共查询到20条相似文献,搜索用时 0 毫秒
1.
Anticipatory force planning during grasping is based on visual cues about the object’s physical properties and sensorimotor memories of previous actions with grasped objects. Vision can be used to estimate object mass based on the object size to identify and recall sensorimotor memories of previously manipulated objects. It is not known whether subjects can use density cues to identify the object’s center of mass (CM) and create compensatory moments in an anticipatory fashion during initial object lifts to prevent tilt. We asked subjects (n = 8) to estimate CM location of visually symmetric objects of uniform densities (plastic or brass, symmetric CM) and non-uniform densities (mixture of plastic and brass, asymmetric CM). We then asked whether subjects can use density cues to scale fingertip forces when lifting the visually symmetric objects of uniform and non-uniform densities. Subjects were able to accurately estimate an object’s center of mass based on visual density cues. When the mass distribution was uniform, subjects could scale their fingertip forces in an anticipatory fashion based on the estimation. However, despite their ability to explicitly estimate CM location when object density was non-uniform, subjects were unable to scale their fingertip forces to create a compensatory moment and prevent tilt on initial lifts. Hefting object parts in the hand before the experiment did not affect this ability. This suggests a dichotomy between the ability to accurately identify the object’s CM location for objects with non-uniform density cues and the ability to utilize this information to correctly scale their fingertip forces. These results are discussed in the context of possible neural mechanisms underlying sensorimotor integration linking visual cues and anticipatory control of grasping. 相似文献
2.
Background
Successful object manipulation relies on the ability to form and retrieve sensorimotor memories of digit forces and positions used in previous object lifts. Past studies of patients affected by Parkinson''s disease (PD) have revealed that the basal ganglia play a crucial role in the acquisition and/or retrieval of sensorimotor memories for grasp control. Whereas it is known that PD impairs anticipatory control of digit forces during grasp, learning deficits associated with the planning of digit placement have yet to be explored. This question is motivated by recent work in healthy subjects revealing that anticipatory control of digit placement plays a crucial role for successful manipulation.Methodology/Principal Findings
We asked ten PD patients off medication and ten age-matched controls to reach, grasp and lift an object whose center of mass (CM) was on the left, right or center. The only task requirement was to minimize object roll during lift. The CM remained the same across consecutive trials (blocked condition) or was altered from trial to trial (random condition). We hypothesized that impairment of the basal ganglia-thalamo-cortical circuits in PD patients would reduce their ability to anticipate digit placement appropriate to the CM location. Consequently, we predicted that PD patients would exhibit similar digit placement in the blocked vs. random conditions and produce larger peak object rolls than that of control subjects. In the blocked condition, PD patients exhibited significantly weaker modulation of fingertip contact points to CM location and larger object roll than controls (p<0.05 and p<0.01, respectively). Nevertheless, both controls and PD patients minimized object roll more in the blocked than in the random condition (p<0.01).Conclusions/Significance
Our findings indicate that, even though PD patients may have a residual ability of anticipatory control of digit contact points and forces, they fail to implement a motor plan with the same degree of effectiveness as controls. We conclude that intact basal ganglia-thalamo-cortical circuits are necessary for successful sensorimotor learning of both grasp kinematics and kinetics required for dexterous hand-object interactions. 相似文献3.
Visual short-term memory (VSTM) and visual imagery have been shown to modulate visual perception. However, how the subjective experience of VSTM/imagery and its contrast modulate this process has not been investigated. We addressed this issue by asking participants to detect brief masked targets while they were engaged either in VSTM or visual imagery. Subjective experience of memory/imagery (strength scale), and the visual contrast of the memory/mental image (contrast scale) were assessed on a trial-by-trial basis. For both VSTM and imagery, contrast of the memory/mental image was positively associated with reporting target presence. Consequently, at the sensory level, both VSTM and imagery facilitated visual perception. However, subjective strength of VSTM was positively associated with visual detection whereas the opposite pattern was found for imagery. Thus the relationship between subjective strength of memory/imagery and visual detection are qualitatively different for VSTM and visual imagery, although their impact at the sensory level appears similar. Our results furthermore demonstrate that imagery and VSTM are partly dissociable processes. 相似文献
4.
Mitochondrial Superoxide Radicals Differentially Affect Muscle Activity and Neural Function 下载免费PDF全文
Tanja Godenschwege Renée Forde Claudette P. Davis Anirban Paul Kristopher Beckwith Atanu Duttaroy 《Genetics》2009,183(1):175-184
Cellular superoxide radicals (O2−) are mostly generated during mitochondrial oxygen metabolism. O2− serves as the raw material for many reactive oxygen species (ROS) members like H2O2 and OH.− radicals following its catalysis by superoxide dismutase (SOD) enzymes and also by autocatalysis (autodismutation) reactions. Mitochondrial ROS generation could have serious implications on degenerative diseases. In model systems overproduction of mitochondrial O2− resulting from the loss of SOD2 function leads to movement disorders and drastic reduction in life span in vertebrates and invertebrates alike. With the help of a mitochondrial SOD2 loss-of-function mutant, Sod2n283, we measured the sensitivity of muscles and neurons to ROS attack. Neural outputs from flight motor neurons and sensory neurons were unchanged in Sod2n283 and the entire neural circuitry between the giant fiber (GF) and the dorsal longitudinal muscles (DLM) showed no overt defect due to elevated ROS. Such insensitivity of neurons to mitochondrial superoxides was further established through neuronal expression of SOD2, which failed to improve survival or locomotive ability of Sod2n283. On the other hand, ultrastructural analysis of Sod2n283 muscles revealed fewer mitochondria and reduced muscle ATP production. By targeting the SOD2 expression to the muscle we demonstrate that the early mortality phenotype of Sod2n283 can be ameliorated along with signs of improved mobility. In summary, muscles appear to be more sensitive to superoxide attack relative to the neurons and such overt phenotypes observed in SOD2-deficient animals can be directly attributed to the muscle.BETWEEN Drosophila, mouse, and human, the enzymatic antioxidant defense system shares similar organization both structurally (Landis and Tower 2005) and functionally. Besides having a good degree of homology (Duttaroy et al. 1994; Landis and Tower 2005), other significant similarities include the presence of a single copy of Sod1 and Sod2 genes in each with no degree of functional complementation between these enzymes (Copin et al. 2000). While vertebrates have developed additional antioxidant defense enzymes such as glutathione peroxidase (Gpx) and extracellular superoxide dismutase (EcSOD or Sod3), neither Gpx nor an active SOD3 has been demonstrated in Drosophila, although a Sod3-like sequence has been identified (Landis and Tower 2005). Complete loss of SOD2 function is fatally injurious for both mice and Drosophila (Li et al. 1995; Lebovitz et al. 1996; Kirby et al. 2002; Duttaroy et al. 2003). The severe phenotypic effects of SOD2 loss of function have been attributed to elevated DNA damage and protein carbonylation (Golden and Melov 2001). SOD2 loss of function has also been attributed to “free radical attack” or “oxidative insult” on mitochondria where obvious mitochondrial damage was apparent from the inactivation of mitochondrial Fe-S cluster enzymes aconitase and succinate dehydrogenase (Melov et al. 1999; Kirby et al. 2002; Paul et al. 2007). Furthermore, impairment of cellular signaling, specifically those induced by reactive oxygen species (ROS) (Klotz 2005), might also play a very significant role in the early mortality effects of SOD2-deficient flies as indicated recently (Wicks et al. 2009).Sod2 null mice with damaged mitochondria display a number of pathologies including cardiomyopathy (Li et al. 1995), neurodegeneration, and seizures (Melov et al. 1998). Drosophila mutants of mitochondrial dysfunction are also claimed to be associated with neurodegeneration (Kretzschmar et al. 1997; Min and Benzer 1997, 1999; Rogina et al. 1997; Palladino et al. 2002, 2003; Celotto et al. 2006). In addition to the neurons, muscles are important targets for oxidative modification (Choksi and Papaconstantinou 2008; Choksi et al. 2008). Aerobic muscles with high mitochondrial content and high myoglobin levels, for example, show a significant increase in oxidative modification of all electron transport chain proteins compared to muscles with fewer mitochondria and less myoglobin (anaerobic muscle) (Choksi and Papaconstantinou 2008; Choksi et al. 2008). Mice lacking the Cu-ZnSOD enzyme suffer from a rapid loss of skeletal muscle mass, resembling an accelerated sarcopenia (Jackson 2006; Muller et al. 2006). We therefore set out to measure the impact of heightened superoxide concentration on neurons and muscles of Sod2n283 flies that are devoid of SOD2, the principal scavenger of superoxide radicals in mitochondria (Duttaroy et al. 2003; Belton et al. 2006). 相似文献
5.
Damian Houde Yucai Peng Steven A. Berkowitz John R. Engen 《Molecular & cellular proteomics : MCP》2010,9(8):1716-1728
Post-translational modifications (PTMs) can have profound effects on protein structure and protein dynamics and thereby can influence protein function. To understand and connect PTM-induced functional differences with any resulting conformational changes, the conformational changes must be detected and localized to specific parts of the protein. We illustrate these principles here with a study of the functional and conformational changes that accompany modifications to a monoclonal immunoglobulin γ1 (IgG1) antibody. IgG1s are large and heterogeneous proteins capable of incorporating a multiplicity of PTMs both in vivo and in vitro. For many IgG1s, these PTMs can play a critical role in affecting conformation, biological function, and the ability of the antibody to initiate a potential adverse biological response. We investigated the impact of differential galactosylation, methionine oxidation, and fucosylation on solution conformation using hydrogen/deuterium exchange mass spectrometry and probed the effects of IgG1 binding to the FcγRIIIa receptor. The results showed that methionine oxidation and galactosylation both impact IgG1 conformation, whereas fucosylation appears to have little or no impact to the conformation. FcγRIIIa binding was strongly influenced by both the glycan structure/composition (namely galactose and fucose) and conformational changes that were induced by some of the modifications.The structure of many proteins can be altered by post-translational modifications (1). Although the impact of post-translational modifications (PTMs)1 on protein structure is more understood for some modifications (e.g. phosphorylation; see Ref. 2), it is less defined for other PTMs and in many cases is protein-dependent. Because there are many important downstream effects of PTMs, including changes in protein localization, protein and cellular diversification, protein functionality, protein stability, protein life cycle, and so forth, understanding how PTMs alter protein structure for as many proteins as possible in a timely manner is a highly desirable goal. Furthermore, in an age where recombinant proteins are being used to treat disease, it becomes ever more important to understand how particular modifications may alter the structure and eventually the function of therapeutic proteins. To realize these goals, methods that permit access to conformational information for modified forms of therapeutic proteins must be developed and refined. In this report, we will illustrate how MS can contribute to structural proteomics by describing our recent work with a recombinant monoclonal antibody (an IgG1), which represents an important class of therapeutic proteins.Many biopharmaceutical companies are pursuing antibody drugs (3). In particular, the IgG1 subclass of antibodies has evolved into a commonly used therapeutic option for the treatment of a wide range of diseases. IgG1s consist of a dimer of identical heavy chains and light chains that fold to form (from N to C terminus) the variable, CL, CH1, CH2, and CH3 domains (as an example, see Ref. 4). Individual domains are structurally stable and are primarily composed of antiparallel β-sheets arranged in an immunoglobulin-like β-sandwich (5). The variable, CL, and CH1 domains are collectively referred to as the Fab (fragment antigen binding) portion of IgG1, which is responsible for recognizing a specific antigen. The CH2 and CH3 domains together are referred to as the Fc (fragment crystallizable) portion, which carries out effector functions such as binding to Fcγ receptors. These effector functions are essential to many therapeutic antibodies, especially when antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity are involved in the mechanisms of action (6).As a biopharmaceutical, IgG1 monoclonal antibodies are critically monitored throughout production (7). In many cases, the impact of structural modifications in these and other formulated versions of biopharmaceuticals are not well understood at a functional level. In the case of IgG1s, with over 1300 amino acid residues and a molecular mass approaching 150 kDa, a large array of PTMs can be incorporated both in vivo (during cellular synthesis) and in vitro (as a result of handling and processing steps that occur during purification, vialing, and storage). Commonly monitored PTMs on IgG1s include methionine oxidation, asparagine and glutamine deamidation, N-terminal acetylation or cyclization, glycation of lysine, and variable glycosylation (8). Some of these modifications affect only a small percentage of the protein product, and their presence may not change overall outcome. Others, however, can have significant impact on the structure, function, and biological activities of a protein that can involve self-association as well as interactions with other proteins (9). The same PTMs can affect different IgG1 molecules in different ways or have no effect(s) at all. Therefore assessing the presence of PTMs, determining the relative level of the modifications, and understanding the structural effects of PTMs are all important during development of protein biopharmaceuticals.Two commonly studied IgG1 modifications are methionine oxidation and glycosylation, each of which has been shown to affect biological function (6, 10). Methionine oxidation has been implicated in protein stability (inducing aggregation), and increased oxidation levels have been shown to provoke an immunogenic response (11–13). Elevated levels of methionine oxidation in an IgG1 were shown to impact neonatal Fc receptor (FcRn) and protein A binding (10). Variable glycosylation (i.e. different levels of sialic acid, galactose, fucose, or high mannose structures) is known to influence thermal stability and effector functions (14–16). Previous studies have shown that removal of fucose from the glycan present on the Fc portion of an IgG1 can greatly enhance Fc binding to FcγRIIIa, but removal of the entire glycan nearly abolishes FcγRIIIa binding (17). As oxidation and changes to the glycan are both common IgG1 modifications, we were interested in determining the conformational effects of oxidation, afucosylation, and galactosylation and correlating any conformational changes that were observed with changes of FcγRIIIa binding activity.Conformational analysis of large proteins like antibodies, however, is not trivial. Traditional biophysical techniques such as circular dichroism, DSC, and fluorescence provide useful information, but these techniques look at the entire protein and provide only a global view (18). NMR and x-ray crystallography can both provide high resolution structural analysis, but each is faced with limitations that often make the study of an intact IgG1 difficult or nearly impossible (19–21). Recently we described how hydrogen/deuterium exchange (H/DX) MS could be used to study the conformation and conformational dynamics of an intact IgG1 with resolution down to stretches of several amino acid residues (22). For the present work, we used H/DX MS to study the impact of galactosylation, oxidation, and afucosylation on the conformation and dynamics of an intact IgG1. We also studied the complex of IgG1 and FcγRIIIa to map the points of interaction and probe any changes in the dynamics of the IgG1 as a result of FcγRIIIa interaction. Finally, we correlated the functional activity of all the proteins that were studied by H/DX MS with the observed conformational disturbance(s). Such correlations are important to connect structure with function and to understand whether a particular PTM is something that may affect the therapeutic value of a recombinant protein. 相似文献
6.
Courtney J. Duchardt David J. Augustine Jeffrey L. Beck 《The Journal of wildlife management》2020,84(7):1361-1372
North American sagebrush (Artemisia spp.)-obligate birds are experiencing steep population declines due in part to increased disturbance, mainly human-caused, across their range. At the eastern edge of the sagebrush steppe, this issue may potentially be exacerbated because of natural disturbance by black-tailed prairie dogs (Cynomys ludovicianus). Our goal was to compare local and landscape models of habitat use by greater sage-grouse (Centrocercus urophasianus), Brewer's sparrow (Spizella breweri), and sage thrasher (Oreoscoptes montanus) with models including effects of natural (i.e., prairie dog) and anthropogenic disturbance. We used a combination of field data collection, and state and national datasets for the Thunder Basin National Grassland, eastern Wyoming, USA, to understand the factors that influence lek attendance by sage-grouse and habitat use by 2 passerines in this system. For all 3 species, models including big sagebrush (Artemisia tridentata) cover at local and landscape scales were the most competitive among univariate models, supporting the paradigm that sagebrush is key for these species. Models including anthropogenic disturbance (well density, road density) explained more variation than models of prairie dog disturbance alone for 2 of the 3 species, but long-term disturbance by prairie dogs did reduce abundance of Brewer's sparrows. Although long-term prairie dog disturbance has the potential to reduce sagebrush cover for sagebrush-obligate birds, such events are likely rare because outbreaks of plague (Yersina pestis) and lethal control on borders with private land reduce prairie dog disturbance. Conversely, anthropogenic disturbance is slated to increase in this system, suggesting potentially accelerated declines for sagebrush birds into the future. © 2020 The Wildlife Society. 相似文献
7.
When navigating through the environment, our brain needs to infer how far we move and in which direction we are heading. In this estimation process, the brain may rely on multiple sensory modalities, including the visual and vestibular systems. Previous research has mainly focused on heading estimation, showing that sensory cues are combined by weighting them in proportion to their reliability, consistent with statistically optimal integration. But while heading estimation could improve with the ongoing motion, due to the constant flow of information, the estimate of how far we move requires the integration of sensory information across the whole displacement. In this study, we investigate whether the brain optimally combines visual and vestibular information during a displacement estimation task, even if their reliability varies from trial to trial. Participants were seated on a linear sled, immersed in a stereoscopic virtual reality environment. They were subjected to a passive linear motion involving visual and vestibular cues with different levels of visual coherence to change relative cue reliability and with cue discrepancies to test relative cue weighting. Participants performed a two-interval two-alternative forced-choice task, indicating which of two sequentially perceived displacements was larger. Our results show that humans adapt their weighting of visual and vestibular information from trial to trial in proportion to their reliability. These results provide evidence that humans optimally integrate visual and vestibular information in order to estimate their body displacement. 相似文献
8.
The sugar trehalose is produced in some organisms that survive dehydration and desiccation, and it preserves the integrity of membranes in model systems exposed to dehydration and freezing. Dimethyl sulfoxide, a solute which permeates membranes, is added to cell suspensions in many protocols for cryopreservation. Using a surface forces apparatus, we measured the very large, short-range repulsion between phosphatidylcholine bilayers in water and in solutions of trehalose, sorbitol, and dimethyl-sulfoxide. To the resolution of the technique, the force-distance curves between bilayers are unchanged by the addition of trehalose or sorbitol in concentrations exceeding 1 kmol · m-3. A relatively small increase in adhesion in the presence of trehalose and sorbitol solutions may be explained by their osmotic effects. The partitioning of trehalose between aqueous solutions and lamellar phases of dioleylphosphatidylcholine was measured gravimetrically. The amount of trehalose that preferentially adsorbs near membrane surfaces is at most small. The presence of dimethyl sulfoxide in water ( 1:2 by volume) makes very little difference to the short-range interaction between deposited bilayers, but it sometimes perturbs them in ways that vary among experiments: free bilayers and/or fusion of the deposited bilayers were each observed in about one-third of the experiments. 相似文献
9.
Lena Böttinger Susanne E. Horvath Thomas KleinschrothCarola Hunte Günther Daum Nikolaus Pfanner Thomas Becker 《Journal of molecular biology》2012,423(5):677-686
The mitochondrial inner membrane contains two non-bilayer‐forming phospholipids, phosphatidylethanolamine (PE) and cardiolipin (CL). Lack of CL leads to destabilization of respiratory chain supercomplexes, a reduced activity of cytochrome c oxidase, and a reduced inner membrane potential Δψ. Although PE is more abundant than CL in the mitochondrial inner membrane, its role in biogenesis and assembly of inner membrane complexes is unknown. We report that similar to the lack of CL, PE depletion resulted in a decrease of Δψ and thus in an impaired import of preproteins into and across the inner membrane. The respiratory capacity and in particular the activity of cytochrome c oxidase were impaired in PE-depleted mitochondria, leading to the decrease of Δψ. In contrast to depletion of CL, depletion of PE did not destabilize respiratory chain supercomplexes but favored the formation of larger supercomplexes (megacomplexes) between the cytochrome bc1 complex and the cytochrome c oxidase. We conclude that both PE and CL are required for a full activity of the mitochondrial respiratory chain and the efficient generation of the inner membrane potential. The mechanisms, however, are different since these non-bilayer‐forming phospholipids exert opposite effects on the stability of respiratory chain supercomplexes. 相似文献
10.
Behavioral responses of Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) to visual and olfactory cues were assessed in a cylindrical black box and a Y-tube olfactometer.
Frankliniella occidentalis preferred circular shapes to other five geometrical patterns (rectangle, triangle, inverted triangle, diamond, and modified
circle imitating flower petals) in multiple choice tests. In pair wise choice tests, the thrips preferred the yellow artificial
flower shape to the geometrical patterns tested. Frankliniella occidentalis stayed on the artificial flower about four times longer than on the geometrical patterns. Higher numbers of thrips responded
to a combination of p-anisaldehyde and artificial flower compared to the arm with only the olfactory or the visual cue. These results suggest that
shape is an important cue for F. occidentalis. 相似文献
11.
12.
13.
眼睛注视作为一种重要的非语言社会线索,不仅可以传达他人丰富的注意方向信息,并且能够诱发独特的社会性注意行为.近年来,研究者利用改编的社会性注意任务发现,眼睛注视线索还可以进一步影响我们对各种不同种类物体(用具、符号、面孔等)的感知觉加工,以及主观评价、记忆等其他高级认知加工过程.眼睛注视线索对物体加工的这种影响受到诸多因素的调节,如面孔属性、数量以及注视模式等.特别地,眼睛注视线索对物体加工的这一调制作用能够在无意识水平发生,具有一定的特异性.此外,针对这一调制作用背后机制的研究暗示心理理论和观点采择可能参与其中,但仍有待进一步探究.眼睛注视对物体加工影响的研究有助于我们深入理解社会互动的方式以及人类与环境的交互过程,因此具有重要的理论意义和社会应用价值. 相似文献
14.
Different Marine Heterotrophic Nanoflagellates Affect Differentially the Composition of Enriched Bacterial Communities 总被引:1,自引:0,他引:1
We studied the effects of predation on the cytometric and phylogenetic features of two enriched bacterial communities obtained from two cultures of marine heterotrophic nanoflagellates: Jakoba libera and a mixed culture of Cafeteria sp. and Monosiga sp. Protists were harvested by flow cytometric cell sorting and eight different treatments were prepared. Each bacterial community was incubated with and without protists, and we added two treatments with protists and the bacteria present after the sorting procedure (cosorted bacteria). The bacterial community derived from the culture of Jakoba libera had higher green fluorescence per cell (FL1) than that derived from the mixed culture of Cafeteria sp. and Monosiga sp. When the experiment began all treatments presented bacterial communities that increase in fluorescence per bacterium (FL1); after that the FL1 decreased when bacteria attained maximal concentrations; and, finally, there was a new increase in FL1 toward the end of the experiment. Cosorted bacteria of Jakoba libera had the same fluorescence as the bacterial community derived from this protist, while the bacteria derived from the mixed culture of Cafeteria sp. and Monosiga sp. was nearly twice as fluorescent than that of the parental community. All treatments presented a general decline of SSC along the incubation. Therefore, there was a small influence of protists on the cytometric signature of each bacterial community. However, each bacterial community preyed by Jakoba libera or the mixed culture of Cafeteria sp. and Monosiga sp. led to four different phylogenetic fingerprint. Besides, the final Communities were different from the fingerprint of controls without protists, and most of them diverge from the fingerprint of cosorted bacteria. Our results confirm that changes in the phylogenetic composition of marine bacterial communities may depend on the initial communities of both bacteria and protists. 相似文献
15.
The cytochrome c maturation system influences the expression of virulence factors in Bacillus anthracis. B. anthracis carries two copies of the ccdA gene, encoding predicted thiol-disulfide oxidoreductases that contribute to cytochrome c maturation, while the closely related organism Bacillus subtilis carries only one copy of ccdA. To investigate the roles of the two ccdA gene copies in B. anthracis, strains were constructed without each ccdA gene, and one strain was constructed without both copies simultaneously. Loss of both ccdA genes results in a reduction of cytochrome c production, an increase in virulence factor expression, and a reduction in sporulation efficiency. Complementation and expression analyses indicate that ccdA2 encodes the primary CcdA in B. anthracis, active in all three pathways. While CcdA1 retains activity in cytochrome c maturation and virulence control, it has completely lost its activity in the sporulation pathway. In support of this finding, expression of ccdA1 is strongly reduced when cells are grown under sporulation-inducing conditions. When the activities of CcdA1 and CcdA2 were analyzed in B. subtilis, neither protein retained activity in cytochrome c maturation, but CcdA2 could still function in sporulation. These observations reveal the complexities of thiol-disulfide oxidoreductase function in pathways relevant to virulence and physiology. 相似文献
16.
Background
Very often, encouraging or discouraging expressions are used in competitive contexts, such as sports practice, aiming at provoking an emotional reaction on the listener and, consequently, an effect on subsequent cognition and/or performance. However, the actual efficiency of these expressions has not been tested scientifically.Methodology/Principal Findings
To fill this gap, we studied the effects of encouraging, discouraging, and neutral expressions on event-related brain electrical activity during a visual selective attention task in which targets were determined by location, shape, and color. Although the expressions preceded the attentional task, both encouraging and discouraging messages elicited a similar long-lasting brain emotional response present during the visuospatial task. In addition, encouraging expressions were able to alter the customary working pattern of the visual attention system for shape selection in the attended location, increasing the P1 and the SP modulations while simultaneously fading away the SN.Conclusions/Significance
This was interpreted as an enhancement of the attentional processes for shape in the attended location after an encouraging expression. It can be stated, therefore, that encouraging expressions, as those used in sport practice, as well as in many other contexts and situations, do seem to be efficient in exerting emotional reactions and measurable effects on cognition. 相似文献17.
Claire N. J. Meunier Glenn Dallérac Nicolas Le Roux Silvia Sacchi Grégoire Levasseur Muriel Amar Loredano Pollegioni Jean-Pierre Mothet Philippe Fossier 《PloS one》2016,11(3)
N-methyl-D-aspartate receptors (NMDARs) play a central role in synaptic plasticity. Their activation requires the binding of both glutamate and d-serine or glycine as co-agonist. The prevalence of either co-agonist on NMDA-receptor function differs between brain regions and remains undetermined in the visual cortex (VC) at the critical period of postnatal development. Here, we therefore investigated the regulatory role that d-serine and/or glycine may exert on NMDARs function and on synaptic plasticity in the rat VC layer 5 pyramidal neurons of young rats. Using selective enzymatic depletion of d-serine or glycine, we demonstrate that d-serine and not glycine is the endogenous co-agonist of synaptic NMDARs required for the induction and expression of Long Term Potentiation (LTP) at both excitatory and inhibitory synapses. Glycine on the other hand is not involved in synaptic efficacy per se but regulates excitatory and inhibitory neurotransmission by activating strychnine-sensitive glycine receptors, then producing a shunting inhibition that controls neuronal gain and results in a depression of synaptic inputs at the somatic level after dendritic integration. In conclusion, we describe for the first time that in the VC both D-serine and glycine differentially regulate somatic depolarization through the activation of distinct synaptic and extrasynaptic receptors. 相似文献
18.
Jeremy Marozeau Hamish Innes-Brown David B. Grayden Anthony N. Burkitt Peter J. Blamey 《PloS one》2010,5(6)
Background
The ability to separate two interleaved melodies is an important factor in music appreciation. This ability is greatly reduced in people with hearing impairment, contributing to difficulties in music appreciation. The aim of this study was to assess whether visual cues, musical training or musical context could have an effect on this ability, and potentially improve music appreciation for the hearing impaired.Methods
Musicians (N = 18) and non-musicians (N = 19) were asked to rate the difficulty of segregating a four-note repeating melody from interleaved random distracter notes. Visual cues were provided on half the blocks, and two musical contexts were tested, with the overlap between melody and distracter notes either gradually increasing or decreasing.Conclusions
Visual cues, musical training, and musical context all affected the difficulty of extracting the melody from a background of interleaved random distracter notes. Visual cues were effective in reducing the difficulty of segregating the melody from distracter notes, even in individuals with no musical training. These results are consistent with theories that indicate an important role for central (top-down) processes in auditory streaming mechanisms, and suggest that visual cues may help the hearing-impaired enjoy music. 相似文献19.
Small nuclear ribonucleoproteins (snRNPs), which are required for pre-mRNA splicing, contain extensively modified snRNA. Small Cajal body-specific ribonucleoproteins (scaRNPs) mediate these modifications. It is unknown how the box C/D class of scaRNPs localizes to Cajal Bodies (CBs). The processing of box C/D scaRNA is also unclear. Here, we explore the processing of box C/D scaRNA 2 and 9 by coilin. We also broaden our investigation to include WRAP53 and SMN, which accumulate in CBs, play a role in RNP biogenesis and associate with coilin. These studies demonstrate that the processing of an ectopically expressed scaRNA2 is altered upon the reduction of coilin, WRAP53 or SMN, but the extent and direction of this change varies depending on the protein reduced. We also show that box C/D scaRNP activity is reduced in a cell line derived from coilin knockout mice. Collectively, the findings presented here further implicate coilin as being a direct participant in the formation of box C/D scaRNPs, and demonstrate that WRAP53 and SMN may also play a role, but the activity of these proteins is divergent to coilin. 相似文献
20.
The hypersonic effect is a phenomenon in which sounds containing significant quantities of non-stationary high-frequency components (HFCs) above the human audible range (max. 20 kHz) activate the midbrain and diencephalon and evoke various physiological, psychological and behavioral responses. Yet important issues remain unverified, especially the relationship existing between the frequency of HFCs and the emergence of the hypersonic effect.In this study, to investigate the relationship between the hypersonic effect and HFC frequencies, we divided an HFC (above 16 kHz) of recorded gamelan music into 12 band components and applied them to subjects along with an audible component (below 16 kHz) to observe changes in the alpha2 frequency component (10–13 Hz) of spontaneous EEGs measured from centro-parieto-occipital regions (Alpha-2 EEG), which we previously reported as an index of the hypersonic effect.Our results showed reciprocal directional changes in Alpha-2 EEGs depending on the frequency of the HFCs presented with audible low-frequency component (LFC). When an HFC above approximately 32 kHz was applied, Alpha-2 EEG increased significantly compared to when only audible sound was applied (positive hypersonic effect), while, when an HFC below approximately 32 kHz was applied, the Alpha-2 EEG decreased (negative hypersonic effect). These findings suggest that the emergence of the hypersonic effect depends on the frequencies of inaudible HFC. 相似文献