首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity.  相似文献   

3.
4.
5.
6.
7.
T-cell based vaccine approaches have emerged to counteract HIV-1/AIDS. Broad, polyfunctional and cytotoxic CD4+ T-cell responses have been associated with control of HIV-1 replication, which supports the inclusion of CD4+ T-cell epitopes in vaccines. A successful HIV-1 vaccine should also be designed to overcome viral genetic diversity and be able to confer immunity in a high proportion of immunized individuals from a diverse HLA-bearing population. In this study, we rationally designed a multiepitopic DNA vaccine in order to elicit broad and cross-clade CD4+ T-cell responses against highly conserved and promiscuous peptides from the HIV-1 M-group consensus sequence. We identified 27 conserved, multiple HLA-DR-binding peptides in the HIV-1 M-group consensus sequences of Gag, Pol, Nef, Vif, Vpr, Rev and Vpu using the TEPITOPE algorithm. The peptides bound in vitro to an average of 12 out of the 17 tested HLA-DR molecules and also to several molecules such as HLA-DP, -DQ and murine IAb and IAd. Sixteen out of the 27 peptides were recognized by PBMC from patients infected with different HIV-1 variants and 72% of such patients recognized at least 1 peptide. Immunization with a DNA vaccine (HIVBr27) encoding the identified peptides elicited IFN-γ secretion against 11 out of the 27 peptides in BALB/c mice; CD4+ and CD8+ T-cell proliferation was observed against 8 and 6 peptides, respectively. HIVBr27 immunization elicited cross-clade T-cell responses against several HIV-1 peptide variants. Polyfunctional CD4+ and CD8+ T cells, able to simultaneously proliferate and produce IFN-γ and TNF-α, were also observed. This vaccine concept may cope with HIV-1 genetic diversity as well as provide increased population coverage, which are desirable features for an efficacious strategy against HIV-1/AIDS.  相似文献   

8.
9.
10.
HIV-1 evolved from SIV during cross-species transmission events, though viral genetic changes are not well understood. Here, we studied the evolution of SIVcpzLB715 into HIV-1 Group M using humanized mice. High viral loads, rapid CD4+ T-cell decline, and non-synonymous substitutions were identified throughout the viral genome suggesting viral adaptation.  相似文献   

11.
12.
13.
Down-regulation of the HIV-1 coreceptor CCR5 holds significant potential for long-term protection against HIV-1 in patients. Using the humanized bone marrow/liver/thymus (hu-BLT) mouse model which allows investigation of human hematopoietic stem/progenitor cell (HSPC) transplant and immune system reconstitution as well as HIV-1 infection, we previously demonstrated stable inhibition of CCR5 expression in systemic lymphoid tissues via transplantation of HSPCs genetically modified by lentiviral vector transduction to express short hairpin RNA (shRNA). However, CCR5 down-regulation will not be effective against existing CXCR4-tropic HIV-1 and emergence of resistant viral strains. As such, combination approaches targeting additional steps in the virus lifecycle are required. We screened a panel of previously published shRNAs targeting highly conserved regions and identified a potent shRNA targeting the R-region of the HIV-1 long terminal repeat (LTR). Here, we report that human CD4+ T-cells derived from transplanted HSPC engineered to co-express shRNAs targeting CCR5 and HIV-1 LTR are resistant to CCR5- and CXCR4- tropic HIV-1-mediated depletion in vivo. Transduction with the combination vector suppressed CXCR4- and CCR5- tropic viral replication in cell lines and peripheral blood mononuclear cells in vitro. No obvious cytotoxicity or interferon response was observed. Transplantation of combination vector-transduced HSPC into hu-BLT mice resulted in efficient engraftment and subsequent stable gene marking and CCR5 down-regulation in human CD4+ T-cells within peripheral blood and systemic lymphoid tissues, including gut-associated lymphoid tissue, a major site of robust viral replication, for over twelve weeks. CXCR4- and CCR5- tropic HIV-1 infection was effectively inhibited in hu-BLT mouse spleen-derived human CD4+ T-cells ex vivo. Furthermore, levels of gene-marked CD4+ T-cells in peripheral blood increased despite systemic infection with either CXCR4- or CCR5- tropic HIV-1 in vivo. These results demonstrate that transplantation of HSPCs engineered with our combination shRNA vector may be a potential therapy against HIV disease.  相似文献   

14.
Define and identify long-term non-progressors (LTNP) and HIV controllers (HIC), and estimate time until disease progression. LTNP are HIV-1+ patients who maintain stable CD4+ T-cell counts, with no history of opportunistic infection or antiretroviral therapy (ART). HIC are a subset of LTNP who additionally have undetectable viraemia. These individuals may provide insights for prophylactic and therapeutic development. Records of HIV-1+ individuals attending Chelsea and Westminster Hospital (1988–2010), were analysed. LTNP were defined as: HIV-1+ for >7 years; ART-naïve; no history of opportunistic infection and normal, stable CD4+ T-cell counts. MIXED procedure in SAS using random intercept model identified long-term stable CD4+ T-cell counts. Survival analysis estimated time since diagnosis until disease progression. Subjects exhibiting long-term stable CD4+ T-cell counts with history below the normal range (<450 cells/µl blood) were compared to LTNP whose CD4+ T-cell count always remained normal. Within these two groups subjects with HIV-1 RNA load below limit of detection (BLD) were identified. Of 14,227 patients, 1,204 were diagnosed HIV-1+ over 7 years ago and were ART-naïve. Estimated time until disease progression for the 20% (239) whose CD4+ T-cell counts remained within the normal range, was 6.2 years (IQR: 2.0 to 9.6); significantly longer than 4.0 years (IQR: 1.0 to 7.3) for patients with historical CD4+ T-cell count below normal (Logrank chi-squared = 21.26; p<0.001). Within a subpopulation of 312 asymptomatic patients, 50 exhibited long-term stable CD4+ T-cell counts. Of these, 13 were LTNP, one of whom met HIC criteria. Of the remaining 37 patients with long-term stable low CD4+ T-cell counts, 3 controlled HIV-1 RNA load BLD. Individuals with stable, normal CD4+ T-cell counts progressed less rapidly than those with low CD4+ T-cell counts. Few LTNP and HIC identified in this and other studies, endorse the need for universal definitions to facilitate comparison.  相似文献   

15.
Human immunodeficiency virus type 1 (HIV-1) subtypes have been shown to differ in the rate of clinical progression. We studied the association between HIV-1 subtypes and the rate of CD4+ T-cell recovery in a longitudinal cohort of patients on combination antiretroviral therapy (cART). We studied 103 patients infected with CRF01_AE (69%) and subtype B (31%) who initiated cART between 2006 and 2013. Demographic data, CD4+ T-cell counts and HIV-1 viral load were abstracted from patient medical charts. Kaplan-Meier was used to estimate the time to CD4+ T-cell count increase to ≥350 between subtypes and effects of covariates were analysed using Cox proportional hazards. An 87% of the study population were male adults (mean age of 38.7 years old). Baseline CD4+ T-cell counts and viral loads, age at cART initiation, sex, ethnicity and co-infection did not differ significantly between subtypes. A shorter median time for CD4+ T-cell count increase to ≥350 cells/μL was observed for CRF01_AE (546 days; 95% confidence interval [CI], 186–906 days; P = .502) compared to subtype B (987 days; 95% CI, 894–1079 days). In multivariate analysis, female sex was significantly associated with a 2.7 times higher chance of achieving CD4+ T-cell recovery (adjusted hazard ratio [HR], 2.75; 95% CI, 1.21–6.22; P = .025) and both baseline CD4+ T-cell count (P = .001) and viral load (P = .001) were important predictors for CD4+ T-cell recovery. Immunological recovery correlated significantly with female sex, baseline CD4+ T-cell counts and viral load but not subtype.  相似文献   

16.
During untreated HIV-1 infection, a chronic state of immune activation and inflammation develops at the lymphoid tissue sites of viral replication. The early effect of potent combination drug therapy is a reduction in peripheral viral burden and a reduction in the production of inflammatory and type 1 cytokines. Further along in treatment there are trends toward normalization in the frequencies of CD88 T-cells, CD4+ CD45RA+ cells, as well as CD4+ CD45R0+ cells. Finally, the CD1a+ dendritic cell network is re-established and germinal centers are reformed. Although this restoration of the lymphoid dynamic form is coupled to a reconstitution of peripheral blood T-cell function in vitro and by skin testing, sterilizing immunity to HIV-1 does not develop. Furthermore there is no heightened development of cytotoxic CD8+ T-cell function at the site of HIV-1 latency. This is evidenced by a massive recrudescence of HIV-1 viral replication within lymphoid tissue when therapy is stopped. The development of supplemental therapies, which reconstitute anti-HIV-1 immunity, will be required. Specific defects in anti-HIV-1 activity which occur in lymphoid tissue during infection include a downregulation of perform expression by cytotoxic T-cells, the down regulation of the TCR signal transducing chain CD3ζ, and inadequate CD4+ T-cell help within the tissue compartment of immune regeneration.  相似文献   

17.

Objective

Detailed studies of correlation between HIV-M.tb co-infection and hierarchy declines of CD8+/CD4+ T-cell counts and IFN-γ responses have not been done. We conducted case-control studies to address this issue.

Methods

164 HIV-1-infected individuals comprised of HIV-1+ATB, HIV-1+LTB and HIV-1+TB- groups were evaluated. Immune phenotyping and complete blood count (CBC) were employed to measure CD4+ and CD8+ T-cell counts; T.SPOT.TB and intracellular cytokine staining (ICS) were utilized to detect ESAT6, CFP10 or PPD-specific IFN-γ responses.

Results

There were significant differences in median CD4+ T-cell counts between HIV-1+ATB (164/μL), HIV-1+LTB (447/μL) and HIV-1+TB- (329/μL) groups. Hierarchy low CD4+ T-cell counts (<200/μL, 200-500/μL, >500/μL) were correlated significantly with active TB but not M.tb co-infection. Interestingly, hierarchy low CD8+ T-cell counts were not only associated significantly with active TB but also with M.tb co-infection (P<0.001). Immunologically, HIV-1+ATB group showed significantly lower numbers of ESAT-6-/CFP-10-specific IFN-γ+ T cells than HIV-1+LTB group. Consistently, PPD-specific IFN-γ+CD4+/CD8+ T effector cells in HIV-1+ATB group were significantly lower than those in HIV-1+LTB group (P<0.001).

Conclusions

Hierarchy low CD8+ T-cell counts and effector function in HIV-1-infected individuals are correlated with both M.tb co-infection and active TB. Hierarchy low CD4+ T-cell counts and Th1 effector function in HIV-1+ individuals are associated with increased frequencies of active TB, but not M.tb co-infection.  相似文献   

18.
Dendritic cells (DCs) are essential antigen-presenting cells for the induction of immunity against pathogens. However, HIV-1 spread is strongly enhanced in clusters of DCs and CD4+ T cells. Uninfected DCs capture HIV-1 and mediate viral transfer to bystander CD4+ T cells through a process termed trans-infection. Initial studies identified the C-type lectin DC-SIGN as the HIV-1 binding factor on DCs, which interacts with the viral envelope glycoproteins. Upon DC maturation, however, DC-SIGN is down-regulated, while HIV-1 capture and trans-infection is strongly enhanced via a glycoprotein-independent capture pathway that recognizes sialyllactose-containing membrane gangliosides. Here we show that the sialic acid-binding Ig-like lectin 1 (Siglec-1, CD169), which is highly expressed on mature DCs, specifically binds HIV-1 and vesicles carrying sialyllactose. Furthermore, Siglec-1 is essential for trans-infection by mature DCs. These findings identify Siglec-1 as a key factor for HIV-1 spread via infectious DC/T-cell synapses, highlighting a novel mechanism that mediates HIV-1 dissemination in activated tissues.  相似文献   

19.
20.
Highly active antiretroviral therapy (HAART) has been used clinically in various administration schemes for several years. However, due to the development of drug resistance, evolution of viral strains, serious side effects, and poor patient compliance, the combination of drugs used in HAART fails to effectively contain virus long term in a high proportion of patients. Our group and others have suggested a change to the usual regimen of continuous HAART through structured treatment interruptions (STIs). STIs may provide similar clinical benefits as continuous treatment such as reduced viral loads and reestablishment of CD4+ T cells while allowing patients drug holidays. We explore the use of STIs using a previously published model that accurately represents CD4+ T-cell counts and viral loads during both untreated HIV-1 infection and HAART therapy. We simulate the effects of different STI regimens including weekly and monthly interruptions together with variations in treatment initiation time. We predict that differential responses to STIs as observed in conflicting clinical trial data are impacted by the duration of the interruption, stage of infection at initiation of treatment, strength of the immune system in suppressing virus, or pre-therapy CD4+ T-cell count or virus load. Our results indicate that dynamics occurring below the limit of detection (LOD) are influenced by these factors, and contribute to reemergence or suppression of virus during interruptions. Simulations predict that short-term viral suppression with varying interruptions strategies does not guarantee long-term clinical benefit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号