首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
麻疯树curcin启动子的分离及其在转基因烟草中的功能分析   总被引:3,自引:1,他引:3  
核糖体失活蛋白是一类可以使核糖体28S rRNA的保守α茎环结构域脱嘌呤的蛋白质。麻疯树毒蛋白(curcin)前体基因编码麻疯树胚乳I型核糖体失活蛋白。从麻疯树基因组中克隆得到其5'侧翼区0.6 kb长的片段,将该片段插入pBI121载体置换其中的CaMV 35S启动子并在相应的转基因烟草中检测报告基因GUS的表达情况。经过GUS活性检测分析发现,该0.6 kb长的片段能够启动报告基因在种子中的表达,并且其在种子不同发育阶段的表达活性存在差异。同时,GUS组织化学染色定位分析表明,在双子叶植物中该启动子片段是胚乳特异性表达的,它从心形胚时期开始持续地在烟草的胚乳中发挥启动活性。  相似文献   

2.
核糖体失活蛋白是一类可以使核糖体28S rRNA的保守a茎环结构域脱嘌呤的蛋白质。麻疯树毒蛋白(curcin)前体基因编码麻疯树胚乳I 型核糖体失活蛋白。从麻疯树基因组中克隆得到其5'侧翼区0.6 kb长的片段, 将该片段插入pBI121载体置换其中的CaMV 35S启动子并在相应的转基因烟草中检测报告基因GUS的表达情况。经过GUS活性检测分析发现, 该0.6 kb长的片段能够启动报告基因在种子中的表达, 并且其在种子不同发育阶段的表达活性存在差异。同时, GUS组织化学染色定位分析表明, 在双子叶植物中该启动子片段是胚乳特异性表达的, 它从心形胚时期开始持续地在烟草的胚乳中发挥启动活性。  相似文献   

3.
Soil salinity is a serious worldwide problem. To improve the salt tolerance of plants, an increasing number of genes related to abiotic stress have been recently expressed by genetic engineers. In the present study, the successful introduction into tobacco of isopentenyl transferase (IPT) from Agrobacterium tumefaciens via Agrobacterium-mediated transformation is reported. A stress-inducible genetic construct was cloned using IPT under the control of the stress-inducible promoter rd29A from Arabidopsis thaliana. A total of 40 putative transgenic plant lines were obtained from independent Kan-resistant shoots. IPT integration into the tobacco genome was confirmed by polymerase chain reaction (PCR) and Southern blot analyses. Four positive transgenic lines each with a single T-DNA insertion were obtained. Real-time PCR confirmed a marked increase in IPT expression in young tobacco plants harboring rd29A-IPT after short-term exposure to salt. Ectopic IPT overexpression IPT under the control of the stress-inducible rd29A promoter resulted in significantly enhanced tolerance to salt stress. No obvious adverse effect on growth and development was observed in transgenic plants. Two IPT transgenic lines, T10 and T25, were chosen for further physiological analyses. The leaves of transgenic tobacco plants showed significantly prolonged chlorophyll retention times under a 2-week salt-stress treatment (150?mmol?L?1). In contrast, the leaves of the non-transformed plants (wild type) gradually senesced under the same condition. After re-watering for 2?weeks, chlorophyll in transgenic plants increased to a level comparable with that in the unstressed plants. On the other hand, the level in the non-transgenic control still remained low. Malondialdehyde (MDA) levels increased in both transgenic plants and the control after salt stress. However, the MDA levels only mildly increased in transgenic plants, and dramatically increased in the control. After re-watering for 7?days, MDA in transgenic plants returned to normal, whereas the level in the control remained high. Superoxide dismutase activity also similarly increased in transgenic plants during salt stress, and returned to normal after re-watering. These results indicate that enhanced reactive oxygen species scavenging capability may play a significant role in acquiring tolerance to abiotic stress.  相似文献   

4.
从玉米自交系‘综31’基因组中分离了1个茎特异表达启动子,命名为ZmSSP。用ZmSSP替换植物表达载体pCAMBIA3301的CaMV35S启动子,构建了ZmSSP驱动GUS报告基因的重组表达载体pCAMBIA3301-ZmSSP-GUS,并采用农杆菌介导法转化烟草,对转基因烟草营养器官中GUS表达模式进行了分析。结果表明:在烟草中ZmSSP活性低于CaMV35S启动子;不同转基因株系中ZmSSP活性及模式有显著差异;10个转基因株系统计结果表明,GUS表达量最高的营养器官是叶柄,平均是Actin基因表达量的2.71倍;其次是叶片和茎,在根中的GUS表达量最低,平均是Actin基因表达量的29.6%,是叶柄中活性的10.9%。研究认为,ZmSSP是较好的组织特异性启动子,适用于通过植物基因工程技术驱动目的基因进行地上营养器官的性状改良。  相似文献   

5.
For the first time, a nodulin-like gene promoter was isolated from Gossypium hirsutum L. Guo Y18 by means of inverse PCR. Three plant expression vectors were constructed for functional identification of the promoter. These vectors were different only in promoter regions; three truncations of the nodulinlike promoter took the place of the CaMV35S promoter in the pBI121 plant expression vector. Then, the three vectors were introduced into cotton plants via the pollen tube pathway. The expression patterns of the gus gene driven by nodulin-like promoter truncations were investigated in the offspring of transgenic cotton plants. Histochemical GUS staining and fluorescence quantitative analysis were performed to achieve this goal. The results showed that the nodulin-like promoter was a strong, highly reproductive organspecific promoter, which demonstrated a much higher driver activity than the CaMV35S promoter did in cotton reproductive organs, but relatively lower activity in vegetation. Identification of the speciality and strength-determining regions of the nodulin-like promoter was also undertaken.  相似文献   

6.
该研究在生物信息学分析的基础上,克隆玉米胚胎发生后期丰富蛋白基因(MGL3)的启动子序列(pMGL3),进行非生物逆境应答元件分析以及实时定量PCR验证其非生物逆境胁迫响应特性,构建了pMGL3启动子驱动报告基因(GUS)表达载体,基因枪法转化玉米愈伤组织,通过GUS染色验证pMGL3启动子在非生物逆境胁迫下的驱动活性。再根据启动子序列分析结果,去除不同的顺式作用元件,构建不同长度pMGL3启动子驱动报告基因GUS表达载体,农杆菌介导法转化烟草叶盘,以确定pMGL3启动子的最短活性序列。结果显示:pMGL3启动子长1 554bp,存在多种与非生物逆境胁迫应答相关的调控元件,在干旱、高盐、低温胁迫及脱落酸、乙烯诱导下驱动MGL3基因增量表达,用以驱动GUS基因转化玉米愈伤组织,在高渗、高盐、低温胁迫及脱落酸诱导下具有驱动活性,且截短至325bp仍可保持驱动活性。研究表明,pMGL3启动子的确有非生物逆境诱导启动活性,进一步验证其作用机理后可运用于玉米抗逆转基因研究。  相似文献   

7.
Reactive oxygen or nitrogen species are generated in the plant cell during the extreme stress condition, which produces toxic compounds after reacting with the organic molecules. The glutathione-S-transferase (GST) enzymes play a significant role to detoxify these toxins and help in excretion or sequestration of them. In the present study, we have cloned 1023 bp long promoter region of tau class GST from an extreme halophyte Salicornia brachiata and functionally characterized using the transgenic approach in tobacco. Computational analysis revealed the presence of abiotic stress responsive cis-elements like ABRE, MYB, MYC, GATA, GT1 etc., phytohormones, pathogen and wound responsive motifs. Three 5’-deletion constructs of 730 (GP2), 509 (GP3) and 348 bp (GP4) were made from 1023 (GP1) promoter fragment and used for tobacco transformation. The single event transgenic plants showed notable GUS reporter protein expression in the leaf tissues of control as well as treated plants. The expression level of the GUS gradually decreases from GP1 to GP4 in leaf tissues, whereas the highest level of expression was detected with the GP2 construct in root and stem under control condition. The GUS expression was found higher in leaves and stems of salinity or osmotic stress treated transgenic plants than that of the control plants, but, lower in roots. An efficient expression level of GUS in transgenic plants suggests that this promoter can be used for both constitutive as well as stress inducible expression of gene(s). And this property, make it as a potential candidate to be used as an alternative promoter for crop genetic engineering.  相似文献   

8.
以玉米(Zea mays L.)黄化苗为材料,利用PCR技术扩增了玉米19kDa醇溶贮藏蛋白基因(zein)起始密码子上游启动子片段,序列分析结果表明,克隆的-1~-694片段具有19kDa zein启动子特点,与同一家族中其它基因的对应区段同源性达90%以上。将此启动子插入pPKGT的GUS基因及NOS终止子上游构成表达载体。经农杆菌转化烟草(Nicotiana tabaccum Var.samsum),得到了转化植株。转化的烟草的PCR扩增及Southern杂交证明目的片段已整合到烟草基因组中。转基因植株的GUS活性检测表明,在叶、根中无GUS活性,GUS活性只存在于种子中。转基因植株烟草种子经冷冻切片,GUS底物Xgluc活体组织染色证明GUS活性只存在一层介于种子胚乳与种皮之间的细胞中。  相似文献   

9.
植物LRR型类受体蛋白激酶在植物生命活动中发挥着重要作用。前期研究发现, 大豆(Glycine max)LRR型类受体蛋白激酶基因GmSARK可能参与调控大豆叶片的衰老过程。利用CaMV 35S启动子驱动组成型过表达GmSARK基因可导致转基因植株出现致死表型, 据此构建了可诱导型启动子GVG驱动GmSARK基因过表达的双元表达载体, 转化野生型拟南芥(Arabidopsis thaliana)并获得了多株转基因植株。研究结果表明, 外源施加诱导物地塞米松可引起GmSARK基因在转基因植株中过表达, 并导致转基因植株出现叶片变黄下卷和生长受抑制等表型; 外源细胞分裂素处理可以抑制GmSARK的表达, 但是不能逆转GmSARK过表达所引起的上述变化。  相似文献   

10.
植物LRR型类受体蛋白激酶在植物生命活动中发挥着重要作用。前期研究发现,大豆(Glycine max)LRR型类受体蛋白激酶基因GmSARK可能参与调控大豆叶片的衰老过程。利用CaMV35S启动子驱动组成型过表达GmSARK基因可导致转基因植株出现致死表型,据此构建了可诱导型启动子GVG驱动GmSARK基因过表达的双元表达载体,转化野生型拟南芥(Arabidopsis thaliana)并获得了多株转基因植株。研究结果表明,外源施加诱导物地塞米松可引起GmSARK基因在转基因植株中过表达,并导致转基因植株出现叶片变黄下卷和生长受抑制等表型;外源细胞分裂素处理可以抑制GmSARK的表达,但是不能逆转GmSARK过表达所引起的上述变化。  相似文献   

11.
A 2-kb fragment from the 5'-flanking region of the RGS-28 gene,which encodes the cytosolic glutamine synthetase in Oryza sativaL., was fused to a ß-glucuronidase (GUS) reportergene and introduced into Nicotiana tabacum by Agrobacterium-mediatedtransformation. The promoter was predominantly active in theleaves of transgenic plants, as it is in authentic rice plants.The promoter also responded to externally applied ammonium ions.It is suggested that the cis-acting regulatory elements responsiblefor the recognition of the leaf as a site of synthesis and ofammonia, a substrate for glutamine synthetase, are located withina 2-kb region of the promoter. (Received October 15, 1990; Accepted January 11, 1991)  相似文献   

12.
13.
A tissue-specific promoter, Pt-RbcS, from Populus was isolated and cloned based on alignment of AtRBCS-2B cDNA with genomic Populus sequences. Sequence analysis of Pt-RbcS revealed cis-acting regulatory elements in the promoter region, including an ATCT-motif, BoxI, GAG-motif, I-box, G-box, BoxII, GATA-motif, and TCT-motif, which are involved in light responses. In transgenic tobacco lines carrying the β-glucuronidase (GUS) gene driven by the Pt-RbcS promoter, GUS expression was detected in leaves and stems, but not in roots. Transgenic poplar lines harboring constructs carrying the GUS gene driven by truncated Pt-RbcS promoters revealed distinctive expression patterns for five different promoter constructs. The Pt-RbcS promoter was expressed preferentially in photosynthetic tissues such as leaves and stems. Moreover, deletion analysis of the 1,547 bp Pt-RbcS promoter region revealed that a 927-bp DNA segment is critical for expression of Pt-RbcS in green tissues. Overall, our study suggests that the Pt-RbcS promoter from Populus could be applied to genetically improve the photosynthetic efficiency of woody plants.  相似文献   

14.
The cloning of a 465 bp fragment from the 5-flanking region of the gene encoding a cytosolic cyclophilin from periwinkle was achieved through inverse polymerase chain reaction. The DNA fragment was fused to a gusA-intron marker then introduced into tobacco by Agrobacterium tumefaciens-mediated transformation. Histochemical analysis of the transgenic shoot cultures demonstrated that the construct was able to drive GUS expression in stomata guard cells, but not in mesophyll cells when shoots were still attached to the callus from which they were initiated. In separated transgenic shoots and in seedlings, GUS was expressed in external and internal phloem and root hairs, respectively. GUS activity in transgenic tobacco seedlings was also investigated by fluorimetric assays. Treatments with NaCl or ABA decreased promoter activity whereas treatment with yeast extracts increased it.  相似文献   

15.
The temporal and spatial expression of a bean chitinase promoter has been investigated in response to fungal attack. Analysis of transgenic tobacco plants containing a chimeric gene composed of a 1.7-kilobase fragment carrying the chitinase 5B gene promoter fused to the coding region of the gus A gene indicated that the chitinase promoter is activated during attack by the fungal pathogens Botrytis cinerea, Rhizoctonia solani, and Sclerotium rolfsii. Although induction of [beta]-glucuronidase activity was observed in tissues that had not been exposed to these phytopathogens, the greatest induction occurred in and around the site of fungal infection. The increase in [beta]-glucuronidase activity closely paralleled the increase in endogenous tobacco chitinase activity produced in response to fungal infection. Thus, the chitinase 5B-gus A fusion gene may be used to analyze the cellular and molecular details of the activation of the host defense system during pathogen attack.  相似文献   

16.
通过PCR扩增,从甘蓝型油菜(Brassica  相似文献   

17.
亚硫酸盐氧化酶(SO)作为目前发现的钼酶家族成员之一,在哺乳动物硫化物的脱毒、嘌呤代谢等过程中起着非常重要的作用。然而,很少有关于高等植物SO的表达和调控机制的研究报道。本研究中,我们用半定量RT-PCR和组织化学方法对拟南芥中SO基因AtSO的表达调控进行了初步研究。结果表明,AtSO在拟南芥的地上部分如茎、叶、花和未成熟荚果中有较高的表达水平,而在根部表达水平较低。在对分离的该基因上游1562-bp的启动子区域进行生物信息学分析时,鉴定出一些可能的调控元件如光调控元件(LRE)。转基因植株中AtSO启动子驱动下的GUS基因(uidA)表达结果表明:AtSO的表达主要在植物的地上组织,表达具有光依赖性,且表达水平受亚硫酸盐的诱导增高。这一结果对进一步研究SO在植物对光周期和亚硫酸盐胁迫应答反应中的作用提供线索。  相似文献   

18.
以玉米品种“吉糯1号”的基因组DNA为模板,通过PCR扩增得到玉米淀粉分支酶基因的启动子序列,克隆到pMD18-TVector上,经测序,该启动子大小为934bp。与已报道的序列比较仅有14个核苷酸发生改变,同源性为98.5%。用该启动子取代植物表达载体pBI121的35S启动子,与GUS基因编码区连接,构建成融合质粒pSBE-GUS。经农杆菌介导法转化烟草,获得了转基因植株。GUS活性检测结果表明,由该启动子序列引导的GUS基因能在种子中表达,而在其他组织中表达微弱或未表达,证实该启动子具有种子特异性表达的功能。  相似文献   

19.
旨在研究目的基因在转基因植株和后代植株(株系)中的遗传规律及其对转化植株抗虫性的影响。以花粉介导法将cryIAc基因导入玉米自交系‘郑58’和‘昌7-2’,对转化植株及其后代株系进行分子检测和田间抗虫鉴定。结果表明:(1)转化‘郑58’和‘昌7-2’,T1代分别获得转基因植株24和41个,转化率高达20%以上;(2)转基因T2代、杂交F2代及回交1代(B1)的分子检测结果证明,外源基因的遗传符合孟德尔的3∶1、3∶1和1∶1的遗传分离规律;(3)连续多带的分子检测结果还表明,外源基因可稳定遗传并有效表达,表达水平在9.8-14.3 ng/g叶片鲜重之间;(4)抗虫鉴定结果显示,在阴性对照全部感虫情形下,转基因纯合株系仍表现出较高抗虫活性;(5)此外,回交试验结果还证明外源基因通过杂交可传递给下一代;(6)最终经筛选得到SZ003、SZ005、SC001、SC004和SC007五个高抗虫转基因株系。结果表明,花粉介导法是一种高效、快捷的转化方法,cryIAc基因导入玉米自交系植株后赋予和提高了转基因植株的抗虫活性。  相似文献   

20.
为探讨发菜噬菌体休克蛋白A(PspA)的分子信息和基因功能,本研究通过设计特异引物克隆发菜PspA基因,采用qRT-PCR技术,分析发菜PspA基因在干旱胁迫下的表达模式;构建PspA真核表达载体pCAM35 s-GFP-PspA,对PspA进行亚细胞定位和PspA基因拟南芥遗传转化,并对阳性转化拟南芥分别进行Sout...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号