首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
戊型肝炎病毒DNA免疫的研究   总被引:4,自引:0,他引:4  
利用PCR方法获得1 163 bp的戊型肝炎(Hepatitis E Virus,HEV)开放读码框架(Open Reading Frame,ORF)ORF2之3’大片段和369bp ORF3的完整片段,分别克隆到真核表达载体pcDNA3中,构建两种含有HEV主要抗原表位的质粒DNApcE2和pcE3,分别或混合免疫Swiss小鼠三次(0时,第2周,第4周),观察其在小鼠体内诱发的体液免疫应答。ELISA检测结果表明,pcE2和pcE3在小鼠体内均可诱导出一定水平的HEVIgG抗体,且在第三次免疫接种两周后,100%的小鼠抗体阳转。与两种质粒单独免疫相比,两者同时注射的抗体水平较高。本研究为HEVDNA疫苗的研究打下一定基础。  相似文献   

2.
利用PCR方法获得1163bp的戊型肝炎(Hepatitis E Virus,HEV)开放读码框架(Open Reading Frame,ORF)ORF2之3'大片段和369bp ORF3的完整片段,分别克隆到真核表达载体pcDNA3中,构建两种含有HEV主要抗原表位的质粒DNA:pcE2和pcE3,分别或混合免疫Swiss小鼠三次(0时,第2周,第4周),观察其在小鼠体内诱发的体液免疫应答。ELISA检测结果表明,pcE2和pcE3在小鼠体内均可诱导出一定水平的HEV IgG抗体,且在第三次免疫接种两周后,100%的小鼠抗体阳转。与两和中质粒单独免疫相比,两者同时注射的抗体水平较高。本研究为HEV DNA疫苗的研究打下一定基础。  相似文献   

3.

Background

The identification of hepatitis E virus (HEV) from rabbits motivated us to assess the possibility of using rabbits as a non-human primate animal model for HEV infection and vaccine evaluation.

Methodology/Principal Findings

First, 75 rabbits were inoculated with seven strains of genotypes 1, 3, 4, and rabbit HEV, to determine the appropriate strain, administrative route and viral dosage. Second, 15 rabbits were randomly divided into three groups and vaccinated with 0 µg (placebo), 10 µg and 20 µg of HEV candidate vaccine, HEV p179, respectively. After three doses of the vaccination, the rabbits were challenged with 3.3×105 genome equivalents of genotype 4 HEV strain H4-NJ703. The strain of genotype 1 HEV was not found to be infectious for rabbits. However, approximately 80% of the animals were infected by two rabbit HEV strains. All rabbits inoculated with a genotype 3 strain were seroconverted but did not show viremia or fecal viral shedding. Although two genotype 4 strains, H4-NJ153 and H4-NJ112, only resulted in part of rabbits infected, another strain of genotype 4, H4-NJ703, had an infection rate of 100% (five out of five) when administrated intravenously. However, only two out of fifteen rabbits showed virus excretion and seroconversion when inoculated orally with H4-NJ703 of three different dosages. In the vaccine evaluation study, rabbits vaccinated with 20 µg of the HEV p179 produced anti-HEV with titers of 1∶104–1∶105 and were completely protected from infection. Rabbits vaccinated with 10 µg produced anti-HEV with titers of 1∶103–1∶104 and were protected from hepatitis, but two out of the five rabbits showed virus shedding.

Conclusions/Significance

Rabbits may be served as an alternative to the non-human primate models for HEV infection and vaccine evaluation when certain virus strains, appropriate viral dosages, and the intravenous route of inoculation are selected.  相似文献   

4.
5.
The E2 glycoprotein of Hepatitis C virus (HCV) is a major target of the neutralizing antibody (NAb) response with the majority of epitopes located within its receptor binding domain (RBD; 384–661). Within E2 are three variable regions located at the N-terminus (HVR1; 384–411), and internally at 460–480 (HVR2) and 570–580 [intergenotypic variable region (igVR)], all of which lie outside a conserved core domain that contains the CD81 binding site, essential for attachment of virions to host cells and a major target of NAbs. In this study, we examined the evolution of the E1 and E2 region in two patients infected with genotype 3a virus. Whereas one patient was able to clear the acute infection, the other developed a chronic infection. Mutations accumulated at multiple positions within the N-terminal HVR1 as well as within the igVR in both patients over time, whereas mutations in HVR2 were observed only in the chronically infected patient. Mutations within or adjacent to the CD81 contact site were observed in both patients but were less frequent and more conservative in the patient that cleared his/her infection. The evolution of CD81 binding function and antigenicity was examined with longitudinal E2 RBD sequences. The ability of the RBD to bind CD81 was completely lost by week 108 in the patient that developed chronic HCV. In the second patient, the ability of the week 36 RBD, just prior to viral clearance, to bind CD81 was reduced ~50% relative to RBD sequences obtained earlier. The binding of a NAb specific to a conserved epitope located within E2 residues 411–428 was significantly reduced by week 108 despite complete conservation of its epitope suggesting that E2 antigenicity is allosterically modulated. The exposure of non-neutralizing antibody epitopes was similarly explored and we observed that the epitope of 3 out of 4 non-NAbs were significantly more exposed in the RBDs representing the late timepoints in the chronic patient. By contrast, the exposure of non-neutralizing epitopes was reduced in the patient that cleared his/her infection and could in part be attributed to sequence changes in the igVR. These studies reveal that during HCV infection, the exposure of the CD81 binding site on E2 becomes increasingly occluded, and the antigenicity of the E2 RBD towards both neutralizing and non-neutralizing antibodies is modulated via allosteric mechanisms.  相似文献   

6.
新型戊肝病毒ORF3和部分ORF1基因的序列分析   总被引:2,自引:0,他引:2  
用RT-PCR方法对2例感染新型HEV的样品进行了检测,并对PCR产物进行了克隆及测序。检测结果显示用常规PCR检测易造成ORF3中GC丰富区的缺失,但在常规PCR反应液中加入GCmelt溶液可成功地扩增GC丰富区。序列分析显示T1和T11属于同一基因型,但不同于已报道的HEVI型、II型和III型,为一新的基因型。T1和T11与I型在该区的核苷酸同源性为79%~82%;与II型的同源性为80%~81%;和III型的同源性为83%~85%。  相似文献   

7.
用RT-PCR方法对2例感染新型HEV的样品进行了检测,并对PCR产物进行了克隆及测序。检测结果显示用常规PCR检测易造成ORF3中GC丰富区的缺失,但不同于已报道的HEVⅠ型、Ⅱ型和Ⅲ型,为一新的基因型。T1和T11与Ⅰ型在该区的核苷酸同源性为79%-82%;与Ⅱ型的同源性为80%-81%;和Ⅲ型的同源性为83%-85%。  相似文献   

8.
E.coli中表达的HEV衣壳蛋白片段P239(aa368~606)形成的类病毒颗粒与戊肝患者恢复期血清及中和单抗具有良好的反应性,较好地模拟了天然HEV病毒颗粒的表面空间结构。利用P239吸附HepG2细胞的模型来模拟HEV对宿主细胞的吸附,多株中和单抗对吸附的阻断验证了吸附的特异性。P239与多株传代细胞系的吸附结果则表明了这种特异性吸附的细胞选择性。对阻断P239吸附的线性单抗进行定位,初步确定了P239与细胞相互作用的区域:ORF2上的aa423~443很可能和病毒上的细胞膜受体结合部位非常靠近,或可能直接参与构成了病毒与细胞特异性识别的表位。此本研究为进一步研究HEV与宿主细胞的相互作用提供一定的线索。  相似文献   

9.
10.

Background

Chronic hepatitis C virus (HCV) infection is one of the leading causes of hepatic cirrhosis and hepatocellular carcinoma, and HCV genotype 1 is the most prevalent genotype and is resistant to current standard therapy. We performed this meta-analysis to evaluate the efficacy and safety of telaprevir-based therapy for chronic HCV genotype 1 infection.

Methods

We included randomized controlled trials with no year or language restriction. All data were analyzed using a random-effects model by Review Manager v5.0. The primary outcome was the proportion of patients achieving sustained virologic response (SVR), and the secondary outcomes were HCV relapse rate, incidence of severe adverse events (SAEs), and discontinuation due to adverse events.

Results

The proportion of achieving SVR was significantly higher in the telaprevir group (odds ratio [OR] = 3.40 [1.92, 6.00], P<0.0001; I2 = 87%) regardless of a patients’ previous treatment status. It was also significantly higher in the 24-week and 48-week treatment groups (OR = 4.52 [2.08, 9.81], P<0.001; I2 = 85%, and OR = 4.05 [1.56, 10.56], P = 0.004; I2 = 92%, respectively), while it was comparable in the 12-week treatment group (OR = 1.32 [0.63, 2.75], P = 0.46; I2 = 35%). In addition, the HCV relapse rate was significantly reduced in the telaprevir group (OR = 0.28 [0.16, 0.49], P<0.001; I2 = 76%). However, the incidence of SAE (OR = 1.56 [1.15, 2.10], P = 0.004; I2 = 0%) and study discontinuation due to adverse events (OR = 2.24 [1.43, 3.50], P<0.001; I2 = 37%) were significantly higher in the telaprevir group.

Conclusion

Despite its higher incidence of SAEs and discontinuation due to adverse events, telaprevir-based therapy can increase the proportion of achieving SVR in both previously treated and untreated chronic HCV-1 infected patients.  相似文献   

11.
12.
Hepatitis E virus (HEV) constitutes a significant health burden worldwide, with an estimated approximately 33% of the world’s population exposed to the pathogen. The recent licensed HEV 239 vaccine in China showed excellent protective efficacy against HEV of genotypes 1 and 4 in the general population and pregnant women. Because hepatitis E is a zoonosis, it is also necessary to ascertain whether this vaccine can serve to manage animal sources of human HEV infection. To test the efficacy of the HEV 239 vaccine in protecting animal reservoirs of HEV against HEV infection, twelve specific-pathogen-free (SPF) rabbits were divided randomly into two groups of 6 animals and inoculated intramuscularly with HEV 239 and placebo (PBS). All animals were challenged intravenously with swine HEV of genotype 4 or rabbit HEV seven weeks after the initial immunization. The course of infection was monitored for 10 weeks by serum ALT levels, duration of viremia and fecal virus excretion and HEV antibody responses. All rabbits immunized with HEV 239 developed high titers of anti-HEV and no signs of HEV infection were observed throughout the experiment, while rabbits inoculated with PBS developed viral hepatitis following challenge, with liver enzyme elevations, viremia, and fecal virus shedding. Our data indicated that the HEV 239 vaccine is highly immunogenic for rabbits and that it can completely protect rabbits against homologous and heterologous HEV infections. These findings could facilitate the prevention of food-borne sporadic HEV infection in both developing and industrialized countries.  相似文献   

13.
Hepatitis D virus (HDV) is the smallest virus known to infect human. About 15 million people worldwide are infected by HDV among those 240 million infected by its helper hepatitis B virus (HBV). Viral hepatitis D is considered as one of the most severe forms of human viral hepatitis. No specific antivirals are currently available to treat HDV infection and antivirals against HBV do not ameliorate hepatitis D. Liver sodium taurocholate co-transporting polypeptide (NTCP) was recently identified as a common entry receptor for HDV and HBV in cell cultures. Here we show HDV can infect mice expressing human NTCP (hNTCP-Tg). Antibodies against critical regions of HBV envelope proteins blocked HDV infection in the hNTCP-Tg mice. The infection was acute yet HDV genome replication occurred efficiently, evident by the presence of antigenome RNA and edited RNA species specifying large delta antigen in the livers of infected mice. The resolution of HDV infection appears not dependent on adaptive immune response, but might be facilitated by innate immunity. Liver RNA-seq analyses of HDV infected hNTCP-Tg and type I interferon receptor 1 (IFNα/βR1) null hNTCP-Tg mice indicated that in addition to induction of type I IFN response, HDV infection was also associated with up-regulation of novel cellular genes that may modulate HDV infection. Our work has thus proved the concept that NTCP is a functional receptor for HDV infection in vivo and established a convenient small animal model for investigation of HDV pathogenesis and evaluation of antiviral therapeutics against the early steps of infection for this important human pathogen.  相似文献   

14.
Chronic hepatitis B virus (HBV) infections are associated with persistent immune killing of infected hepatocytes. Hepatocytes constitute a largely self-renewing population. Thus, immune killing may exert selective pressure on the population, leading it to evolve in order to survive. A gradual course of hepatocyte evolution toward an HBV-resistant state is suggested by the substantial decline in the fraction of infected hepatocytes that occurs during the course of chronic infections. Consistent with hepatocyte evolution, clones of >1,000 hepatocytes develop postinfection in the noncirrhotic livers of chimpanzees chronically infected with HBV and of woodchucks infected with woodchuck hepatitis virus (W. S. Mason, A. R. Jilbert, and J. Summers, Proc. Natl. Acad. Sci. U. S. A. 102:1139-1144, 2005; W. S. Mason et al., J. Virol. 83:8396-8408, 2009). The present study was carried out to determine (i) if extensive clonal expansion of hepatocytes also occurred in human HBV carriers, particularly in the noncirrhotic liver, and (ii) if clonal expansion included normal-appearing hepatocytes, not just hepatocytes that appear premalignant. Host DNA extracted from fragments of noncancerous liver, collected during surgical resection of hepatocellular carcinoma (HCC), was analyzed by inverse PCR for randomly integrated HBV DNA as a marker of expanding hepatocyte lineages. This analysis detected extensive clonal expansion of hepatocytes, as previously found in chronically infected chimpanzees and woodchucks. Tissue sections were stained with hematoxylin and eosin (H&E), and DNA was extracted from the adjacent section for inverse PCR to detect integrated HBV DNA. This analysis revealed that clonal expansion can occur among normal-appearing human hepatocytes.Transient hepatitis B virus (HBV) infections, which generally last <6 months, do not cause cirrhosis and cause only minor increases in the risk of hepatocellular carcinoma (HCC) (3, 46). Chronic infections, typically lifelong, can cause cirrhosis and HCC (3). Of the ∼350 million HBV carriers now alive, ca. 60 million will die prematurely of cirrhosis and/or HCC. Cirrhosis, which usually develops late in infection, is a significant risk factor for HCC. Early reports stated that most HCCs occur on a background of cirrhosis. However, later studies suggested that as many as 50% of HCCs may occur in noncirrhotic liver (4), that is, in patients in whom the progression of liver disease still appears rather mild. Thus, liver damage that appears severe by histologic examination is not a prerequisite for HCC.Interestingly, during chronic HBV infections there is, in the face of persistent viremia, a decline over time in the fraction of infected hepatocytes, from 100% to as little as a few percent (5, 12-14, 16, 17, 22, 23, 27, 34, 37, 38). Along with HCC, this is perhaps the most surprising and unexplained outcome of chronic infection. The timing of this decline has not been systematically studied, but it is presumably gradual, occurring over years or decades, and dependent on persistent, albeit low-level, killing of infected hepatocytes by antiviral cytotoxic T lymphocytes (CTLs) (20). It is believed that the liver is largely a closed, self-renewing population. Such a population might be expected to evolve under any strong or persistent selective pressure. In HBV-infected patients, the earliest and most persistent selective pressure is immune killing of infected hepatocytes, which should initially constitute the entire hepatocyte population. Persistent killing of HBV-infected hepatocytes could lead to clonal expansion of mutant or epigenetically altered hepatocytes that had lost the ability to support infection and that were not, therefore, targeted by antiviral CTLs.Such a selective pressure may explain why foci of altered hepatocytes (FAH) and HCC are typically virus negative (1, 6, 11, 26, 29, 31, 35, 40, 41, 44). Normal or preneoplastic hepatocytes (e.g., in FAH) that have evaded the host immune response should undergo clonal expansion, because their death rate is lower than that of surrounding hepatocytes, even if they do not have a higher growth rate. Indeed, clonal expansion of hepatocytes has been detected, in the absence of cirrhosis, in woodchucks chronically infected with woodchuck hepatitis virus (WHV) (19) and in chimpanzees chronically infected with HBV (21). The presence of discrete foci of normal-appearing but virus-negative hepatocytes in chronically infected woodchuck livers (39) suggested, but did not prove, that normal-appearing hepatocytes that had lost the ability to support virus replication might clonally expand.The purpose of the present study was, therefore, to determine if normal-appearing hepatocytes undergo clonal expansion. To address this issue, we focused on noncirrhotic livers, because hepatocyte appearance and organization in many cirrhotic nodules are often considered to indicate premalignancy (7, 24, 25, 44), and this, together with the cellular environment in the cirrhotic liver, may explain why as many as 50% of cirrhotic nodules have been found to be made up of clonally expanded hepatocytes (2, 18, 24, 25, 28, 44). In older HBV patients, cirrhosis, the result of cumulative scarring due to ongoing tissue injury, presumably produces an evolutionary pressure on the hepatocyte population due to restricted blood flow and altered hepatic architecture.Clonal expansion was detected by assaying for integrated HBV DNA by inverse PCR (19, 21). Because integration occurs at random sites in host DNA, each integration event provides a unique genetic marker for the cell in which it occurred, and for any daughter cells. Thus, the clonal expansion of these tagged hepatocytes can be measured by determining how many times a given virus-cell DNA junction is repeated in a liver fragment. Analysis of fragments of nontumorous liver from noncirrhotic HCC patients revealed that at least 1% of hepatocytes are present as clones of >1,000 cells. Examination of 5-μm-thick sections of paraffin-embedded livers from the same patients revealed that clonally expanded hepatocytes were present in liver sections lacking preneoplastic lesions or changes. Therefore, normal-appearing hepatocytes must have undergone clonal expansion. Although clonal expansion was detected by analysis of integrated HBV DNA, the expansion did not appear to be due to the site of integration of the viral DNA into host DNA.These results are consistent with the hypothesis that immune selection and the later emergence of liver cirrhosis, with altered lobular organization and restricted blood flow, may constitute the two major selective pressures on the hepatocyte population that culminate in hepatocellular carcinoma. More-direct proof of the role, if any, of immune selection in hepatocyte evolution and HCC will require, first of all, an assay with a greater ability to detect clonally expanded hepatocytes. The present approach is limited by a number of factors, including a need for integration near a particular restriction endonuclease cleavage site in host DNA and for conservation of particular viral sequences so that the integrated DNA can be amplified using the PCR primers chosen. These issues may explain why the fraction of clonally expanded hepatocytes reported here is much less than that suggested by histologic data showing that more than 50% of hepatocytes appear negative for virus replication in long-term carriers. Further dissection of this issue will also require localization and determination of the virologic status of hepatocyte clones present in tissue sections.  相似文献   

15.
抗HEV嵌合抗体的构建及在CHO细胞中的表达   总被引:1,自引:0,他引:1  
通过RT-PCR方法从分泌戊型肝炎(戊肝)病毒中和性鼠源单克隆抗体(单抗)8C11的杂交瘤细胞中克隆出抗体基因的重链可变区(VH)、轻链可变区(VK)序列,并分别克隆到含有人gamma 1重链和kappa轻链恒定区序列的pcDNA3.1/Hygro和pcDNA3.1( )质粒中,共转染中华仓鼠卵巢癌细胞(CHO)细胞.RT-PCR结果表明,转染的CHO细胞转录了嵌合重链及轻链基因,间接ELISA及Western blot结果表明:翻译出的两种多肽在细胞内正确组装成嵌合抗体分子,并可分泌至细胞外,表达的嵌合抗体保留了原鼠单抗的抗原结合特异性及对8H3结合抗原的增强作用.8C11嵌合抗体的成功表达可降低鼠源性,为探讨戊肝抗体治疗的可能性奠定了基础.  相似文献   

16.
Recently, claudin-1 (CLDN1) was identified as a host protein essential for hepatitis C virus (HCV) infection. To evaluate CLDN1 function during virus entry, we searched for hepatocyte cell lines permissive for HCV RNA replication but with limiting endogenous CLDN1 expression, thus permitting receptor complementation assays. These criteria were met by the human hepatoblastoma cell line HuH6, which (i) displays low endogenous CLDN1 levels, (ii) efficiently replicates HCV RNA, and (iii) produces HCV particles with properties similar to those of particles generated in Huh-7.5 cells. Importantly, naïve cells are resistant to HCV genotype 2a infection unless CLDN1 is expressed. Interestingly, complementation of HCV entry by human, rat, or hamster CLDN1 was highly efficient, while mouse CLDN1 (mCLDN1) supported HCV genotype 2a infection with only moderate efficiency. These differences were observed irrespective of whether cells were infected with HCV pseudoparticles (HCVpp) or cell culture-derived HCV (HCVcc). Comparatively low entry function of mCLDN1 was observed in HuH6 but not 293T cells, suggesting that species-specific usage of CLDN1 is cell type dependent. Moreover, it was linked to three mouse-specific residues in the second extracellular loop (L152, I155) and the fourth transmembrane helix (V180) of the protein. These determinants could modulate the exposure or affinity of a putative viral binding site on CLDN1 or prevent optimal interaction of CLDN1 with other human cofactors, thus precluding highly efficient infection. HuH6 cells represent a valuable model for analysis of the complete HCV replication cycle in vitro and in particular for analysis of CLDN1 function in HCV cell entry.Hepatitis C virus (HCV) is a liver-tropic plus-strand RNA virus of the family Flaviviridae that has chronically infected about 130 million individuals worldwide. During long-term persistent virus replication, many patients develop significant liver disease which can lead to cirrhosis and hepatocellular carcinoma (54). Current treatment of chronic HCV infection consists of a combination of pegylated alpha interferon and ribavirin. However, this regimen is not curative for all treated patients and is associated with severe side effects (37). Therefore, an improved therapy is needed and numerous HCV-specific drugs targeting viral enzymes are currently being developed (47). These efforts have been slowed down by a lack of small-animal models permissive for HCV replication since HCV infects only humans and chimpanzees. Among small animals, only immunodeficient mice suffering from a transgene-induced disease of endogenous liver cells and repopulated with human primary hepatocytes are susceptible to HCV infection (39).The restricted tropism of HCV likely reflects very specific host factor requirements for entry, RNA replication, assembly, and release of virions. Although HCV RNA replication has been observed in nonhepatic human cells and even nonhuman cells, its efficiency is rather low (2, 11, 59, 67). In addition, so far, efficient production of infectious particles has only been reported with Huh-7 human hepatoma cells, Huh-7-derived cell clones, and LH86 cells (33, 61, 65, 66). Although murine cells sustain HCV RNA replication, they do not produce detectable infectious virions (59). Together, these results suggest that multiple steps of the HCV replication cycle may be blocked or impaired in nonhuman or nonhepatic cells.HCV entry into host cells is complex and involves interactions between viral surface-resident glycoproteins E1 and E2 and multiple host factors. Initial adsorption to the cell surface is likely facilitated by interaction with attachment factors like glycosaminoglycans (4, 31) and lectins (13, 35, 36, 51). Beyond these, additional host proteins have been implicated in HCV entry. Since HCV circulates in the blood associated with lipoproteins (3, 43, 57), it has been postulated that HCV enters hepatocytes via the low-density lipoprotein receptor (LDL-R), and evidence in favor of an involvement of LDL-R has been provided (1, 40, 42, 44). Direct interactions between soluble E2 and scavenger receptor class B type I (SR-BI) (53) and CD81 (49) have been reported, and firm experimental proof has accumulated that these host proteins are essential for HCV infection (5, 6, 16, 26, 28, 33, 41, 61). Finally, more recently, claudin-1 (CLDN1) and occludin, two proteins associated with cellular tight junctions, have been identified as essential host factors for infection (20, 34, 50) and an interaction between E2 and these proteins, as revealed by coimmunoprecipitation assays, was reported (7, 34, 63). Although the precise functions of the individual cellular proteins during HCV infection remain poorly defined, based on kinetic studies with antibodies blocking interactions with SR-BI, CD81, or CLDN1, these factors are likely required subsequent to viral attachment (14, 20, 31, 64). Interestingly, viral resistance to antibodies directed against CLDN1 seems to be slightly delayed compared to resistance to antibodies directed against CD81 and SR-BI (20, 64), suggesting that there may be a sequence of events with the virus encountering first SR-BI and CD81 and subsequently CLDN1. Moreover, in Huh-7 cells, engagement of CD81 by soluble E1/E2 induces Rho GTPase-dependent relocalization of these complexes to areas of cell-to-cell contact, where these colocalized with CLDN1 and occludin (9). Together, these findings are consistent with a model where HCV reaches the basolateral, sinusoid-exposed surface of hepatocytes via the circulation. Upon binding to attachment factors SR-BI and CD81, which are highly expressed in this domain (52), the HCV-receptor complex may be ferried to tight-junction-resident CLDN1 and occludin and finally be endocytosed in a clathrin-dependent fashion (8, 38). Once internalized, the viral genome is ultimately delivered into the cytoplasm through a pH-dependent fusion event (24, 26, 31, 58). Recently, Ploss et al. reported that expression of human SR-BI, CD81, CLDN1, and occludin was sufficient to render human and nonhuman cells permissive for HCV infection (50). These results indicate that these four factors are the minimal cell type-specific set of host proteins essential for HCV entry. Interestingly, HCV seems to usurp at least CD81 and occludin in a very species-specific manner since their murine orthologs permit HCV infection with limited efficiency only (22, 50). Recently, it was shown that expression of mouse SR-BI did not fully restore entry function in Huh-7.5 cells with knockdown of endogenous human SR-BI, suggesting that also SR-BI function in HCV entry is, to some extent, species specific (10).In this study, we have developed a receptor complementation system for CLDN1 that permits the assessment of functional properties of this crucial HCV host factor with cell culture-derived HCV (HCVcc) and a human hepatocyte cell line. This novel model is based on HuH6 cells, which were originally isolated from a male Japanese patient suffering from a hepatoblastoma (15). These cells express little endogenous CLDN1, readily replicate HCV RNA, and produce high numbers of infectious HCVcc particles with properties comparable to those of Huh-7 cell-derived HCV. In addition, we identified three mouse-typic residues of CLDN1 that limit receptor function in HuH6 cells. These results suggest that besides CD81 and occludin, and to a minor degree SR-BI, CLDN1 also contributes to the restricted species tropism of HCV.  相似文献   

17.

Background

Acute and chronic hepatitis E have been associated with high mortality and development of cirrhosis, particularly in solid-organ recipients and patients infected by human immunodeficiency virus. However, data regarding the epidemiology of hepatitis E in special populations is still limited.

Aims

Investigate seroprevalence and possible factors associated with HEV infection in a large cohort of immunosuppressed patients.

Methods

Cross-sectional study testing IgG anti-HEV in serum samples from 1373 consecutive individuals: 332 liver-transplant, 296 kidney-transplant, 6 dual organ recipients, 301 non-transplanted patients with chronic liver disease, 238 HIV-infected patients and 200 healthy controls.

Results

IgG anti-HEV was detected in 3.5% controls, 3.7% kidney recipients, 7.4% liver transplant without cirrhosis and 32.1% patients who developed post-transplant cirrhosis (p<0.01). In patients with chronic liver disease, IgG anti-HEV was also statistically higher in those with liver cirrhosis (2% vs 17.5%, p<0.01). HIV-infected patients showed an IgG anti-HEV rate of 9.2%, higher than those patients without HIV infection (p<0.03). Multivariate analysis showed that the factors independently associated with anti-HEV detection were liver cirrhosis, liver transplantation and HIV infection (OR: 7.6, 3.1 and 2.4). HCV infection was a protective factor for HEV infection (OR: 0.4).

Conclusions

HEV seroprevalence was high in liver transplant recipients, particularly those with liver cirrhosis. The difference in anti-HEV prevalence between Liver and Kidney transplanted cases suggests an association with advanced liver disease. Further research is needed to ascertain whether cirrhosis is a predisposing factor for HEV infection or whether HEV infection may play a role in the pathogeneses of cirrhosis.  相似文献   

18.
乙型肝炎病毒急性感染小鼠模型的建立   总被引:4,自引:1,他引:4  
采用高压水注射方法,通过尾静脉将具有复制能力的HBV质粒导入BABL/cJ小鼠体内,应用real-timePCR、ELISA、RIA、Southern Blot、Northern Blot,以及免疫组化等方法,检测小鼠病毒血症、血清和肝组织中HBV抗原表达动态变化、肝组织中HBV转录和复制情况,以及小鼠免疫应答状况.结果HBV基因可以在小鼠体内表达和复制,并诱导小鼠产生特异性免疫应答,其应答模式及HBV清除过程与人类的HBV急性感染类似.实验显示高压注射具有复制能力的HBV质粒可以在小鼠体内建立HBV急性感染模型,这种模型可以用于HBV病毒学、免疫学以及抗病毒药物筛选等方面的研究.  相似文献   

19.
采用高压水注射方法,通过尾静脉将具有复制能力的HBV质粒导入BABL/cJ小鼠体内,应用real-time PCR、ELISA、RIA、Southern Blot、Northern Blot,以及免疫组化等方法,检测小鼠病毒血症、血清和肝组织中HBV 抗原表达动态变化、肝组织中HBV转录和复制情况,以及小鼠免疫应答状况。结果HBV基因可以在小鼠体内表 达和复制,并诱导小鼠产生特异性免疫应答,其应答模式及HBV清除过程与人类的HBV急性感染类似。实验显 示高压注射具有复制能力的HBV质粒可以在小鼠体内建立HBV急性感染模型,这种模型可以用于HBV病毒 学、免疫学以及抗病毒药物筛选等方向的研究。  相似文献   

20.
While the chimpanzee remains the only animal that closely models human hepatitis C virus (HCV) infection, transgenic and immunodeficient mice in which human liver can be engrafted serve as a partial solution to the need for a small animal model for HCV infection. The established system that was based on mice carrying a transgene for urokinase-type plasminogen activator (uPA) gene under the control of the human albumin promoter has proved to be useful for studies of virus infectivity and for testing antiviral drug agents. However, the current Alb-uPA transgenic model with a humanized liver has practical limitations due to the inability to maintain non-engrafted mice as dizygotes for the transgene, poor engraftment of hemizygotes, high neonatal and experimental death rates of dizygous mice and a very short time window for hepatocyte engraftment. To improve the model, we crossed transgenic mice carrying the uPA gene driven by the major urinary protein promoter onto a SCID/Beige background (MUP-uPA SCID/Bg). These transgenic mice are healthy relative to Alb-uPA mice and provide a long window from about age 4 to 12 months for engraftment with human hepatocytes and infection with hepatitis C or hepatitis B (HBV) viruses. We have demonstrated engraftment of human hepatocytes by immunohistochemistry staining for human albumin (30-80% engraftment) and observed a correlation between the number of human hepatocytes inoculated and the level of the concentration of human albumin in the serum. We have shown that these mice support the replication of both HBV and all six major HCV genotypes. Using HBV and HCV inocula that had been previously tittered in chimpanzees, we showed that the mice had approximately the same sensitivity for infection as chimpanzees. These mice should be useful for isolating non-cell culture adapted viruses as well as testing of antiviral drugs, antibody neutralization studies and examination of phenotypic changes in viral mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号