are on the mucosal surface. Their turnover time has been assessed at 8.2 days. This is, again, longer than for the two main types to which they are bound by terminal bars throughout migration. The discrepancy is explained by the caveolated cells arising deeper in the crypts than most vacuolated-columnar and mucous cells.  相似文献   

4.
The signals that guide the morphogenesis and differentiation of rat fetal gastric mucosa remain largely unknown. We have investigated the role of capsulin in pit/gland formation and epithelial cell differentiation in cultured stomach tissue. Embryonic day 16.5 (E 16.5) stomach tissue cultured for three days in the presence of 1 microM hydrocortisone underwent dramatic transformation, from undifferentiated, stratified cells to differentiated epithelia composed of polarised columnar cells with mucous cells and pit/glands. In the presence of capsulin antisense oligonucleotides directed against capsulin mRNA, tissues do not undergo further development. Significantly, both mucous granules and pit/gland formation were inhibited compared to capsulin sense/scrambled oligonucleotide treated controls. However, in tissues treated with specific anti-rat HGF-antiserum to neutralise secreted HGF, pit/gland formation was inhibited, but the number of mucous granules remained unchanged compared to controls treated with non-specific antiserum (mouse monoclonal cytokeratin 8 antiserum). This data suggests that capsulin may have a role in the morphogenesis of pit/glands and mucin granule formation in the developing rat gastric mucosa. We discuss the possibility that this role of capsulin may be partly mediated through the actions of HGF.  相似文献   

5.
RNA synthesis was examined in the epithelial cells of the mouse pyloric antrum using radioautography 20 min after injection of either 3H-uridine or 3H-orotic acid. The epithelium of the mouse antrum was known to invaginate into blind tubular units composed of mucous cells arranged from base to top into a gland, an isthmus, and a pit. These were subdivided into segments and, after radioautography, silver grains were counted over cell nuclei in each segment. Following 3H-uridine injection, silver grains were present over all nuclei but were more abundant over those of the isthmus than of the gland or the pit. When nuclei were examined in the electron microscope, nucleoplasmic as well as nucleolar silver grains were more numerous in the isthmus than in the pit or gland. Following 3H-orotic acid injection, silver grains were again present over all nuclei; but maximal incorporation appeared to be in pit cell nuclei where, by electron microscopy, it was mainly assigned to the nucleoplasm. When the incorporation was calculated per whole nucleus, however, it was less in pit cell than in isthmal cell nuclei. Even so, the proportion of label in pit cell nuclei was much greater than after 3H-uridine injection. The interpretation of these findings is based on the fact that isthmal cells are immature, whereas cells migrating from the isthmus to become gland or pit cells show increasing differentiation. The immature cells of the isthmus incorporate both uridine and orotic acid more effectively than do the differentiated cells of pit and gland. Since silver grain counts over nuclei provide an index of the rate of RNA synthesis, this synthesis proceeds more actively in the isthmus than in the pit or gland. This is true of ribosomal RNA synthesis, as shown by nucleolar grain counts, and of other RNA's synthesis, as shown by nucleoplasmic grain counts. It seems, however, that while uridine is involved in the synthesis of all types of RNA, orotic acid is mainly implicated in the synthesis of the heterogeneous RNA from which the messenger RNA arises.  相似文献   

6.
Summary The kinetics of cell proliferation, migration and renewal in the pyloric mucosa of golden hamsters were studied by flash, cumulative and pulse labelling autoradiography following 3H-thymidine injections.By flash labelling autoradiography, it was shown that the labelled epithelial cells are exclusively confined to a zone several cells wide in the region of the isthmus between the gastric pits and the pyloric glands. In the cumulative and pulse labelling experiments, this cell proliferation in the isthmus region was shown to be for replacement of both the surface epithelial and the glandular cells. The surface epithelial cells of the pyloric mucosa arising in the upper portion of the isthmus come to line the pits and the surface, and are sloughed off into the gastric lumen within a week. The mucin-containing glandular cells, which arise more deeply in the isthmus region, migrate downwards and are apparently lost at the deepest level of the glands. The life span of the mucin-containing glandular cells was estimated at about 14 days. This cell type appears to undergo renewal of the first produced, first lost pipe line variety. However, a small number of glandular cells was found to survive for more than 20 days (up to 30 days), suggesting the existence of a sub-population of cells with different kinetics in the pyloric glands.Supported by a Grant-in-Aid for Cancer Research from Ministry of Education, Science and Culture, Japan  相似文献   

7.
The parasympathetic control of goblet cell secretion and the membrane events accompanying accelerated mucus release were studied in large intestinal mucosal biopsies maintained in an organ culture system. The secretory response of individual goblet cells to 10(-6) M acetylcholine chloride with 3 x 10(-3) M eserine sulfate (a cholinesterase inhibitor) was assessed by light microscopy and autoradiography, by scanning and transmission electron microscopy, and by freeze-fracture. Goblet cells on the mucosal surface are unaffected by acetylcholine. In crypt goblet cells acetylcholine-eserine induces rapid fusion of apical mucous granule membranes with the luminal plasma membrane (detectable by 2 min), followed by sequential, tandem fission of the pentalaminar, fused areas of adjacent mucous granule membranes. These events first involve the most central apical mucous granules, are then propagated to include peripheral granules, and finally spread toward the most basal granules. By 60 min, most crypt cells are nearly depleted. The apical membrane, although greatly amplified by these events, remains intact, and intracellular mucous granules do not coalesce with each other. During rapid secretion membrane-limited tags of cytoplasm are observed attached to the cavitated apical cell surface. These long, thin extensions of redundant apical membrane are rapidly lost, apparently by being shed into the crypt lumen.  相似文献   

8.
Summary In antral mucosa of the mouse stomach, the volume of mucus in mucous cells was measured morphometrically to determine whether this value changes during cell migration from the base of the pit to the surface. Both the volume density of mucous granules (the fraction of cell volume occupied by the granules) and the volume of intracellular mucus were reduced to about half in surface cells compared with those of upper pit cells. This indicates that mucus secretion is substantial during the later part of the lifespan of these cells, and is not due simply to the shedding of senescent cells.Supported by a grant from the National Health and Medical Research Council  相似文献   

9.
Summary The origin and renewal of the argentaffin cells in the pyloric glands of hamsters were studied by flash, cumulative and pulse labelling autoradiography with 3H-thymidine. The argentaffin cells were identified by the Diazo Method using Fast Red B Salt.By flash labelling autoradiography, it was shown that the argentaffin cells located from the middle to the lower level of the pyloric mucosa were not labelled with 3H-thymidine, indicating that this cell type has no proliferative activity. On the 10th and the 20th day of cumulative labelling, 31% and 63% of the argentaffin cells in the gland were found to be labelled, respectively. The labelled argentaffin cells were concentrated in the upper part of the gland (around the region of the isthmus), and no label was found over nuclei of the cells at the lowermost level of the gland. These labelled cells were shown to undergo a downward migration in the days following pulse labelling. They were replaced by unlabelled (and weakly or very weakly labelled) cells which arose at the region of the isthmus. The argentaffin cells in the pyloric gland are thought to arise from epithelial precursor cells at the region of the isthmus.The labelled argentaffin cells in the gland were found to decrease in number almost exponentially after pulse labelling. This indicates that the life span of argentaffin cells is not fixed, but their renewal conforms to the random loss system. The half time of turnover of this cell population was 15 days on average.Supported by a Grant-in-Aid for Cancer Research from the Ministry of Education, Science and Culture, Japan  相似文献   

10.
Of the eight categories of epithelial cells identified in pulmonary conducting airways, four are found in the trachea of adult primates: basal, mucous goblet, intermediate, and ciliated cells. While their ultrastructure is well characterized, little is understood about their origin or differentiation. This study describes the pattern of differentiation of the tracheal luminal epithelium in a species of nonhuman primate, the rhesus monkey, Macaca mulatta. Tracheas of 57 fetal and postnatal rhesus were fixed with glutaraldehyde/paraformaldehyde: ten at 29-54 days gestational age (GA), ten at 59-80 days GA (pseudoglandular stage), sixteen at 82-130 days GA (canalicular stage), ten at 141-168 days GA (saccular stage), eight at 1-134 days postnatal, and three adults (2 yr 11 months to 11 yr 11 months). Slices taken proximal to the carina were processed for electron microscopy by a selective embedding procedure. In the youngest fetuses, essentially one population of cells lined the tracheal epithelial surface. These cells were columnar in shape with a central nucleus, few organelles, and large amounts of cytoplasmic glycogen. At 46 days GA, ciliated cells were observed on the membranous side of the trachea. Some nonciliated cells had concentrations of organelles in the most apical portion of their cytoplasm. At 59 days GA, membrane-bound cored granules were intermixed with organelles in the apices of some glycogen-filled cells. They were observed first on the cartilaginous side. Between 59 and 100 days GA, a large number of cell forms which appeared to be transitional between ciliated, secretory, basal, and undifferentiated cells were present. These included ciliated cells with electron-lucent inclusions resembling mucous granules. Mucous secretory cells were more numerous and had more granules and less glycogen in older fetuses. By 105 days GA, few of the secretory cells had significant amounts of glycogen and the cytoplasm was condensed. Secretory granules were very abundant in some cells and minimal in others. The Golgi apparatus was prominent. In animals 120 days GA and older, small mucous granule cells and basal cells resembling these cells in adults were present. By 134 days postnatal age, the epithelium resembled that in adults. We conclude that most of the differentiation of tracheal epithelium in the rhesus monkey occurs prior to birth; the cells differentiate in the following sequences: ciliated, mucous goblet, small mucous granule, basal; and basal and small mucous granule cells do not play a role in ciliated and mucous cell formation in the fetus.  相似文献   

11.
Summary Two-month-old female Swiss mice that had come into estrus were injected intravenously with L-3H-fucose and killed at 5, 15, 40 min, and 4 h after injection. Pieces of the isthmus and of the ampulla of the uterine tubes were processed for light-and electron-microscopic radioautography. Incorporation of 3H-fucose was more intense in the isthmian secretory cells than in the ciliated cells of the ampulla. Electron-microscopic radioautography of the isthmian secretory cells demonstrated that 3H-fucose was incorporated into newly synthesized glycoproteins in the Golgi apparatus from where labelled glycoproteins migrated mainly to secretory granules and apical microvilli. The histochemical technique using ruthenium red confirmed the presence of glycoproteins in the contents of the secretory granules released to the lumen of the uterine tubes as demonstrated by radioautography. Other glycoproteins are transported inside small vesicles and most likely are related to the renewal of the plasma membrane. The role of the secretory glycoproteins in various events of mammalian reproduction is discussed.  相似文献   

12.
The distal wall of the groove between the rat forestomach and glandular stomach is lined with a special type of columnar cells (CCGG) and with fibrillovesicular cells (FVC). The cardiac glands contain cardiac mucosa (CMC) and serous cells (CSC). The CCGG contain small mucous granules and special vesicles and tubules. The CMC are filled with large mucous granules and resemble mucous neck cells. The CSC are filled with large proteinaceous granules. The FVC are characterized by long microvilli, apical bundles of microfilaments and a complex "tubulovesicular system". The pattern of 3H-thymidine incorporation and the presence of immature and transitional forms indicate a possible origin of all the cell types concerned from a common undifferentiated precursor. The membranes of the tubulovesicular system of FVC as well as the apical cell membrane were reactive to Thiéry's carbohydrate stain. However, lanthanum tracing of the extracellular space and ultrastructural stereoscopy did not reveal a permanent continuity between both membrane systems. The absence of 3H-thymidine label showed that FVC were not proliferative. The structural characteristics of FVC do not account for a secretory, resorptive or receptive function. The special arrangement of microfilaments and the tubulovesicular system suggests an ability to fast changes in surface area.  相似文献   

13.
Anatomical, histological, and ultrastructural studies of the European beaver stomach revealed several unique morphological features. The prominent attribute of its gross morphology was the cardiogastric gland (CGG), located near the oesophageal entrance. Light microscopy showed that the CGG was formed by invaginations of the mucosa into the submucosa, which contained densely packed proper gastric glands comprised primarily of parietal and chief cells. Mucous neck cells represented <0.1% of cells in the CGG gastric glands and 22–32% of cells in the proper gastric glands of the mucosa lining the stomach lumen. These data suggest that chief cells in the CGG develop from undifferentiated cells that migrate through the gastric gland neck rather than from mucous neck cells. Classical chief cell formation (i.e., arising from mucous neck cells) occurred in the mucosa lining the stomach lumen, however. The muscularis around the CGG consisted primarily of skeletal muscle tissue. The cardiac region was rudimentary while the fundus/corpus and pyloric regions were equally developed. Another unusual feature of the beaver stomach was the presence of specific mucus with a thickness up to 950 µm (in frozen, unfixed sections) that coated the mucosa. Our observations suggest that the formation of this mucus is complex and includes the secretory granule accumulation in the cytoplasm of pit cells, the granule aggregation inside cells, and the incorporation of degenerating cells into the mucus.  相似文献   

14.
The architecture of the pure mucous units of the pyloric antrum was investigated in 3- to 4-month-old CD1 mice. Units were serially cut in cross section and stained by a method combining the periodic acid-Schiff sequence, a modified Grimelius's silver nitrate procedure, and Regaud's hematoxylin. A total of 195 units were then reconstructed. Of these, six were cast in polyester resin and 189 were two-dimensionally reproduced on graph paper. The reconstructions showed antral units to be divided among three main classes. The first class, which contained 32% of the units, consisted of fingerlike tubules referred to as "singlets." Three types of singlets were observed. The first or type A, which represented 76% of the singlets, was divisible into three successive portions: a pit (foveola) opening onto the mucosal surface and lined by mucous cells referred to as pit cells, an isthmus continuous with the pit and containing immature proliferative mucous cells, and a gland forming the blind end of the tubule and lined by mucous cells referred to as gland cells. Type B (14% of singlets) was similar to type A except that its gland was forked. Type C (10% of singlets) differed by the absence of a gland. The units of the second class, which contained 53% of the total number, were joined together along part of their length and were named "multiplets." Most of them (90%) were organized into clusters of two, and 10% into clusters of three. In the joined portion, the epithelial cells of the adjacent units were in contact through junctional complexes and, therefore, were not separated by basement membranes. Otherwise the units showed the same component parts as in singlets. Also, as in singlets, the majority of the units were type A and a few were type B or C. The units of the third class, or "intermediates," consisted of tubules which exhibited a branching process. This process was of variable length but could include gland, isthmus, and sometimes pit. Thus, the process duplicated a varying proportion of the unit. In conclusion, the pure mucous units of the antrum exhibit various patterns which have been designated singlet, multiplet, or intermediate. It is proposed that these three patterns are related and represent temporal differences in the duplication and production of new units. Based on this assumption, a model has been elaborated to depict the likely sequence in the proliferation of pure mucous units. It is proposed that this proliferation takes place in the antrum of young adult mice.  相似文献   

15.
Proliferation and migration of cells in the vacuolated-columnar and mucous cell lines were studied in the descending colon of adult female mice given a single injection or a continuous infusion of 3H-thymidine and killed at various intervals from one hour to 12 days. This investigation was carried out using one mum-thick Epon sections which were radioautographed after staining with the periodic acid-Schiff technique and iron-hematoxylin. In the normalized crypts with ten equal segments, labeled vacuolated cells at one hour after injection of 3H-thymidine were encountered in the lower four segments and in decreasing numbers in segments 5 through 7. From the percent labeled cells in segments of the crypt, the birth rate and fluxes of cells were computed. Moreover, it was found that a cell in the vacuolated-columnar cell line would undergo three mitotic cycles on the average from its birth at the cryptal base to its extrusion from the surface; of these three cycles, the last one which took place from segment 3 to segment 7 appeared to be a changeover from dividing cells to non-dividing cells, in accordance with the "slow cut-off" model of Cairnie et al. ('65b). Mucous cells located in segments 1 through 6 of the crypt were capable of incorporating 3H-thymidine and thus capable of undergoing mitosis. However, the rate of turnover of mucous cells based on proliferative rate was found to be much lower than the rate of turnover of mucous cells based on the transit time in the non-dividing segments of the crypt. Since there was a concomitant overproduction of cells in the vacuolated cells and newly formed mucous cells in the lower portion of the crypt, it was concluded that some vacuolated cells would give rise to mucous cells. This putative transformation occurred in the lower four segments of the crypt. Mucous cells which were formed by transformation would migrate upward along the cryptal wall and accumulate more mucus in the theca; in doing so, they would undergo two divisions, on the average, before they became non-dividing mucous cells. In ascending the cryptal walls, both vacuolated-columnar cells and mucous cells appeared to migrate at a similar speed; they moved much slower at the base of the crypt and accelerated toward the upper portion of the crypt, but they migrated at a constant speed in the non-dividing segments of the crypt.  相似文献   

16.
Histochemical features of two different parts of the porcine Fallopian tube have been studied, with special reference to cyclic changes in the distribution of glycogen particles. Porcine Fallopian tubes were obtained from a local slaughterhouse. Slides were studied under light microscopy utilising histological and histochemical techniques. The most striking feature during the periovulatory stage of the estrus cycle was the occurrence of glycogen granules in the apical cytoplasm of epithelial cells in both the ampulla and isthmus of the Fallopian tubes. In the isthmus, cells containing numerous granules of polysaccharides aggregated into areas of different sizes were noted after ovulation. During the midluteal phase their number was minimal or were even absent. In the ampula typical extrusion of secretory granules and nuclei protruding into the tubal lumen was visible after ovulation. In the luteal phase a lot of nuclei protruded into the tubal lumen and some free in the lumen were noted. It is possible that glycogen in the preovulatory stage functions as a source of energy for ciliary movement and as a nourishment for the ovum. In the isthmus large number of aggregated glycogen particles was observed also after ovulation. In this stage of the cycle, numerous granules of polysaccharide aggregated in isthmus epithelium could be the major energy source for embriogenesis when the embryo travels down the Fallopian tubes, during the early cleavage stage.  相似文献   

17.
18.
Mucous granule exocytosis and CFTR expression in gallbladder epithelium   总被引:2,自引:0,他引:2  
A mechanistic model of mucous granule exocytosis by columnar epithelial cells must take into account the unique physical-chemical properties of mucin glycoproteins and the resultant mucus gel. In particular, any model must explain the intracellular packaging and the kinetics of release of these large, heavily charged species. We studied mucous granule exocytosis in gallbladder epithelium, a model system for mucus secretion by columnar epithelial cells. Mucous granules released mucus by merocrine exocytosis in mouse gallbladder epithelium when examined by transmission electron microscopy. Spherules of secreted mucus larger than intracellular granules were noted on scanning electron microscopy. Electron probe microanalysis demonstrated increased calcium concentrations within mucous granules. Immunofluorescence microscopic studies revealed intracellular colocalization of mucins and the cystic fibrosis transmembrane conductance regulator (CFTR). Confocal laser immunofluorescence microscopy confirmed colocalization. These observations suggest that calcium in mucous secretory granules provides cationic shielding to keep mucus tightly packed. The data also suggests CFTR chloride channels are present in granule membranes. These observations support a model in which influx of chloride ions into the granule disrupts cationic shielding, leading to rapid swelling, exocytosis and hydration of mucus. Such a model explains the physical-chemical mechanisms involved in mucous granule exocytosis.  相似文献   

19.
Isthmic and ampullary oviductal epithelia sampled from Merino ewes at days -1, 1, 3, and 10 of the estrous cycle (estrus = day 0) were studied by scanning and transmission electron microscopy after fixation by vascular perfusion. Secretory cells, ciliated cells, and lymphocytelike basal cells were observed in both isthmic and ampullary epithelium at all stages of the estrous cycle studied and their ultrastructural features were analyzed. Synthesis of lamellated secretory granules occurred in the ampullary secretory cells during the follicular and early luteal phases, and their contents were released by exocytosis into the oviductal lumen during the luteal phase. Granule release was associated with nucleated apical protrusion of these cells into the oviductal lumen. No such secretory activity was displayed by isthmic secretory cells even though a few cells contained nonlamellated granules. Apocrine release of apical vesicles and accompanying cytoplasmic material from apical protrusions of ciliated cells occurred in the isthmus around estrus but not in the ampulla. This unexpected feature has not previously been reported in any other mammal. Dendritic basal cells were distinguished in the lower part of the epithelium by their heterochromatic nuclei, electron-lucent cytoplasm, and lack of attachment zones. No migration of basal cells was observed, and their ultrastructural features were similar in the ampulla and isthmus and at all stages of the estrous cycle examined. The function of these lymphocytelike cells in the epithelium is uncertain, but the presence of phagocytic bodies and lysosomes in 20% of them may indicate a phagocytic role.  相似文献   

20.
The electron immunocytochemical co-localization of prochymosin and pepsinogen in chief cells, mucous neck cells and transitional mucous neck/chief cells of calf fundic glands was studied using specific antisera for prochymosin and pepsinogen with a protein A-gold method. Prochymosin and pepsinogen immunoreactivities were detected in the same secretory granules of the chief, mucous neck and transitional cells, simultaneously using small and large colloidal gold particles. In chief cells, both immunoreactivities were distributed uniformly over the same zymogen granules showing a round, large, homogeneous and electron-dense appearance. In mucous neck cells, both immunoreactivities were found exclusively on the same electron-dense core located eccentrically in the mucous granule showing light or moderate electron density. In transitional mucous neck/chief cells, electron-dense cores became larger in size and some granules were occupied by the electron-dense core without a halo between the core and the limiting membrane. Both immunoreactivities were found uniformly over the electron-dense core. The granules having no halo in the transitional cells could not be distinguished from the typical zymogen granules in the chief cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号