首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Airway inflammation is an important characteristic of asthma and has been associated with airway remodelling and bronchial hyperreactivity. The mucosal microenvironment composed of structural cells and highly specialised extracellular matrix is able to amplify and promote inflammation. This microenvironment leads to the development and maintenance of a specific adaptive response characterized by Th2 and Th17. Bronchial fibroblasts produce multiple mediators that may play a role in maintaining and amplifying this response in asthma.

Objective

To investigate the role of bronchial fibroblasts obtained from asthmatic subjects and healthy controls in regulating Th17 response by creating a local micro-environment that promotes this response in the airways.

Methods

Human bronchial fibroblasts and CD4+T cells were isolated from atopic asthmatics and non-atopic healthy controls. CD4+T were co-cultured with bronchial fibroblasts of asthmatic subjects and healthy controls. RORc gene expression was detected by qPCR. Phosphorylated STAT-3 and RORγt were evaluated by western blots. Th17 phenotype was measured by flow cytometry. IL-22, IL17, IL-6 TGF-β and IL1-β were assessed by qPCR and ELISA.

Results

Co-culture of CD4+T cells with bronchial fibroblasts significantly stimulated RORc expression and induced a significant increase in Th17 cells as characterized by the percentage of IL-17+/CCR6+ staining in asthmatic conditions. IL-17 and IL-22 were increased in both normal and asthmatic conditions with a significantly higher amount in asthmatics compared to controls. IL-6, IL-1β, TGF-β and IL-23 were significantly elevated in fibroblasts from asthmatic subjects upon co-culture with CD4+T cells. IL-23 stimulates IL-6 and IL-1β expression by bronchial fibroblasts.

Conclusion

Interaction between bronchial fibroblasts and T cells seems to promote specifically Th17 cells profile in asthma. These results suggest that cellular interaction particularly between T cells and fibroblasts may play a pivotal role in the regulation of the inflammatory response in asthma.  相似文献   

2.
Asthma-related mortality has been decreasing due to inhaled corticosteroid use, but severe asthma remains a major clinical problem. One characteristic of severe asthma is resistance to steroid therapy, which is related to neutrophilic inflammation. Recently, the tumor necrosis factor superfamily member (TNFSF) 14/LIGHT has been recognized as a key mediator in severe asthmatic airway inflammation. However, the profiles and intracellular mechanisms of cytokine/chemokine production induced in cells by LIGHT are poorly understood. We aimed to elucidate the molecular mechanism of LIGHT-induced cytokine/chemokine production by bronchial epithelial cells. Human bronchial epithelial cells express lymphotoxin β receptor (LTβR), but not herpesvirus entry mediator, which are receptors for LIGHT. LIGHT induced various cytokines/chemokines, such as interleukin (IL)-6, oncostatin M, monocyte chemotactic protein-1, growth-regulated protein α and IL-8. Specific siRNA for LTβR attenuated IL-6 and IL-8 production by BEAS-2B and normal human bronchial epithelial cells. LIGHT activated intracellular signaling, such as mitogen-activated protein kinase and nuclear factor-κB (NF-κB) signaling. LIGHT also induced luciferase activity of NF-κB response element, but not of activator protein-1 or serum response element. Specific inhibitors of phosphorylation of extracellular signal-regulated kinase (Erk) and that of inhibitor κB attenuated IL-8 production, suggesting that LIGHT-LTβR signaling induces IL-8 production via the Erk and NF-κB pathways. LIGHT, via LTβR signaling, may contribute to exacerbation of airway neutrophilic inflammation through cytokine and chemokine production by bronchial epithelial cells.  相似文献   

3.
MicroRNAs are short non-coding single stranded RNAs that regulate gene expression. While much is known about the effects of individual microRNAs, there is now growing evidence that they can work in co-operative networks. MicroRNAs are known to be dysregulated in many diseases and affect pathways involved in the pathology. We investigated dysregulation of microRNA networks using asthma as the disease model. Asthma is a chronic inflammatory disease of the airways characterized by bronchial hyperresponsiveness and airway remodelling. The airway epithelium is a major contributor to asthma pathology and has been shown to produce an excess of inflammatory and pro-remodelling cytokines such as TGF-β, IL-6 and IL-8 as well as deficient amounts of anti-viral interferons. After performing microRNA arrays, we found that microRNAs -18a, -27a, -128 and -155 are down-regulated in asthmatic bronchial epithelial cells, compared to cells from healthy donors. Interestingly, these microRNAs are predicted in silico to target several components of the TGF-β, IL-6, IL-8 and interferons pathways. Manipulation of the levels of individual microRNAs in bronchial epithelial cells did not have an effect on any of these pathways. Importantly, knock-down of the network of microRNAs miR-18a, -27a, -128 and -155 led to a significant increase of IL-8 and IL-6 expression. Interestingly, despite strong in silico predictions, down-regulation of the pool of microRNAs did not have an effect on the TGF-β and Interferon pathways. In conclusion, using both bioinformatics and experimental tools we found a highly relevant potential role for microRNA dysregulation in the control of IL-6 and IL-8 expression in asthma. Our results suggest that microRNAs may have different roles depending on the presence of other microRNAs. Thus, interpretation of in silico analysis of microRNA function should be confirmed experimentally in the relevant cellular context taking into account interactions with other microRNAs when studying disease.  相似文献   

4.
This study is to investigate the inhibitory effects and mechanisms of DEK‐targeting aptamer (DTA‐64) on epithelial mesenchymaltransition (EMT)‐mediated airway remodelling in mice and human bronchial epithelial cell line BEAS‐2B. In the ovalbumin (OVA)‐induced asthmatic mice, DTA‐64 significantly reduced the infiltration of eosinophils and neutrophils in lung tissue, attenuated the airway resistance and the proliferation of goblet cells. In addition, DTA‐64 reduced collagen deposition, transforming growth factor 1 (TGF‐β1) level in BALF and IgE levels in serum, balanced Th1/Th2/Th17 ratio, and decreased mesenchymal proteins (vimentin and α‐SMA), as well as weekend matrix metalloproteinases (MMP‐2 and MMP‐9) and NF‐κB p65 activity. In the in vitro experiments, we used TGF‐β1 to induce EMT in the human epithelial cell line BEAS‐2B. DEK overexpression (ovDEK) or silencing (shDEK) up‐regulated or down‐regulated TGF‐β1 expression, respectively, on the contrary, TGF‐β1 exposure had no effect on DEK expression. Furthermore, ovDEK and TGF‐β1 synergistically promoted EMT, whereas shDEK significantly reduced mesenchymal markers and increased epithelial markers, thus inhibiting EMT. Additionally, shDEK inhibited key proteins in TGF‐β1‐mediated signalling pathways, including Smad2/3, Smad4, p38 MAPK, ERK1/2, JNK and PI3K/AKT/mTOR. In conclusion, the effects of DTA‐64 against EMT of asthmatic mice and BEAS‐2B might partially be achieved through suppressing TGF‐β1/Smad, MAPK and PI3K signalling pathways. DTA‐64 may be a new therapeutic option for the management of airway remodelling in asthma patients.  相似文献   

5.
The prevalence and severity of bronchial asthma are higher in females than in males after puberty. Although antigen-specific CD8+ T cells play an important role in the development of asthma through their suppressive effect on cytokine production, the contribution of CD8+ T cells to sex differences in asthmatic responses remains unclear. In the present study, we investigated the sex-specific effect of CD8+ T cells in the suppression of asthma using an ovalbumin mouse model of asthma. The number of inflammatory cells in bronchoalveolar lavage (BAL) fluid, lung type 2 T-helper cytokine levels, and interleukin-4 (IL-4) production by bronchial lymph node cells were significantly higher in female wild-type (WT) mice compared with male mice, whereas no such sex differences were observed between male and female cd8α-disrupted mice. The adaptive transfer of male, but not female, CD8+ T cells reduced the number of inflammatory cells in the recovered BAL fluid of male recipient mice, while no such sex difference in the suppressive activity of CD8+ T cells was observed in female recipient mice. Male CD8+ T cells produced higher levels of IFN-γ than female CD8+ T cells did, and this trend was associated with reduced IL-4 production by male, but not female, CD4+ T cells. Interestingly, IFN-γ receptor expression on CD4+ T cells was significantly lower in female mice than in male mice. These results suggest that female-dominant asthmatic responses are orchestrated by the reduced production of IFN-γ by CD8+ T cells and the lower expression of IFN-γ receptor on CD4+ T cells in females compared with males.  相似文献   

6.
During asthma development, differentiation of epithelial cells and fibroblasts towards the contractile phenotype is associated with bronchial wall remodeling and airway constriction. Pathological fibroblast-to-myofibroblast transition (FMT) can be triggered by local inflammation of bronchial walls. Recently, we have demonstrated that human bronchial fibroblasts (HBFs) derived from asthmatic patients display some inherent features which facilitate their FMT in vitro. In spite of intensive research efforts, these properties remain unknown. Importantly, the role of undifferentiated HBFs in the asthmatic process was systematically omitted. Specifically, biomechanical properties of undifferentiated HBFs have not been considered in either FMT or airway remodeling in vivo. Here, we combine atomic force spectroscopy with fluorescence microscopy to compare mechanical properties and actin cytoskeleton architecture of HBFs derived from asthmatic patients and non-asthmatic donors. Our results demonstrate that asthmatic HBFs form thick and aligned ‘ventral’ stress fibers accompanied by enlarged focal adhesions. The differences in cytoskeleton architecture between asthmatic and non-asthmatic cells correlate with higher elastic modulus of asthmatic HBFs and their increased predilection to TGF-β-induced FMT. Due to the obvious links between cytoskeleton architecture and mechanical equilibrium, our observations indicate that HBFs derived from asthmatic bronchi can develop considerably higher static tension than non-asthmatic HBFs. This previously unexplored property of asthmatic HBFs may be potentially important for their myofibroblastic differentiation and bronchial wall remodeling during asthma development.  相似文献   

7.

Background

Airway wall remodelling is a key pathology of asthma. It includes thickening of the airway wall, hypertrophy and hyperplasia of bronchial smooth muscle cells (BSMC), as well as an increased vascularity of the sub-epithelial cell layer. BSMC are known to be the effector cells of bronchoconstriction, but they are increasingly recognized as an important source of inflammatory mediators and angiogenic factors.

Objective

To compare the angiogenic potential of BSMC of asthmatic and non-asthmatic patients and to identify asthma-specific angiogenic factors.

Methods

Primary BSMC were isolated from human airway tissue of asthmatic and non-asthmatic patients. Conditioned medium (CM) collected from BSMC isolates was tested for angiogenic capacity using the endothelial cell (EC)-spheroid in vitro angiogenesis assay. Angiogenic factors in CM were quantified using a human angiogenesis antibody array and enzyme linked immunosorbent assay.

Results

Induction of sprout outgrowth from EC-spheroids by CM of BSMC obtained from asthma patients was increased compared with CM of control BSMC (twofold, p < 0.001). Levels of ENA-78, GRO-α and IL-8 were significantly elevated in CM of BSMC from asthma patients (p < 0.05 vs. non-asthmatic patients). SB 265610, a competitive antagonist of chemokine (CXC-motif) receptor 2 (CXCR2), attenuated the increased sprout outgrowth induced by CM of asthma patient-derived BSMC.

Conclusions

BSMC isolated from asthma patients exhibit increased angiogenic potential. This effect is mediated through the CXCR2 ligands (ENA78, GRO-α and IL-8) produced by BSMC.

Implications

CXCR2 ligands may play a decisive role in directing the neovascularization in the sub-epithelial cell layers of the lungs of asthma patients. Counteracting the CXCR2-mediated neovascularization by pharmaceutical compounds may represent a novel strategy to reduce airway remodelling in asthma.  相似文献   

8.

Background

Asthma is a chronic inflammatory disease of the airway that is characterized by a Th2-type of immune response with increasing evidence for involvement of Th17 cells. The role of IL-6 in promoting effector T cell subsets suggest that IL-6 may play a functional role in asthma. Classically IL-6 has been viewed as an inflammatory marker, along with TNFα and IL-1β, rather than as regulatory cytokine.

Objective

To investigate the potential relationship between IL-6 and other proinflammatory cytokines, Th2/Th17 cytokines and lung function in allergic asthma, and thus evaluate the potential role of IL-6 in this disease.

Methods

Cytokine levels in induced sputum and lung function were measured in 16 healthy control and 18 mild-moderate allergic asthmatic subjects.

Results

The levels of the proinflammatory biomarkers TNFα and IL-1β were not different between the control and asthmatic group. In contrast, IL-6 levels were specifically elevated in asthmatic subjects compared with healthy controls (p < 0.01). Hierarchical regression analysis in the total study cohort indicates that the relationship between asthma and lung function could be mediated by IL-6. Among Th2 cytokines only IL-13 (p < 0.05) was also elevated in the asthmatic group, and positively correlated with IL-6 levels (rS = 0.53, p < 0.05).

Conclusions

In mild-moderate asthma, IL-6 dissociates from other proinflammatory biomarkers, but correlates with IL-13 levels. Furthermore, IL-6 may contribute to impaired lung function in allergic asthma.  相似文献   

9.
Orbital fibroblasts have been reported to be an important effector cells for the development of thyroid-associated ophthalmopathy (TAO). Orbital fibroblasts secrete various inflammatory cytokines in response to an inflammatory stimulation, leading to TAO-related tissue swelling. It has also been reported that (-)-epigallocatechin-3-gallate (EGCG), a major polyphenolic constituent of green tea, has antioxidant and anti-inflammatory properties. In the current study, we investigated the issue of whether or how EGCG affects the interleukin (IL)-1β-induced secretion of IL-8 in human orbital fibroblasts from TAO patients. Treatment with EGCG significantly reduced the level of IL-1β-induced secretion of IL-8 and the expression of IL-8 mRNA. IL-1β-induced the degradation of IκBα, and the phosphorylation of p38 and ERK, and the IL-1β-induced expression of IL-8 mRNA was inhibited by specific inhibitors, such as BAY-117085 for NF-kB, SB203580 for p38, and PD98059 for ERK. In addition, treatment with EGCG inhibited the IL-1β-induced degradation of IκBα, and the phosphorylation of p38 and ERK. However, pre-treatment with antioxidants, NVN and NAC, which suppressed ROS generation, did not reduce IL-8 expression in IL-1β-treated orbital fibroblasts, suggesting that the IL-1β-induced IL-8 expression is not mediated by the generation of ROS. These results show that EGCG suppresses the IL-1β-induced expression of IL-8 through inhibition of the NF-κB, p38, and ERK pathways. These findings could contribute to the development of new types of EGCG-containing pharmacological agents for use in the treatment of TAO.  相似文献   

10.

Background

Airway remodeling is a proposed mechanism that underlies the persistent loss of lung function associated with childhood asthma. Previous studies have demonstrated that human lung fibroblasts (HLFs) co-cultured with primary human bronchial epithelial cells (BECs) from asthmatic children exhibit greater expression of extracellular matrix (ECM) components compared to co-culture with BECs derived from healthy children. Myofibroblasts represent a population of differentiated fibroblasts that have greater synthetic activity. We hypothesized co-culture with asthmatic BECs would lead to greater fibroblast to myofibroblast transition (FMT) compared to co-culture with healthy BECs.

Methods

BECs were obtained from well-characterized asthmatic and healthy children and were proliferated and differentiated at an air-liquid interface (ALI). BEC-ALI cultures were co-cultured with HLFs for 96 hours. RT-PCR was performed in HLFs for alpha smooth muscle actin (α-SMA) and flow cytometry was used to assay for α-SMA antibody labeling of HLFs. RT-PCR was also preformed for the expression of tropomyosin-I as an additional marker of myofibroblast phenotype. In separate experiments, we investigated the role of TGFβ2 in BEC-HLF co-cultures using monoclonal antibody inhibition.

Results

Expression of α-SMA by HLFs alone was greater than by HLFs co-cultured with healthy BECs, but not different than α-SMA expression by HLFs co-cultured with asthmatic BECs. Flow cytometry also revealed significantly less α-SMA expression by healthy co-co-cultures compared to asthmatic co-cultures or HLF alone. Monoclonal antibody inhibition of TGFβ2 led to similar expression of α-SMA between healthy and asthmatic BEC-HLF co-cultures. Expression of topomyosin-I was also significantly increased in HLF co-cultured with asthmatic BECs compared to healthy BEC-HLF co-cultures or HLF cultured alone.

Conclusion

These findings suggest dysregulation of FMT in HLF co-cultured with asthmatic as compared to healthy BECs. Our results suggest TGFβ2 may be involved in the differential regulation of FMT by asthmatic BECs. These findings further illustrate the importance of BEC-HLF cross-talk in asthmatic airway remodeling.  相似文献   

11.
We sought to identify cells and cytokines in bronchoalveolar lavage (BAL) fluids that distinguish asthma from healthy control subjects and those that distinguish controlled asthma from uncontrolled asthma. Following informed consent, 36 human subjects were recruited for this study. These included 11 healthy control subjects, 15 subjects with controlled asthma with FEV1≥80% predicted and 10 subjects with uncontrolled asthma with FEV1 <80% predicted. BAL fluid was obtained from all subjects. The numbers of different cell types and the levels of 48 cytokines were measured in these fluids. Compared to healthy control subjects, patients with asthma had significantly more percentages of eosinophils and neutrophils, IL-1RA, IL-1α, IL-1β, IL-2Rα, IL-5, IL-6, IL-7, IL-8, G-CSF, GROα (CXCL1), MIP-1β (CCL4), MIG (CXCL9), RANTES (CCL5) and TRAIL in their BAL fluids. The only inflammatory markers that distinguished controlled asthma from uncontrolled asthma were neutrophil percentage and IL-8 levels, and both were inversely correlated with FEV1. We examined whether grouping asthma subjects on the basis of BAL eosinophil % or neutrophil % could identify specific cytokine profiles. The only differences between neutrophil-normal asthma (neutrophil≤2.4%) and neutrophil-high asthma (neutrophils%>2.4%) were a higher BAL fluid IL-8 levels, and a lower FEV1 in the latter group. By contrast, compared to eosinophil-normal asthma (eosinophils≤0.3%), eosinophil-high asthma (eosinophils>0.3%) had higher levels of IL-5, IL-13, IL-16, and PDGF-bb, but same neutrophil percentage, IL-8, and FEV1. Our results identify neutrophils and IL-8 are the only inflammatory components in BAL fluids that distinguish controlled asthma from uncontrolled asthma, and both correlate inversely with FEV1.  相似文献   

12.
BackgroundBronchial fibroblasts are the main structural cells responsible for extracellular matrix production and turnover in lung tissue. They play a key role in airway remodelling in asthma through different cytokines including interleukin (IL-6).ObjectiveTo decipher IL-6 signalling in bronchial fibroblasts obtained from severe eosinophilic asthmatics compared to mild asthmatics and healthy controls.MethodsHuman bronchial fibroblasts were isolated from bronchial biopsies of mild and severe eosinophilic asthmatics and non-atopic healthy controls. IL-6 was assessed by qRT-PCR and ELISA. Phosphorylated STAT3, SHP2 and p38/MAPK were evaluated by Western blot. Chemical inhibitors for SHP2 and p38 were used. Fibroblast proliferation was evaluated by BrdU incorporation test.ResultsIL-6 release was significantly increased in fibroblasts from mild and severe asthmatics compared to healthy controls. Fibroblasts from severe asthmatics showed a reduced STAT3 activation compared to mild asthmatics and healthy controls. Constitutive activation of phosphatase SHP2 was found to negatively regulate IL-6 induced STAT3 phosphorylation in fibroblasts from severe asthmatics. This effect was accompanied by a decrease in fibroblast proliferation rate due to the activated p38/mitogen-activated protein kinase. SHP2 and p38/MAPK specific inhibitors (PHPS1 and SB212190) significantly induce a restoration of STAT3 phosphorylation, IL-6 target gene expression and cell proliferation.ConclusionThese data show dysregulated IL-6 signalling in bronchial fibroblasts derived from severe eosinophilic asthmatic subjects involving the protein tyrosine phosphatase SHP2 and p38MAPK. Collectively, our data provides new insights into the mechanisms by which bronchial fibroblasts regulate airway remodelling in severe asthma.  相似文献   

13.
Hyperplasia of synovial fibroblasts, infiltration with inflammatory cytokines, and tissue hypoxia are the major characteristics of rheumatoid arthritis (RA). Interleukin 33 (IL-33) is a newly identified inflammatory cytokine exacerbating the disease severity of RA. Hypoxia-inducible factor-1α (HIF-1α) showed increased expression in RA synovium and could regulate a number of inflammatory cytokine productions. Nevertheless, its correlation with IL-33 remains largely unknown. Here, we showed that elevated levels of IL-33 were demonstrated in RA patient synovial fluids, with upregulated expression of HIF-1α and IL-33 in the synovial fibroblasts. Knocking down HIF-1α compromised IL-33 expression in rheumatoid arthritis synovial fibroblasts (RASF), while enforcing HIF-1α expression in RASF substantially upregulated IL-33 levels. HIF-1α promoted the activation of the signalling pathways controlling IL-33 production, particularly the p38 and ERK pathways. Moreover, we showed for the first time that IL-33 in turn could induce more HIF-1α expression in RASF, thus forming a HIF-1α/IL-33 regulatory circuit that would perpetuate the inflammatory process in RA. Targeting this pathological pathway and HIF-1α may provide new therapeutic strategies for overcoming the persistent and chronic inflammatory disease.  相似文献   

14.
BackgroundChronic rhinosinusitis with nasal polyps (CRSwNP) is a chronic inflammatory disease of the upper airways frequently associated with asthma. Bacterial infection is a feature of CRSwNP that can aggravate the disease and the response to glucocorticoid treatment.ObjectiveWe examined whether the bacterial product lipopolysaccharide (LPS) reduces glucocorticoid receptor (GR) function in control nasal mucosa (NM) fibroblasts and in nasal polyp (NP) fibroblasts from patients with CRSwNP and asthma.MethodsNP (n = 12) and NM fibroblasts (n = 10) were in vitro pre-incubated with LPS (24 hours) prior to the addition of dexamethasone. Cytokine/chemokine secretion was measured by ELISA and Cytometric Bead Array. GRα, GRβ, mitogen-activated protein-kinase phosphatase-1 (MKP-1) and glucocorticoid-induced leucine zipper (GILZ) expression was measured by RT-PCR and immunoblotting, GRα nuclear translocation by immunocytochemistry, and GRβ localization by immunoblotting. The role of MKP-1 and GILZ on dexamethasone-mediated cytokine inhibition was analyzed by small interfering RNA silencing.ResultsPre-incubation of nasal fibroblasts with LPS enhanced the secretion of IL-6, CXCL8, RANTES, and GM-CSF induced by FBS. FBS-induced CXCL8 secretion was higher in NP than in NM fibroblasts. LPS effects on IL-6 and CXCL8 were mediated via activation of p38α/β MAPK and IKK/NF-κB pathways. Additionally, LPS pre-incubation: 1) reduced dexamethasone’s capacity to inhibit FBS-induced IL-6, CXCL8 and RANTES, 2) reduced dexamethasone-induced GRα nuclear translocation (only in NM fibroblasts), 3) did not alter GRα/GRβ expression, 4) decreased GILZ expression, and 5) did not affect dexamethasone’s capacity to induce MKP-1 and GILZ expression. MKP-1 knockdown reduced dexamethasone’s capacity to suppress FBS-induced CXCL8 release.ConclusionThe bacterial product LPS negatively affects GR function in control NM and NP fibroblasts by interfering with the capacity of the activated receptor to inhibit the production of pro-inflammatory mediators. This study contributes to the understanding of how bacterial infection of the upper airways may limit the efficacy of glucocorticoid treatment.  相似文献   

15.
Defective Rhinovirus induced interferon-β and interferon-λ production has been reported in bronchial epithelial cells from asthmatics but the mechanisms of defective interferon induction in asthma are unknown. Virus infection can induce interferon through Toll like Receptors (TLR)3, TLR7 and TLR8. The role of these TLRs in interferon induction in asthma is unclear. This objective of this study was to measure the type I and III interferon response to TLR in bronchial epithelial cells and peripheral blood cells from atopic asthmatics and non-atopic non-asthmatics. Bronchial epithelial cells and peripheral blood mononuclear cells from atopic asthmatic and non-atopic non-asthmatic subjects were stimulated with agonists to TLR3, TLR4 & TLRs7–9 and type I and III interferon and pro-inflammatory cytokine, interleukin(IL)-6 and IL-8, responses assessed. mRNA expression was analysed by qPCR. Interferon proteins were analysed by ELISA. Pro-inflammatory cytokines were induced by each TLR ligand in both cell types. Ligands to TLR3 and TLR7/8, but not other TLRs, induced interferon-β and interferon-λ in bronchial epithelial cells. The ligand to TLR7/8, but not those to other TLRs, induced only type I interferons in peripheral blood mononuclear cells. No difference was observed in TLR induced interferon or pro-inflammatory cytokine production between asthmatic and non-asthmatic subjects from either cell type. TLR3 and TLR7/8,, stimulation induced interferon in bronchial epithelial cells and peripheral blood mononuclear cells. Interferon induction to TLR agonists was not observed to be different in asthmatics and non-asthmatics.  相似文献   

16.

Background

The elastolytic enzyme matrix metalloproteinase (MMP)-12 has been implicated in the development of airway inflammation and remodeling. We investigated whether human airway smooth muscle cells could express and secrete MMP-12, thereby participating in the pathogenesis of airway inflammatory diseases.

Methods

Laser capture microdissection was used to collect smooth muscle cells from human bronchial biopsy sections. MMP-12 mRNA expression was analysed by quantitative real-time RT-PCR. MMP-12 protein expression and secretion from cultured primary airway smooth muscle cells was further analysed by Western blot. MMP-12 protein localization in bronchial tissue sections was detected by immunohistochemistry. MMP-12 activity was determined by zymography. The TransAM AP-1 family kit was used to measure c-Jun activation and nuclear binding. Analysis of variance was used to determine statistical significance.

Results

We provide evidence that MMP-12 mRNA and protein are expressed by in-situ human airway smooth muscle cells obtained from bronchial biopsies of normal volunteers, and of patients with asthma, COPD and chronic cough. The pro-inflammatory cytokine, interleukin (IL)-1β, induced a >100-fold increase in MMP-12 gene expression and a >10-fold enhancement in MMP-12 activity of primary airway smooth muscle cell cultures. Selective inhibitors of extracellular signal-regulated kinase, c-Jun N-terminal kinase and phosphatidylinositol 3-kinase reduced the activity of IL-1β on MMP-12, indicating a role for these kinases in IL-1β-induced induction and release of MMP-12. IL-1β-induced MMP-12 activity and gene expression was down-regulated by the corticosteroid dexamethasone but up-regulated by the inflammatory cytokine tumour necrosis factor (TNF)-α through enhancing activator protein-1 activation by IL-1β. Transforming growth factor-β had no significant effect on MMP-12 induction.

Conclusion

Our findings indicate that human airway smooth muscle cells express and secrete MMP-12 that is up-regulated by IL-1β and TNF-α. Bronchial smooth muscle cells may be an important source of elastolytic activity, thereby participating in remodeling in airway diseases such as COPD and chronic asthma.  相似文献   

17.

Background

Phospholipase Cε (PLCε) is an effector of Ras and Rap small GTPases and expressed in non-immune cells. It is well established that PLCε plays an important role in skin inflammation, such as that elicited by phorbol ester painting or ultraviolet irradiation and contact dermatitis that is mediated by T helper (Th) 1 cells, through upregulating inflammatory cytokine production by keratinocytes and dermal fibroblasts. However, little is known about whether PLCε is involved in regulation of inflammation in the respiratory system, such as Th2-cells-mediated allergic asthma.

Methods

We prepared a mouse model of allergic asthma using PLCε +/+ mice and PLCε ΔX/ΔX mutant mice in which PLCε was catalytically-inactive. Mice with different PLCε genotypes were immunized with ovalbumin (OVA) followed by the challenge with an OVA-containing aerosol to induce asthmatic response, which was assessed by analyzing airway hyper-responsiveness, bronchoalveolar lavage fluids, inflammatory cytokine levels, and OVA-specific immunoglobulin (Ig) levels. Effects of PLCε genotype on cytokine production were also examined with primary-cultured bronchial epithelial cells.

Results

After OVA challenge, the OVA-immunized PLCε ΔX/ΔX mice exhibited substantially attenuated airway hyper-responsiveness and broncial inflammation, which were accompanied by reduced Th2 cytokine content in the bronchoalveolar lavage fluids. In contrast, the serum levels of OVA-specific IgGs and IgE were not affected by the PLCε genotype, suggesting that sensitization was PLCε-independent. In the challenged mice, PLCε deficiency reduced proinflammatory cytokine production in the bronchial epithelial cells. Primary-cultured bronchial epithelial cells prepared from PLCε ΔX/ΔX mice showed attenuated pro-inflammatory cytokine production when stimulated with tumor necrosis factor-α, suggesting that reduced cytokine production in PLCε ΔX/ΔX mice was due to cell-autonomous effect of PLCε deficiency.

Conclusions

PLCε plays an important role in the pathogenesis of bronchial asthma through upregulating inflammatory cytokine production by the bronchial epithelial cells.  相似文献   

18.

Background

Obstructive sleep apnoea (OSA) is frequently observed in severe asthma but the causal link between the 2 diseases remains hypothetical. The role of OSA-related systemic and airway neutrophilic inflammation in asthma bronchial inflammation or remodelling has been rarely investigated. The aim of this study was to compare hallmarks of inflammation in induced sputum and features of airway remodelling in bronchial biopsies from adult patients with severe asthma with and without OSA.

Materials and Methods

An overnight polygraphy was performed in 55 patients referred for difficult-to-treat asthma, who complained of nocturnal respiratory symptoms, poor sleep quality or fatigue. We compared sputum analysis, reticular basement membrane (RBM) thickness, smooth muscle area, vascular density and inflammatory cell infiltration in bronchial biopsies.

Results

In total, 27/55 patients (49%) had OSA diagnosed by overnight polygraphy. Despite a moderate increase in apnoea-hypopnoea index (AHI; 14.2±1.6 event/h [535]), the proportion of sputum neutrophils was higher and that of macrophages lower in OSA than non-OSA patients, with higher levels of interleukin 8 and matrix metalloproteinase 9. The RBM was significantly thinner in OSA than non-OSA patients (5.8±0.4 vs. 7.8±0.4 μm, p<0.05). RBM thickness and OSA severity assessed by the AHI were negatively correlated (rho = -0.65, p<0.05). OSA and non-OSA patients did not differ in age, sex, BMI, lung function, asthma control findings or treatment.

Conclusion

Mild OSA in patients with severe asthma is associated with increased proportion of neutrophils in sputum and changes in airway remodelling.  相似文献   

19.
A key event in chronic allergic asthma is the TGF-β-induced activation of fibroblasts into α-SMA-positive myofibroblasts which synthesize type-I collagen. In the present study we investigated the effect of the anti-fibrotic molecule BMP-7 in asthma. Balb/c mice were immunized i.p. with ovalbumin in alum and challenged every 2 days with ovalbumin aerosol (two or six challenges for acute and chronic protocols, respectively). The lung was evaluated for: α-SMA and type-I collagen by immunohistochemistry; BMP-7 and TGF- β1 gene expression by qRT-PCR; type-I collagen and Smads 2 and 3 by immunoblotting; mucus by PSA staining. Type-I collagen around bronchi, α-SMA, mucus secretion, TGF- β1 and BMP-7 gene expression were all increased in asthma. The TGF- β1/BMP-7 ratio was higher in the chronic group and correlated with higher levels of collagen. Fibroblasts isolated from asthmatic and healthy lungs produced type-I collagen upon stimulation with TGF- β1 via phosphorylation of Smad-2, Smad-3. Pre-treatment of the fibroblasts with BMP-7 reduced collagen production and Smads phosphorylation. Intranasal treatment of asthmatic mice with recombinant BMP-7 during the immunization protocol reduced lung inflammation and type I collagen deposition. These results suggest a protective role for BMP-7 in lung allergic inflammation, opposing the pro-fibrotic effects of TGF- β1.  相似文献   

20.

Background

Platelet-derived growth factor A (PDGF-A) signals solely through PDGF-Rα, and is required for fibroblast proliferation and transdifferentiation (fibroblast to myofibroblast conversion) during alveolar development, because pdgfa-null mice lack both myofibroblasts and alveoli. However, these PDGF-A-mediated mechanisms remain incompletely defined. At postnatal days 4 and 12 (P4 and P12), using mouse lung fibroblasts, we examined (a) how PDGF-Rα correlates with ki67 (proliferation marker) or alpha-smooth muscle actin (αSMA, myofibroblast marker) expression, and (b) whether PDGF-A directly affects αSMA or modifies stimulation by transforming growth factor beta (TGFβ).

Methods

Using flow cytometry we examined PDGF-Rα, αSMA and Ki67 in mice which express green fluorescent protein (GFP) as a marker for PDGF-Rα expression. Using real-time RT-PCR we quantified αSMA mRNA in cultured Mlg neonatal mouse lung fibroblasts after treatment with PDGF-A, and/or TGFβ.

Results

The intensity of GFP-fluorescence enabled us to distinguish three groups of fibroblasts which exhibited absent, lower, or higher levels of PDGF-Rα. At P4, more of the higher than lower PDGF-Rα + fibroblasts contained Ki67 (Ki67+), and Ki67+ fibroblasts predominated in the αSMA + but not the αSMA- population. By P12, Ki67+ fibroblasts comprised a minority in both the PDGF-Rα + and αSMA+ populations. At P4, most Ki67+ fibroblasts were PDGF-Rα + and αSMA- whereas at P12, most Ki67+ fibroblasts were PDGF-Rα- and αSMA-. More of the PDGF-Rα + than - fibroblasts contained αSMA at both P4 and P12. In the lung, proximate αSMA was more abundant around nuclei in cells expressing high than low levels of PDGF-Rα at both P4 and P12. Nuclear SMAD 2/3 declined from P4 to P12 in PDGF-Rα-, but not in PDGF-Rα + cells. In Mlg fibroblasts, αSMA mRNA increased after exposure to TGFβ, but declined after treatment with PDGF-A.

Conclusion

During both septal eruption (P4) and elongation (P12), alveolar PDGF-Rα may enhance the propensity of fibroblasts to transdifferentiate rather than directly stimulate αSMA, which preferentially localizes to non-proliferating fibroblasts. In accordance, PDGF-Rα more dominantly influences fibroblast proliferation at P4 than at P12. In the lung, TGFβ may overshadow the antagonistic effects of PDGF-A/PDGF-Rα signaling, enhancing αSMA-abundance in PDGF-Rα-expressing fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号