首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

The presence of diffuse anaplasia in Wilms tumours (DAWT) is associated with TP53 mutations and poor outcome. As patients receive intensified treatment, we sought to identify whether TP53 mutational status confers additional prognostic information.

Patients and Methods

We studied 40 patients with DAWT with anaplasia in the tissue from which DNA was extracted and analysed for TP53 mutations and 17p loss. The majority of cases were profiled by copy number (n = 32) and gene expression (n = 36) arrays. TP53 mutational status was correlated with patient event-free and overall survival, genomic copy number instability and gene expression profiling.

Results

From the 40 cases, 22 (55%) had TP53 mutations (2 detected only after deep-sequencing), 20 of which also had 17p loss (91%); 18 (45%) cases had no detectable mutation but three had 17p loss. Tumours with TP53 mutations and/or 17p loss (n = 25) had an increased risk of recurrence as a first event (p = 0.03, hazard ratio (HR), 3.89; 95% confidence interval (CI), 1.26–16.0) and death (p = 0.04, HR, 4.95; 95% CI, 1.36–31.7) compared to tumours lacking TP53 abnormalities. DAWT carrying TP53 mutations showed increased copy number alterations compared to those with wild-type, suggesting a more unstable genome (p = 0.03). These tumours showed deregulation of genes associated with cell cycle and DNA repair biological processes.

Conclusion

This study provides evidence that TP53 mutational analysis improves risk stratification in DAWT. This requires validation in an independent cohort before clinical use as a biomarker.  相似文献   

2.
Genetic subgrouping of gliomas has been emphasized recently, particularly after the finding of isocitrate dehydrogenase 1 (IDH1) mutations. In a previous study, we investigated whole-chromosome copy number aberrations (CNAs) of gliomas and have described genetic subgrouping based on CNAs and IDH1 mutations. Subsequently, we classified gliomas using simple polymerase chain reaction (PCR)-based methods to improve the availability of genetic subgrouping. We selected IDH1/2 and TP53 as markers and analyzed 237 adult supratentorial gliomas using Sanger sequencing. Using these markers, we classified gliomas into three subgroups that were strongly associated with patient prognoses. These included IDH mutant gliomas without TP53 mutations, IDH mutant gliomas with TP53 mutations, and IDH wild-type gliomas. IDH mutant gliomas without TP53 mutations, which mostly corresponded to gliomas carrying 1p19q co-deletions, showed lower recurrence rates than the other 2 groups. In the other high-recurrence groups, the median progression-free survival (PFS) and overall survival (OS) of patients with IDH mutant gliomas with TP53 mutations were significantly longer than those of patients with IDH wild-type gliomas. Notably, most IDH mutant gliomas with TP53 mutations had at least one of the CNAs +7q, +8q, −9p, and −11p. Moreover, IDH mutant gliomas with at least one of these CNAs had a significantly worse prognosis than did other IDH mutant gliomas. PCR-based mutation analyses of IDH and TP53 were sufficient for simple genetic diagnosis of glioma that were strongly associated with prognosis of patients and enabled us to detect negative CNAs in IDH mutant gliomas.  相似文献   

3.

Background

An integrative analysis was conducted to identify genomic alterations at a pathway level that could predict overall survival (OS) in patients with advanced urothelial carcinoma (UC) treated with platinum-based chemotherapy.

Patients and Methods

DNA and RNA were extracted from 103 formalin-fixed paraffin embedded (FFPE) invasive high-grade UC samples and were screened for mutations, copy number variation (CNV) and gene expression analysis. Clinical data were available from 85 cases. Mutations were analyzed by mass-spectrometry based on genotyping platform (Oncomap 3) and genomic imbalances were detected by comparative genomic hybridization (CGH) analysis. Regions with threshold of log2 ratio ≥0.4, or ≤0.6 were defined as either having copy number gain or loss and significantly recurrent CNV across the set of samples were determined using a GISTIC analysis. Expression analysis on selected relevant UC genes was conducted using Nanostring. To define the co-occurrence pattern of mutations and CNV, we grouped genomic events into 5 core signal transduction pathways: 1) TP53 pathway, 2) RTK/RAS/RAF pathway, 3) PI3K/AKT/mTOR pathway, 4) WNT/CTNNB1, 5) RB1 pathway. Cox regression was used to assess pathways abnormalities with survival outcomes.

Results

35 samples (41%) harbored mutations on at least one gene: TP53 (16%), PIK3CA (9%), FGFR3 (2%), HRAS/KRAS (5%), and CTNNB1 (1%). 66% of patients had some sort of CNV. PIK3CA/AKT/mTOR pathway alteration (mutations+CNV) had the greatest impact on OS (p=0.055). At a gene level, overexpression of CTNNB1 (p=0.0008) and PIK3CA (p=0.02) were associated with shorter OS. Mutational status on PIK3CA was not associated with survival. Among other individually found genomic alterations, TP53 mutations (p=0.07), mTOR gain (p=0.07) and PTEN overexpression (p=0.08) have a marginally significant negative impact on OS.

Conclusions

Our study suggests that targeted therapies focusing on the PIK3CA/AKT/mTOR pathway genomic alterations can generate the greatest impact in the overall patient population of high-grade advanced UC.  相似文献   

4.
TP53 mutations play a significant role in glioma tumorigenesis. When located in in the DNA binding domain, these mutations can perturb p53 protein conformation and its function, often culminating in altered downstream signaling. Here we describe prevalent pattern of TP53 point mutations in a cohort of 40 glioma patients and show their relevance to gliomagenesis. Point mutations in exon 5–9 of TP53 gene were detected by DNA sequencing. Possible influence of identified mutations at the function of p53 was studied computationally and correlated with the survival. Point mutations in TP53 were detected in 10 glioma samples (25%), out of which 70% were from high grade glioma. A total of 19 TP53 point mutations were identified, out of which 42% were found to be in the DNA binding region of p53. Computational analysis predicted 87.5% of these mutations to be “probably damaging”. In three patients with tumors possessing point mutations R273H, R248Q, Y163H and R175H and poor survival times, structural analysis revealed the nature of these mutations to be disruptive and associated with high risk for cancer progression. In high grade glioma, recurrent TP53 point mutations may be the key to tumor progression, thus, emphasizing their significance in gliomagenesis.  相似文献   

5.
Sarcomas are a key feature of Li-Fraumeni and related syndromes (LFS/LFL), associated with germline TP53 mutations. Current penetrance estimates for TP53 mutations are subject to significant ascertainment bias. The International Sarcoma Kindred Study is a clinic-based, prospective cohort of adult-onset sarcoma cases, without regard to family history. The entire cohort was screened for mutations in TP53 using high-resolution melting analysis and Sanger sequencing, and multiplex-ligation-dependent probe amplification and targeted massively parallel sequencing for copy number changes. Pathogenic TP53 mutations were detected in blood DNA of 20/559 sarcoma probands (3.6%); 17 were germline and 3 appeared to be somatically acquired. Of the germline carriers, one appeared to be mosaic, detectable in the tumor and blood, but not epithelial tissues. Germline mutation carriers were more likely to have multiple cancers (47% vs 15% for non-carriers, P = 3.0×10−3), and earlier cancer onset (33 vs 48 years, P = 1.19×10−3). The median survival of mutation carriers following first cancer diagnosis was not significantly different from non-carriers. Only 10/17 (59%) pedigrees met classical or Chompret criteria for LFS. In summary, germline TP53 mutations are not rare in adult patients with sarcoma, with implications for screening, surveillance, treatment and genetic counselling of carriers and family members.  相似文献   

6.
High-grade serous ovarian cancer (HGSOC) is the most aggressive histological type of epithelial ovarian cancer, which is characterized by a high frequency of somatic TP53 mutations. We performed exome analyses of tumors and matched normal tissues of 34 Japanese patients with HGSOC and observed a substantial number of patients without TP53 mutation (24%, 8/34). Combined with the results of copy number variation analyses, we subdivided the 34 patients with HGSOC into subtypes designated ST1 and ST2. ST1 showed intact p53 pathway and was characterized by fewer somatic mutations and copy number alterations. In contrast, the p53 pathway was impaired in ST2, which is characterized by abundant somatic mutations and copy number alterations. Gene expression profiles combined with analyses using the Gene Ontology resource indicate the involvement of specific biological processes (mitosis and DNA helicase) that are relevant to genomic stability and cancer etiology. In particular we demonstrate the presence of a novel subtype of patients with HGSOC that is characterized by an intact p53 pathway, with limited genomic alterations and specific gene expression profiles.  相似文献   

7.
The wild-type p53-induced phosphatase 1 (WIP1) is a serine/threonine phosphatase that negatively regulates multiple proteins involved in DNA damage response including p53, CHK2, Histone H2AX, and ATM, and it has been shown to be overexpressed or amplified in human cancers including breast and ovarian cancers. We examined WIP1 mRNA levels across multiple tumor types and found the highest levels in breast cancer, leukemia, medulloblastoma and neuroblastoma. Neuroblastoma is an exclusively TP53 wild type tumor at diagnosis and inhibition of p53 is required for tumorigenesis. Neuroblastomas in particular have previously been shown to have 17q amplification, harboring the WIP1 (PPM1D) gene and associated with poor clinical outcome. We therefore sought to determine whether inhibiting WIP1 with a selective antagonist, GSK2830371, can attenuate neuroblastoma cell growth through reactivation of p53 mediated tumor suppression. Neuroblastoma cell lines with wild-type TP53 alleles were highly sensitive to GSK2830371 treatment, while cell lines with mutant TP53 were resistant to GSK2830371. The majority of tested neuroblastoma cell lines with copy number gains of the PPM1D locus were also TP53 wild-type and sensitive to GSK2830371A; in contrast cell lines with no copy gain of PPM1D were mixed in their sensitivity to WIP1 inhibition, with the primary determinant being TP53 mutational status. Since WIP1 is involved in the cellular response to DNA damage and drugs used in neuroblastoma treatment induce apoptosis through DNA damage, we sought to determine whether GSK2830371 could act synergistically with standard of care chemotherapeutics. Treatment of wild-type TP53 neuroblastoma cell lines with both GSK2830371 and either doxorubicin or carboplatin resulted in enhanced cell death, mediated through caspase 3/7 induction, as compared to either agent alone. Our data suggests that WIP1 inhibition represents a novel therapeutic approach to neuroblastoma that could be integrated with current chemotherapeutic approaches.  相似文献   

8.
Small-cell carcinoma of the esophagus (SCCE) is a rare and aggressive cancer. Although several consistent genomic changes were observed previously between SCCE and small-cell lung cancer (SCLC), detailed mutational landscapes revealing discrepancies in genetic underpinnings of tumorigenesis between these two cancers are scarce, and little attention has been paid to answer whether these genetic alterations were related to the prognosis. Herein by performing whole-exome sequencing of 48 SCCE and 64 SCLC tumor samples, respectively we have shown that the number of driver mutations in SCCE was significantly lower than in SCLC (p = 0.0042). In SCCE, 46% of recurrent driver mutations were clonal, which occurred at an early stage during tumorigenesis, while 16 driver mutations were found clonal in SCLC. NOTCH1/3, PIK3CA, and ATM were specifically clonal in SCCE, while TP53 was clonal in SCLC. The total number of clonal mutations differed between two cancers and presented lower in SCCE compared to SCLC (p = 0.0036). Moreover, overall survival (OS) was shorter in patients with higher numbers of clonal mutations for both cancers. In summary, SCCE showed distinct mutational background and clonal architecture compared with SCLC. Organ-specific clonal events revealed different molecular mechanisms underlying tumorigenesis, tumor development, patients’ prognosis, and possible variations in therapeutic outcomes to candidate treatments.Subject terms: Oesophageal cancer, Small-cell lung cancer  相似文献   

9.
Breast cancers (BCs) of the luminal B subtype are estrogen receptor-positive (ER+), highly proliferative, resistant to standard therapies and have a poor prognosis. To better understand this subtype we compared DNA copy number aberrations (CNAs), DNA promoter methylation, gene expression profiles, and somatic mutations in nine selected genes, in 32 luminal B tumors with those observed in 156 BCs of the other molecular subtypes. Frequent CNAs included 8p11-p12 and 11q13.1-q13.2 amplifications, 7q11.22-q34, 8q21.12-q24.23, 12p12.3-p13.1, 12q13.11-q24.11, 14q21.1-q23.1, 17q11.1-q25.1, 20q11.23-q13.33 gains and 6q14.1-q24.2, 9p21.3-p24,3, 9q21.2, 18p11.31-p11.32 losses. A total of 237 and 101 luminal B-specific candidate oncogenes and tumor suppressor genes (TSGs) presented a deregulated expression in relation with their CNAs, including 11 genes previously reported associated with endocrine resistance. Interestingly, 88% of the potential TSGs are located within chromosome arm 6q, and seven candidate oncogenes are potential therapeutic targets. A total of 100 candidate oncogenes were validated in a public series of 5,765 BCs and the overexpression of 67 of these was associated with poor survival in luminal tumors. Twenty-four genes presented a deregulated expression in relation with a high DNA methylation level. FOXO3, PIK3CA and TP53 were the most frequent mutated genes among the nine tested. In a meta-analysis of next-generation sequencing data in 875 BCs, KCNB2 mutations were associated with luminal B cases while candidate TSGs MDN1 (6q15) and UTRN (6q24), were mutated in this subtype. In conclusion, we have reported luminal B candidate genes that may play a role in the development and/or hormone resistance of this aggressive subtype.  相似文献   

10.
Anti-epidermal growth factor receptor (EGFR) therapy has been tried in triple negative breast cancer (TNBC) patients without evaluation of molecular and clinical predictors in several randomized clinical studies. Only fewer than 20% of metastatic TNBCs showed response to anti-EGFR therapy. In order to increase the overall response rate, first step would be to classify TNBC into good or poor responders according to oncogenic mutation profiles. This study provides the molecular characteristics of TNBCs including EGFR gene copy number changes and mutation status of EGFR and KRAS gene in Korean TNBC patients. Mutation analysis for EGFR, KRAS, BRAF and TP53 from a total of 105 TNBC tissue samples was performed by direct sequencing, peptide nucleic acid-mediated PCR clamping method and real-time PCR. Copy number changes of EGFR gene were evaluated using multiplex ligation-dependent probe amplification. Out of all 105 TNBCs, 15.2% (16/105) showed EGFR copy number changes. Among them, increased or decreased EGFR copy number was detected in 13 (5 single copy gain, 2 amplification and 4 high-copy number amplification) and 3 cases (3 hemizygous deletion), respectively. The mutation frequencies of KRAS, EGFR and TP53 gene were 1.9% (G12V and G12D), 1.0% (exon 19 del) and 31.4%, respectively. There was no BRAF V600E mutation found. Future studies are needed to evaluate the clinical outcomes of TNBC patients who undergo anti-EGFR therapy according to the genetic status of EGFR.  相似文献   

11.
Pemetrexed and platinum (PP) combination chemotherapy is the current standard first-line therapy for treatment of malignant mesothelioma (MM). However, a useful predictive biomarker for PP therapy is yet to be found. Here, we performed targeted exome sequencing to profile somatic mutations and copy number variations in 12 MM patients treated with PP therapy. We identified 187 somatic mutations in 12 patients (65 synonymous, 102 missense, 2 nonsense, 5 splice site, and 13 small coding insertions/deletions). We identified somatic mutations in 23 genes including BAP1, TP53, NRAS, and EGFR. Interestingly, rare NRAS p.Q61K and EGFR exon 19 deletions were observed in 2 patients. We also found somatic chromosomal copy number deletions in CDKN2A and CDKN2B genes. Genetic alteration related to response after PP therapy was not found. Somatic mutation profiling in MM patients receiving PP therapy revealed genetic alterations in potential therapeutic targets such as NRAS and EGFR. No alterations in genes with potential predictive role for PP therapy were found.  相似文献   

12.
Hotspot mutations of serine/arginine-rich splicing factor 2 (SRSF2) gene have been identified in a proportion of hematologic malignancies including myelodysplastic syndrome (MDS). The aim of the present study was to develop a new approach to screen SRSF2 mutation and analyze the clinical relevance of SRSF2 mutations in Chinese MDS. A protocol based on high-resolution melting analysis (HRMA) was established to screen SRSF2-P95 mutation in 108 MDS patients and was compared with Sanger sequencing. The clinical relevance of SRSF2 mutations was further evaluated. HRMA identified five (4.6%) cases with SRSF2 mutation, completely validated by Sanger sequencing without false positive or negative results. The sensitivities of HRMA and Sanger sequencing were 10% and 25% for the detection of SRSF2-P95H mutation, respectively, against the background of wild-type DNA. Patients with SRSF2 mutation had shorter overall survival time than those with wild-type SRSF2 in both the whole cohort of cases and those with normal karyotype (P = 0.069 and 0.023, respectively). Multivariate analysis confirmed SRSF2 mutation as an independent risk factor in both patient populations. We established a fast, high-throughput, and inexpensive HRMA-based method to screen SRSF2 mutation, which could be used in clinical diagnostic laboratories. SRSF2 mutations were significantly associated with mortality rate in the MDS affected Chinese.  相似文献   

13.
This study aims at identifying common pathogenic somatic mutations at different stages of colorectal carcinogenesis in Egyptian patients. Our cohort included colonoscopic biopsies collected from 120 patients: 20 biopsies from patients with inflammatory bowel disease, 38 from colonic polyp patients, and 62 from patients with colorectal cancer. On top of this, the cohort included 20 biopsies from patients with non-specific mild to moderated colitis. Targeted DNA sequencing using a customized gene panel of 96 colorectal related genes running on the Ion Torrent NGS technology was used to process the samples. Our results revealed that 69% of all cases harbored at least one somatic mutation. Fifty-seven genes were found to carry 232 somatic non-synonymous variants. The most frequently pathogenic somatic mutations were localized in TP53, APC, KRAS, and PIK3CA. In total, 16 somatic mutations were detected in the CRC group and in either the IBD or CP group. In addition, our data showed that 51% of total somatic variants were CRC-specific variants. The average number of CRC-specific variants per sample is 2.4. The top genes carrying CRC-specific mutations are APC, TP53, PIK3CA, FBXW7, ATM, and SMAD4. It seems obvious that TP53 and APC genes were the most affected genes with somatic mutations in all groups. Of interest, 85% and 28% of the APC and TP53 deleterious somatic mutations were located in Exon 14 and Exon 3, respectively. Besides, 37% and 28% of the total somatic mutations identified in APC and TP53 were CRC-specific variants, respectively. Moreover, we identified that, in 29 somatic mutations in 21 genes, their association with CRC patients was unprecedented. Ten detected variants were likely to be novel: six in PIK3CA and four variants in FBXW7. The detected P53, Wnt/βcatenin, Angiogenesis, EGFR, TGF-β and Interleukin signaling pathways were the most altered pathways in 22%, 16%, 12%, 10%, 9% and 9% of the CRC patients, respectively. These results would contribute to a better understanding of the colorectal cancer and in introducing personalized therapies for Egyptian CRC patients.  相似文献   

14.
Spinal muscular atrophy (SMA) is one of the most common inherited causes of pediatric mortality. SMA is caused by deletions or mutations in the survival of motor neuron 1 (SMN1) gene, which results in SMN protein deficiency. Humans have a centromeric copy of the survival of motor neuron gene, SMN2, which is nearly identical to SMN1. However, SMN2 cannot compensate for the loss of SMN1 because SMN2 has a single-nucleotide difference in exon 7, which negatively affects splicing of the exon. As a result, most mRNA produced from SMN2 lacks exon 7. SMN2 mRNA lacking exon 7 encodes a truncated protein with reduced functionality. Improving SMN2 exon 7 inclusion is a goal of many SMA therapeutic strategies. The identification of regulators of exon 7 inclusion may provide additional therapeutic targets or improve the design of existing strategies. Although a number of regulators of exon 7 inclusion have been identified, the function of most splicing proteins in exon 7 inclusion is unknown. Here, we test the role of SR proteins and hnRNP proteins in SMN2 exon 7 inclusion. Knockdown and overexpression studies reveal that SRSF1, SRSF2, SRSF3, SRSF4, SRSF5, SRSF6, SRSF7, SRSF11, hnRNPA1/B1 and hnRNP U can inhibit exon 7 inclusion. Depletion of two of the most potent inhibitors of exon 7 inclusion, SRSF2 or SRSF3, in cell lines derived from SMA patients, increased SMN2 exon 7 inclusion and SMN protein. Our results identify novel regulators of SMN2 exon 7 inclusion, revealing potential targets for SMA therapeutics.  相似文献   

15.

Background

Over the last decade, an increasing number of integrative studies on cancer-related genes have been published. Integrative analyses aim to overcome the limitation of a single data type, and provide a more complete view of carcinogenesis. The vast majority of these studies used sample-matched data of gene expression and copy number to investigate the impact of copy number alteration on gene expression, and to predict and prioritize candidate oncogenes and tumor suppressor genes. However, correlations between genes were neglected in these studies. Our work aimed to evaluate the co-alteration of copy number, methylation and expression, allowing us to identify cancer-related genes and essential functional modules in cancer.

Results

We built the Integrated Co-alteration network (ICan) based on multi-omics data, and analyzed the network to uncover cancer-related genes. After comparison with random networks, we identified 155 ovarian cancer-related genes, including well-known (TP53, BRCA1, RB1 and PTEN) and also novel cancer-related genes, such as PDPN and EphA2. We compared the results with a conventional method: CNAmet, and obtained a significantly better area under the curve value (ICan: 0.8179, CNAmet: 0.5183).

Conclusion

In this paper, we describe a framework to find cancer-related genes based on an Integrated Co-alteration network. Our results proved that ICan could precisely identify candidate cancer genes and provide increased mechanistic understanding of carcinogenesis. This work suggested a new research direction for biological network analyses involving multi-omics data.  相似文献   

16.
Ovarian clear cell carcinoma (CCC) is generally associated with chemoresistance and poor clinical outcome, even with early diagnosis; whereas high-grade serous carcinomas (SCs) and endometrioid carcinomas (ECs) are commonly chemosensitive at advanced stages. Although an integrated genomic analysis of SC has been performed, conclusive views on copy number and expression profiles for CCC are still limited. In this study, we performed single nucleotide polymorphism analysis with 57 epithelial ovarian cancers (31 CCCs, 14 SCs, and 12 ECs) and microarray expression analysis with 55 cancers (25 CCCs, 16 SCs, and 14 ECs). We then evaluated PIK3CA mutations and ARID1A expression in CCCs. SNP array analysis classified 13% of CCCs into a cluster with high frequency and focal range of copy number alterations (CNAs), significantly lower than for SCs (93%, P < 0.01) and ECs (50%, P = 0.017). The ratio of whole-arm to all CNAs was higher in CCCs (46.9%) than SCs (21.7%; P < 0.0001). SCs with loss of heterozygosity (LOH) of BRCA1 (85%) also had LOH of NF1 and TP53, and LOH of BRCA2 (62%) coexisted with LOH of RB1 and TP53. Microarray analysis classified CCCs into three clusters. One cluster (CCC-2, n = 10) showed more favorable prognosis than the CCC-1 and CCC-3 clusters (P = 0.041). Coexistent alterations of PIK3CA and ARID1A were more common in CCC-1 and CCC-3 (7/11, 64%) than in CCC-2 (0/10, 0%; P < 0.01). Being in cluster CCC-2 was an independent favorable prognostic factor in CCC. In conclusion, CCC was characterized by a high ratio of whole-arm CNAs; whereas CNAs in SC were mainly focal, but preferentially caused LOH of well-known tumor suppressor genes. As such, expression profiles might be useful for sub-classification of CCC, and might provide useful information on prognosis.  相似文献   

17.
PurposeEndometrial carcinoma (EC) is a clinically heterogeneous disease characterized by a number of different histological subtypes, and its heterogeneity may be involved in the accumulation of multiple genetic alterations. The aim of this work was to investigate the comprehensive mutational profile of EC tumors, and examine the associations between somatic mutations and clinicopathological features or survival in EC patients.MethodsA total of 100 surgical tumors were obtained from EC patients who had previously undergone surgery. Genomic DNA samples extracted from fresh-frozen tissues were analyzed using the Ion AmpliSeq Cancer Hotspot Panel v2 Kit, covering 50 tumor-related genes.ResultsValidated mutations were detected in 91 of the 100 tumors (91%) and identified in eight of the most frequently mutated genes, namely PTEN (57%), PIK3CA (51%), TP53 (30%), KRAS (23%), CTNNB1 (21%), FBFR2 (13%), FBXW7(10%) and RB1 (9%). PTEN mutations were found to associated with young age (< 60), early-stage, endometrioid histology, non-recurrence and better overall survival (OS). CTNNB1 mutations were associated with young age, endometrioid histology and better OS. On the other hands, TP53 mutations were associated with late-stage, non-endometrioid histology, high-grade, recurrence and worse OS. FBWX7 mutations were associated with late-stage, vascular invasion and lymph node metastasis. FGFR2 mutations correlated with deep (≥ 1/2) myometrial invasion.ConclusionOur comprehensive mutational profile will be useful for understanding and evaluating the molecular characteristics of EC tumors, and may lead to the establishment of novel treatment strategies that improve the survival of patients with EC in the future.  相似文献   

18.
Aberrant DNA methylation is one of the most frequent alterations in patients with Acute Lymphoblastic Leukemia (ALL). Using methylation bead arrays we analyzed the methylation status of 807 genes implicated in cancer in a group of ALL samples at diagnosis (n = 48). We found that 154 genes were methylated in more than 10% of ALL samples. Interestingly, the expression of 13 genes implicated in the TP53 pathway was downregulated by hypermethylation. Direct or indirect activation of TP53 pathway with 5-aza-2′-deoxycitidine, Curcumin or Nutlin-3 induced an increase in apoptosis of ALL cells. The results obtained with the initial group of 48 patients was validated retrospectively in a second cohort of 200 newly diagnosed ALL patients. Methylation of at least 1 of the 13 genes implicated in the TP53 pathway was observed in 78% of the patients, which significantly correlated with a higher relapse (p = 0.001) and mortality (p<0.001) rate being an independent prognostic factor for disease-free survival (DFS) (p = 0.006) and overall survival (OS) (p = 0.005) in the multivariate analysis. All these findings indicate that TP53 pathway is altered by epigenetic mechanisms in the majority of ALL patients and correlates with prognosis. Treatments with compounds that may reverse the epigenetic abnormalities or activate directly the p53 pathway represent a new therapeutic alternative for patients with ALL.  相似文献   

19.
The central challenges in tumor sequencing studies is to identify driver genes and pathways, investigate their functional relationships, and nominate drug targets. The efficiency of these analyses, particularly for infrequently mutated genes, is compromised when subjects carry different combinations of driver mutations. Mutual exclusivity analysis helps address these challenges. To identify mutually exclusive gene sets (MEGS), we developed a powerful and flexible analytic framework based on a likelihood ratio test and a model selection procedure. Extensive simulations demonstrated that our method outperformed existing methods for both statistical power and the capability of identifying the exact MEGS, particularly for highly imbalanced MEGS. Our method can be used for de novo discovery, for pathway-guided searches, or for expanding established small MEGS. We applied our method to the whole-exome sequencing data for 13 cancer types from The Cancer Genome Atlas (TCGA). We identified multiple previously unreported non-pairwise MEGS in multiple cancer types. For acute myeloid leukemia, we identified a MEGS with five genes (FLT3, IDH2, NRAS, KIT, and TP53) and a MEGS (NPM1, TP53, and RUNX1) whose mutation status was strongly associated with survival (p = 6.7 × 10−4). For breast cancer, we identified a significant MEGS consisting of TP53 and four infrequently mutated genes (ARID1A, AKT1, MED23, and TBL1XR1), providing support for their role as cancer drivers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号