首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development of efficient, easy, and safe gene delivery methods is of great interest in the field of plant biotechnology. Considering the limitations of the usual transfection methods (such as transgene size and plant type), several new techniques have been tested for replacement. The success of some biological and synthetic nanostructures such as cell-penetrating peptides and carbon nanotubes in transferring macromolecules (proteins and nucleic acids) into mammalian cells provoked us to assess the ability of an engineered chimeric peptide and also arginine functionalized single-walled carbon nanotube in gene delivery to intact tobacco (Nicotiana tabacum var. Virginia) root cells. It was suggested that the engineered peptide with its special cationic and hydrophobic domains and the arginine functionalized single-walled carbon nanotube due to its nano-cylindrical shape can pass plant cell barriers while plasmid DNA (which codes green fluorescent protein) has been condensed on them. The success of gene delivery to tobacco root cells was confirmed by fluorescence microscopy and western blotting analysis.  相似文献   

2.
Quick and facile transient RNA interference (RNAi) is one of the most valuable plant biotechnologies for analysing plant gene functions. To establish a novel double‐strand RNA (dsRNA) delivery system for plants, we developed an ionic complex of synthetic dsRNA with a carrier peptide in which a cell‐penetrating peptide is fused with a polycation sequence as a gene carrier. The dsRNA–peptide complex is 100–300 nm in diameter and positively charged. Infiltration of the complex into intact leaf cells of Arabidopsis thaliana successfully induced rapid and efficient down‐regulation of exogenous and endogenous genes such as yellow fluorescent protein and chalcone synthase. The present method realizes quick and local gene silencing in specific tissues and/or organs in plants.  相似文献   

3.
Using streptolysin-O (SLO) we have developed a permeabilized cell system retaining the competence to import proteins into peroxisomes. We used luciferase and albumin conjugated with a peptide ending in the peroxisomal targeting sequence, SKL, to monitor the import of proteins into peroxisomes. After incubation with SLO-permeabilized cells, these exogenous proteins accumulated within catalase-containing vesicles. The import was strictly signal dependent and could be blocked by a 10-fold excess of peptide containing the SKL-targeting signal, while a control peptide did not affect the import. Peroxisomal accumulation of proteins was time and temperature dependent and required ATP hydrolysis. Dissipation of the membrane potential did not alter the import efficiency. GTP-hydrolyzing proteins were not required for peroxisomal protein targeting. Depletion of endogenous cytosol from permeabilized cells abolished the competence to import proteins into peroxisomes but import was reconstituted by the addition of external cytosol. We present evidence that cytosol contains factors with SKL-specific binding sites. The activity of cytosol is insensitive to N- ethylmaleimide (NEM) treatment, while the cells contain NEM-sensitive membrane-bound or associated proteins which are involved in the import machinery. The cytosol dependence and NEM-sensitivity of peroxisomal protein import should facilitate the purification of proteins involved in the import of proteins into peroxisomes.  相似文献   

4.
Chen CP  Chou JC  Liu BR  Chang M  Lee HJ 《FEBS letters》2007,581(9):1891-1897
The delivery and expression of exogenous genes in plant cells have been of particular interest for plant research and biotechnology. Here, we present results demonstrating a simple DNA transfection system in plants. Short arginine-rich intracellular delivery peptide, a protein transduction domain, was capable of delivering plasmid DNA into living plant cells non-covalently. This peptide-mediated DNA delivery conferred several advantages, such as nuclear targeting, non-toxic effect, and ease of preparation without protoplast formulation. Thus, this novel technology shall provide a powerful tool to investigate gene function in vivo, and lay the foundation for the production of transgenic plants in future.  相似文献   

5.
《Insect Biochemistry》1985,15(6):835-844
Cyclic AMP (cAMP)-dependent regulation of in vitro phosphorylation of several proteins including a cAMP-binding protein was studied with crude membrane and cytosol fractions from Drosophila heads. Phosphorylation of at least seven distinct proteins was enhanced in the presence of cAMP. Interestingly, however, the phosphorylation of a 56 kDa protein was apparently reduced by cAMP in the membrane but not in the cytosol fraction. The following data strongly indicate that the 56 kDa phosphoprotein in both membrane and cytosol fractions is a cAMP-binding protein, very similar to the regulatory subunit (RII) of a mammalian cAMP-dependent protein kinase, and that its binding to cAMP makes this protein very susceptible to the action of phosphatases: (i) cAMP highly stimulated the dephosphorylation of the 56 kDa phosphoprotein by the endogenous phosphatase in the membrane fraction. (ii) The dephosphorylation of a similar 56 kDa phosphoprotein in the cytosol fraction by an exogenous, cAMP-independent, alkaline phosphatase was also highly stimulated by cAMP. (iii) The 56 kDa phosphoprotein was covalently bound to cAMP by u.v. irradiation. (iv) The alkaline-phosphatase treatment reversibly converted this phosphoprotein to a 53 kDa non-phosphorylated protein. (v) The 53 kDa protein was selectively bound to cAMP-agarose and subsequently eluted by cAMP and high salt. (vi) This protein served as a substrate for the catalytic subunit of a mammalian cAMP-dependent protein kinase.  相似文献   

6.
Here, we present the application of microbiology and biotechnology for the production of recombinant pharmaceutical proteins in plant cells. To the best of our knowledge and belief it is one of few examples of the expression of the prokaryotic staphylokinase (SAK) in the eukaryotic system. Despite the tremendous progress made in the plant biotechnology, most of the heterologous proteins still accumulate to low concentrations in plant tissues. Therefore, the composition of expression cassettes to assure economically feasible level of protein production in plants remains crucial. The aim of our research was obtaining a high concentration of the bacterial anticoagulant factor—staphylokinase, in Arabidopsis thaliana seeds. The coding sequence of staphylokinase was placed under control of the β-phaseolin promoter and cloned between the signal sequence of the seed storage protein 2S2 and the carboxy-terminal KDEL signal sequence. The engineered binary vector pATAG-sak was introduced into Arabidopsis thaliana plants via Agrobacterium tumefaciens-mediated transformation. Analysis of the subsequent generations of Arabidopsis seeds revealed both presence of the sak and nptII transgenes, and the SAK protein. Moreover, a plasminogen activator activity of staphylokinase was observed in the protein extracts from seeds, while such a reaction was not observed in the leaf extracts showing seed-specific activity of the β-phaseolin promoter.  相似文献   

7.
Cytotoxic T lymphocytes (CTLs) are primed by peptide antigens that are endogenously processed in the cytosol and presented in the context of major histocompatibility complex I (MHC I) molecules of antigen-presenting cells (APCs). Exogenous soluble protein antigens do not gain efficient entry into the cytosol of APCs, and therefore requires a special cytosolic delivery method. We have developed such a delivery strategy adopting the well-elucidated cytosol-invading listerial endosomal escape mechanism, and report here an efficient delivery of exogenous whole protein antigen into the cytosol in a mouse model. Co-encapsulation of listeriolysin O (LLO) inside liposome (LLO-liposome) was required for delivery of ovalbumin (OVA) into the cytosol of APCs in primary cultures. LLO-liposome-mediated OVA immunization in mice engendered significantly higher OVA-specific CTL activity and increased antigenic peptide-specific CTL precursor (CTLp) frequency as compared to non-LLO-liposome or soluble OVA immunizations. Interferon-gamma (IFN-gamma) production upon specific stimulation by MHC I-restricted peptide was also significantly stronger by the inclusion of LLO in the liposomes. Rerouting of antigen into the cytosol by LLO-liposomes, however, did not reduce the extent of anti-OVA antibody responses. Moreover, LLO-liposome-antigen vaccination was robust in conferring protection to mice from lethal challenges with antigen-expressing tumor cells. Our study demonstrates a novel delivery system for efficient introduction of exogenous protein into the cytosol in vivo, priming cellular immune responses, which are protective in nature.  相似文献   

8.
Liposomes are promising vehicles to deliver diagnostic and therapeutic agents to cells in vivo. After uptake into cells by endocytosis, liposomes are degraded in the endolysosomal system. Consequently, the encapsulated cargo molecules frequently remain sequestered in endosomal compartments; this limits their usefulness in many applications (e.g. gene delivery). To overcome this, various fusogenic peptides have been developed to facilitate delivery of liposomally-encapsulated molecules into the cytosol. One such peptide is the pH-sensitive influenza-derived peptide INF7. Liposomal delivery of imaging agents is an attractive approach for enabling cell imaging and cell tracking in vivo, but can be hampered by inadequate intracellular accumulation and retention of probes caused by exocytosis (and possible degradation) of endosome-entrapped probes. Such signal loss could be minimized by facilitating escape of probe molecules from endolysosomal compartments into the cytosol. We investigated the ability of co-encapsulated INF7 to release liposomally-delivered rhodamine fluorophores into the cytosol after endosomal acidification/maturation. We co-encapsulated INF7 and fluorescent rhodamine derivatives having vastly different transport properties to show that after endocytosis by CV1 cells, the INF7 peptide is activated by acidic endosomal pH and facilitates efficient release of the fluorescent tracers into the cytosol. Furthermore, we show that INF7-facilitated escape from endosomes markedly enhanced retention of tracers that cannot be actively extruded from the cytosol. Minimizing loss of intracellular probes improves cellular imaging by increasing the signal-to-noise ratio of images and lengthening the time window that imaging can be performed. In particular, this will enhance in vivo electron paramagnetic resonance imaging, an emergent magnetic resonance imaging modality requires exogenous paramagnetic imaging agents and is highly promising for cellular and molecular imaging.  相似文献   

9.
Listeriolysin O (LLO) is an essential determinant of pathogenicity whose natural biological role is to mediate lysis of Listeria monocytogenes containing phagosomes. In this study, we report that Escherichia coli expressing cytoplasmic recombinant LLO can efficiently deliver co-expressed proteins to the cytosol of macrophages. We propose a model in which subsequent or concomitant to phagocytosis the E. coli are killed and degraded within phagosomes causing the release of LLO and target proteins from the bacteria. LLO acts by forming large pores in the phagosomal membrane, thus releasing the target protein into the cytosol. Delivery was shown to be rapid, within minutes after phagocytosis. Using this method, a large enzymatically active protein was delivered to the cytosol. Furthermore, we demonstrated that the E. coli/LLO system is very efficient for delivery of ovalbumin (OVA) to the major histocompatibility (MHC) class I pathway for antigen processing and presentation, greater than 4 logs compared with E. coli expressing OVA alone. Moreover, the time required for processing and presentation of an OVA-derived peptide was similar to that previously reported when purified OVA was introduced directly into the cytosol by other methods. Using this system, potentially large amounts of any protein that can be expressed in E. coli can be delivered to the cytosol without protein purification. The potential use of this system for the delivery of antigenic protein in vivo and the delivery of DNA are discussed.  相似文献   

10.
The guided entry of tail-anchored proteins (GET) pathway facilitates targeting and insertion of tail-anchored proteins into membranes. In plants, such a protein insertion machinery for the endoplasmic reticulum as well as constituents within mitochondrial and chloroplasts were discovered. Previous phylogenetic analysis revealed that Get3 sequences of Embryophyta form two clades representing cytosolic (“a”) and organellar (“bc”) GET3 homologs, respectively. Cellular fractionation of Arabidopsis thaliana seedlings and usage of the self-assembly GFP system in protoplasts verified the cytosolic (ATGet3a), plastidic (ATGet3b) and mitochondrial (ATGet3c) localization of the different homologs. The identified plant homologs of Get1 and Get4 in A. thaliana are localized in ER and cytosol, respectively, implicating a degree of conservation of the GET pathway in A. thaliana. Transient expression of Get3 homologs of Solanum lycopersicum, Medicago × varia or Physcomitrella patens with the self-assembly GFP technique in homologous and heterologous systems verified that multiple Get3 homologs with differing subcellular localizations are common in plants. Chloroplast localized Get3 homologs were detected in all tested plant systems. In contrast, mitochondrial localized Get3 homologs were not identified in S. lycopersicum, or P. patens, while we confirmed on the example of A. thaliana proteins that mitochondrial localized Get3 proteins are properly targeted in S. lycopersicum as well.  相似文献   

11.
A variety of conventional methods allow the expression of multiple foreign proteins in plants by transgene stacking or pyramiding. However, most of these approaches have significant drawbacks. We describe a novel alternative, using a single transgene to coordinate expression of multiple proteins that are encoded as a polyprotein capable of dissociating into component proteins on translation. We demonstrate that this polyprotein system is compatible with the need to target proteins to a variety of subcellular locations, either cotranslationally or posttranslationally. It can also be used to coordinate the expression of selectable marker genes and effect genes or to link genes that are difficult to assay to reporter genes that are easily monitored. The unique features of this polyprotein system are based on the novel activity of the 2A peptide of Foot-and-mouth disease virus (FMDV) that acts cotranslationally to effect a dissociation of the polyprotein while allowing translation to continue. This polyprotein system has many applications both as a research tool and for metabolic engineering and protein factory applications of plant biotechnology.  相似文献   

12.

Background

The C3bot1 protein (∼23 kDa) from Clostridium botulinum ADP-ribosylates and thereby inactivates Rho. C3bot1 is selectively taken up into the cytosol of monocytes/macrophages but not of other cell types such as epithelial cells or fibroblasts. Most likely, the internalization occurs by a specific endocytotic pathway via acidified endosomes.

Methodology/Principal Findings

Here, we tested whether enzymatic inactive C3bot1E174Q serves as a macrophage-selective transport system for delivery of enzymatic active proteins into the cytosol of such cells. Having confirmed that C3bot1E174Q does not induce macrophage activation, we used the actin ADP-ribosylating C2I (∼50 kDa) from Clostridium botulinum as a reporter enzyme for C3bot1E174Q-mediated delivery into macrophages. The recombinant C3bot1E174Q-C2I fusion toxin was cloned and expressed as GST-protein in Escherichia coli. Purified C3bot1E174Q-C2I was recognized by antibodies against C2I and C3bot and showed C2I-specific enzyme activity in vitro. When applied to cultured cells C3bot1E174Q-C2I ADP-ribosylated actin in the cytosol of macrophages including J774A.1 and RAW264.7 cell lines as well as primary cultured human macrophages but not of epithelial cells. Together with confocal fluorescence microscopy experiments, the biochemical data indicate the selective uptake of a recombinant C3-fusion toxin into the cytosol of macrophages.

Conclusions/Significance

In summary, we demonstrated that C3bot1E174Q can be used as a delivery system for fast, selective and specific transport of enzymes into the cytosol of living macrophages. Therefore, C3-based fusion toxins can represent valuable molecular tools in experimental macrophage pharmacology and cell biology as well as attractive candidates to develop new therapeutic approaches against macrophage-associated diseases.  相似文献   

13.
P J Robinson 《FEBS letters》1991,282(2):388-392
A 96,000 dalton phosphoprotein, called dephosphin, is phosphorylated in intact synaptosomes from rat brain and is rapidly dephosphorylated upon depolarisation-dependent calcium entry. A 96,000 dalton phosphoprotein is also a substrate of protein kinase C in synaptosomal cytosol, and the aim of the study was to determine whether the two proteins may be the same. Dephosphin in intact synaptosomes and the 96,000 dalton protein kinase C substrate comigrated on polyacrylamide gels. Both phosphoproteins had identical phosphopeptide maps after digestion with V8 protease. Both phosphoproteins ran on isoelectric focussing gels with a pI of 6.3-6.7 and focussed as a series of 5-6 spots. Both proteins were phosphorylated exclusively on serine. Both proteins could be resolved into a doublet on longer polyacrylamide gels. The two subunits were of 96 and 93 kDa in both phosphorylation conditions and had dissimilar phosphopeptide maps. However, phosphopeptide maps of either the 96 or 93 kDa subunits were identical in intact synaptosomes compared with synaptosomal cytosol. These results show that a phosphoprotein phosphorylated in intact synaptosomes and a 96,000 dalton protein kinase C substrate from rat brain synaptosomal cytosol are the same, and raise the possibility that protein kinase C is the protein kinase responsible for dephosphin phosphorylation in intact synaptosomes.  相似文献   

14.
The development of peptide-based therapeutics has suffered from challenges associated with delivery to intact tissue. In skin, an array of protein targets resides only tens of micrometers below the surface; however, because of difficulties in traversing the cutaneous barrier, the potentialfor peptide-based therapeutics remains unrealized. We have developed a general approach for topical peptide delivery into skin using releasable protein transduction sequences to enable peptide transport across tissue boundaries. Upon entry into the cell, the disulfide linkage between the peptide transduction sequences and peptide cargo is cleaved, permitting the dissociation of the highly charged peptide transduction sequences from the active peptide. A protype cargo peptide, the hemagglutinin (HA) epitope, was conjugated to a hepta-arginine protein transduction sequence via a releasable disulfide linkage. This construct penetrated the skin to deep dermis within 1 h after topical application. Consistent with the dissociation of the protein transduction and cargo sequences, absorbed protein transduction sequences and HA peptides displayed differential intracellular localization. Reversible protein transduction sequence linkage thus represents a noninvasive platform for tissue delivery of intact peptides with no requirement for viral vectors or parenteral injection and may be of broad utility in molecular therapy.  相似文献   

15.
Genetic transformation of monocotyledonous plants still presents a challenge for plant biologists and biotechnologists because monocots are difficult to transform with Agrobacterium tumefaciens, whereas other transgenesis methods, such as gold particle-mediated transformation, result in poor transgene expression because of integration of truncated DNA molecules. We developed a method of transgene delivery into monocots. This method relies on the use of an in vitro-prepared nano-complex consisting of transferred DNA, virulence protein D2, and recombination protein A delivered to triticale microspores with the help of a Tat2 cell-penetrating peptide. We showed that this approach allowed for single transgene copy integration events and prevented degradation of delivered DNA, thus leading to the integration of intact copies of the transgene into the genome of triticale plants. This resulted in transgene expression in all transgenic plants regenerated from microspores transfected with the full transferred DNA/protein complex. This approach can easily substitute the bombardment technique currently used for monocots and will be highly valuable for plant biology and biotechnology.  相似文献   

16.
Initial cellular uptake of cell penetrating peptide (CPP) linked macromolecules is usually endosomal, with passage from endosome to cytosol a major limitation to efficient delivery. To gain a better understanding of the passage of the CPP-linked proteins, we studied the uptake and localization of CPP-linked proteins that contained two different forms of fluorescent markers, GFP protein and chemically conjugated tetramethylrhodamine, in living cells. Rhodamine labeled TAT-GFP was internalized in multiple cell lines including HEK293, N18-RE-105, hippocampal slices, and human neural progenitor cells and showed predominantly endosomal localization of both fluorescent markers. Cytosolic localization of some rhodamine label was detected to suggest that some of the GFP label had exited from the endosome. However, quantification of the distribution of the rhodamine and GFP label indicated that the protein location was primarily endosomal and that the distribution of TAT-GFP was not significantly different than that of an exclusively endosomal localized exogenous protein (tetanus toxin fragment C - TTC). As a result, photochemical internalization (PCI) was evaluated and caused a significant quantitative redistribution of cellular fluorescence of rhodamine and GFP labels to demonstrate increased cytosolic delivery of GFP. While rhodamine-labeled TAT-GFP showed cytosolic delivery with exposure to specific wavelengths of fluorescent illumination, a similarly labeled GFP fusion protein containing the membrane binding domain of TTC did not mediate PCI in N18-RE-105 cells.  相似文献   

17.
The receptor protein for the mitochondrial protein precursor synthesized in the cytosol was extensively purified from the mitochondrial membrane fraction by affinity column chromatography using a synthetic peptide containing the extrapeptide of ornithine aminotransferase as a ligand. The purified fraction contained two major proteins with molecular masses of 52 and 29 kDa. Of these proteins, only the 29 kDa protein bound to the extrapeptide of ornithine aminotransferase. Furthermore, anti-29 kDa protein Fab fragments inhibited the import of pre-ornithine aminotransferase into mitochondria, suggesting that the 29 kDa protein plays an essential role in the process of import of the mitochondrial protein precursor.  相似文献   

18.
Legionella pneumophila, which is the causative organism of Legionnaireś disease, translocates numerous effector proteins into the host cell cytosol by a type IV secretion system during infection. Among the most potent effector proteins of Legionella are glucosyltransferases (lgt''s), which selectively modify eukaryotic elongation factor (eEF) 1A at Ser-53 in the GTP binding domain. Glucosylation results in inhibition of protein synthesis. Here we show that in vitro glucosylation of yeast and mouse eEF1A by Lgt3 in the presence of the factors Phe-tRNAPhe and GTP was enhanced 150 and 590-fold, respectively. The glucosylation of eEF1A catalyzed by Lgt1 and 2 was increased about 70-fold. By comparison of uncharged tRNA with two distinct aminoacyl-tRNAs (His-tRNAHis and Phe-tRNAPhe) we could show that aminoacylation is crucial for Lgt-catalyzed glucosylation. Aminoacyl-tRNA had no effect on the enzymatic properties of lgt''s and did not enhance the glucosylation rate of eEF1A truncation mutants, consisting of the GTPase domain only or of a 5 kDa peptide covering Ser-53 of eEF1A. Furthermore, binding of aminoacyl-tRNA to eEF1A was not altered by glucosylation. Taken together, our data suggest that the ternary complex, consisting of eEF1A, aminoacyl-tRNA and GTP, is the bona fide substrate for lgt''s.  相似文献   

19.
Abstract Escherichia coli heat-labile enterotoxin B subunit (EtxB) has been proposed as a potential protein carrier for the delivery of heterologous peptides to target cells, particularly for the oral delivery of epitopes to the mucosal immune system. In this study, two extensions to the C-terminus of EtxB were genetically engineered that correspond to a well-characterized neutralising epitope of glycoprotein D from herpes simplex virus (EtxB-gD) and to the C-terminal nine amino acids from the 38 kDa subunit of HSV-encoded ribonucleotide reductase (EtxB-R2). Here we describe the extracellular secretion of the two hybrid EtxBs from a marine Vibrio harbouring a broad-host range inducible expression vector containing the hybrid genes. Large amounts of intact fusion proteins (15–20 mg per liter of culture) were secreted into the medium upon induction. These hybrid proteins maintained the receptor-binding activity of the native toxin as well as being cross-reactive with anti-EtxB and anti-heterologous peptide monoclonal antibodies.  相似文献   

20.
Translocation of pathogen effector proteins into the host cell cytoplasm is a key determinant for the pathogenicity of many bacterial and oomycete plant pathogens. A number of secreted fungal avirulence (Avr) proteins are also inferred to be delivered into host cells, based on their intracellular recognition by host resistance proteins, including those of flax rust (Melampsora lini). Here, we show by immunolocalization that the flax rust AvrM protein is secreted from haustoria during infection and accumulates in the haustorial wall. Five days after inoculation, the AvrM protein was also detected within the cytoplasm of a proportion of plant cells containing haustoria, confirming its delivery into host cells during infection. Transient expression of secreted AvrL567 and AvrM proteins fused to cerulean fluorescent protein in tobacco (Nicotiana tabacum) and flax cells resulted in intracellular accumulation of the fusion proteins. The rust Avr protein signal peptides were functional in plants and efficiently directed fused cerulean into the secretory pathway. Thus, these secreted effectors are internalized into the plant cell cytosol in the absence of the pathogen, suggesting that they do not require a pathogen-encoded transport mechanism. Uptake of these proteins is dependent on signals in their N-terminal regions, but the primary sequence features of these uptake regions are not conserved between different rust effectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号