首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Asia》2020,23(2):504-508
The small hive beetle (Aethina tumida Murray) is an invasive pest affecting honey bee colonies. The beetles are known to be attracted to volatiles from hive products and honey bees like Apis mellifera L. Previously we reported the presence of five major compounds from the volatile extracts of hive materials; ethyl linolenate and ethyl palmitate from pollen dough, oleamide and tetracosane in fermenting honey, and oleamide and 5-methyl-2-phenyl-1H-indole from A. mellifera worker bees. This study tested the attractiveness of the aforementioned five volatile organic compounds to small hive beetles (SHB) by Y-tube olfactometric bioassay. Ethyl linolenate was highly attractive to both male and female adults of SHB. Ethyl palmitate was attractive to SHB only at higher concentration (0.01–01 mg/ml). Interestingly, tetracosane, 5-methyl-2-phenyl-1H-indole and oleamide were repellent for SHB of both sexes, but ethyl linolenate and ethyl palmitate as components of honey bee brood pheromone attracted SHB. The results highlight that SHB differentially utilizes volatile chemicals from hive materials and honey bees as cues to locate honey bee hives.  相似文献   

2.
Recently, the widespread distribution of pesticides detected in the hive has raised serious concerns about pesticide exposure on honey bee (Apis mellifera L.) health. A larval rearing method was adapted to assess the chronic oral toxicity to honey bee larvae of the four most common pesticides detected in pollen and wax - fluvalinate, coumaphos, chlorothalonil, and chloropyrifos - tested alone and in all combinations. All pesticides at hive-residue levels triggered a significant increase in larval mortality compared to untreated larvae by over two fold, with a strong increase after 3 days of exposure. Among these four pesticides, honey bee larvae were most sensitive to chlorothalonil compared to adults. Synergistic toxicity was observed in the binary mixture of chlorothalonil with fluvalinate at the concentrations of 34 mg/L and 3 mg/L, respectively; whereas, when diluted by 10 fold, the interaction switched to antagonism. Chlorothalonil at 34 mg/L was also found to synergize the miticide coumaphos at 8 mg/L. The addition of coumaphos significantly reduced the toxicity of the fluvalinate and chlorothalonil mixture, the only significant non-additive effect in all tested ternary mixtures. We also tested the common ‘inert’ ingredient N-methyl-2-pyrrolidone at seven concentrations, and documented its high toxicity to larval bees. We have shown that chronic dietary exposure to a fungicide, pesticide mixtures, and a formulation solvent have the potential to impact honey bee populations, and warrants further investigation. We suggest that pesticide mixtures in pollen be evaluated by adding their toxicities together, until complete data on interactions can be accumulated.  相似文献   

3.
We conducted research on the potential impacts of fluvalinate and coumaphos on honey bee, Apis mellifera L., queen viability and health. Queens were reared in colonies that had been treated with differing amounts of both fluvalinate and coumaphos. Pre- and posttreatment samples of both wax and bees were collected from all of the colonies and analyzed for total concentrations of fluvalinate and coumaphos. All queens were measured for queen weight, ovarial weight, and number of sperm in the spermathecae. The queens treated with high doses of fluvalinate weighed significantly less than low-dose or control queens, but otherwise appeared to develop normally. The highest fluvalinate concentrations were observed in the wax and queen cells of the high-dose group. The developing queens in colonies treated with as little as one coumaphos-impregnated strip for more than 24 h suffered a high mortality rate. Several of the queens showed sublethal effects from the coumaphos, including physical abnormalities and atypical behavior. The queens exposed to coumaphos weighed significantly less and had lower ovary weights than the control group queens. The highest coumaphos concentrations were observed in the queen cells and wax of the high-dose groups.  相似文献   

4.
The decline of honeybees and other pollinating insects is a current cause for concern. A major factor implicated in their decline is exposure to agricultural chemicals, in particular the neonicotinoid insecticides such as imidacloprid. Honeybees are also subjected to additional chemical exposure when beekeepers treat hives with acaricides to combat the mite Varroa destructor. Here, we assess the effects of acute sublethal doses of the neonicotinoid imidacloprid, and the organophosphate acaricide coumaphos, on honey bee learning and memory. Imidacloprid had little effect on performance in a six-trial olfactory conditioning assay, while coumaphos caused a modest impairment. We report a surprising lack of additive adverse effects when both compounds were administered simultaneously, which instead produced a modest improvement in learning and memory.  相似文献   

5.
Temperate races of honey bees (Apis mellifera) are able to survive cold temperatures by forming thermoregulatory clusters. Small hive beetles (Aethina tumida), which inhabit honey bee colonies in their native range of sub-Saharan Africa and in their introduced ranges of the United States and Australia, are able to endure temperate climates by entering the bee cluster when cold temperatures persist. We conducted an experiment to address the temporal aspects of the cluster-entering behavior of small hive beetles. We did this by exposing beetle-infested observation bee hives to different ambient temperatures and counting the number of beetles remaining in confinement sites on the hive’s periphery at each temperature. The resulting regression analyses suggest that the beetles enter the cluster more rapidly than they exit it, a behavior possibly linked to a colony’s decision to form and dismantle a cluster.  相似文献   

6.
We performed two experiments to study the hiding behavior of various beetles introduced into colonies of European honey bees, Apis mellifera L. In the first experiment, we studied the spatial distribution within confinement sites of six beetle species at eight time intervals following their introduction into honey bee observation hives. For each beetle species, we also determined whether the beetle’s level of integration into honey bee colonies correlated with its ability to hide at confinement sites within colonies. In experiment 1, we used five species of nitidulid beetles and one species of tenebrionid beetle, collectively representing three differing levels of integration into honey bee colonies. These species (and their level of integration) included Aethina tumida (highly integrated), Lobiopa insularis, and Epuraea luteola (accidentals), and Carpophilus humeralis, C. hemipterus, and Tribolium castaneum (non-integrated). There were always more A. tumida found in confinement sites than beetles of the other species. This difference became more pronounced over the 24-h observation period. In experiment 2, we determined whether previous A. tumida occupation of confinement sites predisposed those sites to hosting invading A. tumida never before exposed to honey bee colonies. The results from this study indicate that invading A. tumida find hiding sites within honey bee colonies more rapidly if other A. tumida previously occupied the confinement sites. Collectively, these studies suggest that A. tumida is unique among beetle invaders with respect to its ability to seek out and occupy confinement sites inside honey bee colonies.  相似文献   

7.
Importance of boron compounds in wood preservation is increasing due to their low environmental impact, high efficacy and the fact that many other active ingredients have been removed from the market after the introduction of the Biocidal Products Directive. The most important drawback of boron is prominent leaching in wet environment. In order to improve their fixation, and performance against wood decay fungi, boric acid was combined with montan wax emulsion. Possible synergistic effects of boric acid and montan wax were determined according to modified EN 113 procedure. Norway spruce and beech wood specimens were exposed to three white rot (Trametes versicolor, Pleurotus ostreatus and Hypoxylon fragiforme) and brown rot wood decay fungi (Gloeophyllum trabeum, Antrodia vaillantii and Serpula lacrymans) for 12 weeks. Boron leaching from vacuum/pressure treated Norway spruce wood was determined according to the continuous (EN 84 and ENV 1250-2) and non-continuous (OECD and prCEN/TS 15119-1) procedures. Boron was determined with ICP mass spectrometry in collected leachates. The results of the fungicidal tests clearly showed that montan wax emulsion and boric acid act synergistically against tested wood decay fungi. Approximately 50% lower boric acid retentions are required in combination with montan wax emulsions to achieve sufficient protection against wood rotting fungi. However, it is even more important that all leaching tests performed proved that the addition of montan wax decreased boron leaching from impregnated specimens for 20% up to 50%.  相似文献   

8.
The proportion of Varroa jacobsoni Oudemans that were alive and mobile when they fell from honey bees, Apis mellifera L., in hives was measured during a 20-wk period to determine the potential use of systems that prevent these mites from returning to the bees. Traps designed to discriminate between the live, fallen mites and those that are dead or immobile were used on hive bottom boards. A large fraction of the fallen mites was alive when acaricide was not in use and also when fluvalinate or coumaphos treatments were in the hives. The live proportion of mitefall increased during very hot weather. The proportion of mitefall that was alive was higher at the rear and sides of the hive compared with that falling from center frames near the hive entrance. More sclerotized than callow mites were alive when they fell. A screen-covered trap that covers the entire hive bottom board requires a sticky barrier to retain all live mites. This trap or another method that prevents fallen, viable mites from returning to the hive is recommended as a part of an integrated control program. It also may slow the development of acaricide resistance in V. jacobsoni and allow the substitution of less hazardous chemicals for the acaricides currently in use.  相似文献   

9.
Hawthorne DJ  Dively GP 《PloS one》2011,6(11):e26796

Background

Honey bees (Apis mellifera) have recently experienced higher than normal overwintering colony losses. Many factors have been evoked to explain the losses, among which are the presence of residues of pesticides and veterinary products in hives. Multiple residues are present at the same time, though most often in low concentrations so that no single product has yet been associated with losses. Involvement of a combination of residues to losses may however not be excluded. To understand the impact of an exposure to combined residues on honey bees, we propose a mechanism-based strategy, focusing here on Multi-Drug Resistance (MDR) transporters as mediators of those interactions.

Methodology/Principal Findings

Using whole-animal bioassays, we demonstrate through inhibition by verapamil that the widely used organophosphate and pyrethroid acaricides coumaphos and τ-fluvalinate, and three neonicotinoid insecticides: imidacloprid, acetamiprid and thiacloprid are substrates of one or more MDR transporters. Among the candidate inhibitors of honey bee MDR transporters is the in-hive antibiotic oxytetracycline. Bees prefed oxytetracycline were significantly sensitized to the acaricides coumaphos and τ-fluvalinate, suggesting that the antibiotic may interfere with the normal excretion or metabolism of these pesticides.

Conclusions/Significance

Many bee hives receive regular treatments of oxytetracycline and acaricides for prevention and treatment of disease and parasites. Our results suggest that seasonal co-application of these medicines to bee hives could increase the adverse effects of these and perhaps other pesticides. Our results also demonstrate the utility of a mechanism-based strategy. By identifying pesticides and apicultural medicines that are substrates and inhibitors of xenobiotic transporters we prioritize the testing of those chemical combinations most likely to result in adverse interactions.  相似文献   

10.
An apiary trial on the use of two acaricide formulations (gel-Apiguard and vermiculite and Api Life VAR) in the control of Varroa destructor (Anderson & Trueman) was conducted in summer 2001 in Sardinia (Italy). The main goals were 1) to determine their effectiveness against V. destructor, taking into account natural mite mortality in control hives; and simultaneously 2) to determine the persistence of both formulations and residues in honey and wax, by using a new extraction method. Both thymol formulations, after the treatments, reduced significantly the levels of mite infestations of adult bees and sealed brood, but their efficacy, expressed as percentage of mortality, was lower for both products (Api Life VAR 74.8 +/- 13.1 and 81.3 +/- 15.5, Apiguard 90.4 +/- 8.3 and 95.5 +/- 8.7 for sealed brood and adult bees, respectively) than the efficacy previously obtained with the same products in other experimental conditions. Moreover, a considerable colony-to-colony variability was recorded, and a significant negative effect of the thymol treatments on colony development was observed. During 2 wk of treatment, the bees removed nearly 95% of all the applied product (gel or vermiculite). Residues found in honey collected from the nest varied from 0.12 to 4.03 mg/kg for Api Life VAR and from 0.40 to 8.80 mg/kg for Apiguard. The residues were relatively higher in wax (Api Life VAR = 21.6 +/- 13.0; Apiguard = 147.7 +/- 188.9) than in honey, because thymol is a fat-soluble ingredient.  相似文献   

11.
Two formic acid autumnal treatments, gel packets (BeeVar formulation) and impregnated paperwick (Liebig-Dispenser), were tested in apiary to evaluate their effectiveness against Varroa destructor Anderson & Trueman and their residues in honey in a Mediterranean region (Sardinia, Italy). Both treatments were efficient in the apiary control of the varroosis, with values of percentage of mite mortality ranging between 93.6 and 100%, without statistical differences between them. The more gradual release of formic acid from the gel application allowed a longer action (2 wk for each treatment) compared with the Liebig-Dispenser (approximately 3d for each treatment). The rate of daily evaporation ranged between approximately 5 and 9 g/d from BeeVar and approximately 26 and 35 g/d from the Liebig-Dispenser, in the first and second treatment, respectively. The total amount of formic acid administered per hive during all the treatment period was approximately 200 g for either treatment. A significantly higher adult bee mortality was recorded in the Liebig-Dispenser-treated hives compared with the BeeVar-treated group. On the contrary, BeeVar treatment produced an interruption of brood reared, whereas the extension of the sealed brood area of the Liebig-Dispenser-treated hives was not significantly different from that of the control hives. Neither queen mortality nor robbing activity was observed due to the treatments. Formic acid residues in honey collected in the nest were 3,855 +/- 2,061 and 3,030 +/- 1,624 mg/kg for the BeeVar- and the Liebig-Dispenser-treated hives, respectively. After 21 d from the end of the treatment, the residues fell to 1,261 +/- 1,054 and 794 +/- 518 mg/kg for the honey sampled from the BeeVar and Liebig-Dispenser groups, respectively.  相似文献   

12.
Honey bee population declines are of global concern. Numerous factors appear to cause these declines including parasites, pathogens, malnutrition and pesticides. Residues of the organophosphate acaricide coumaphos and the neonicotinoid insecticide imidacloprid, widely used to combat Varroa mites and for crop protection in agriculture, respectively, have been detected in wax, pollen and comb samples. Here, we assess the effects of these compounds at different doses on the viability of sperm stored in the honey bee queens’ spermatheca. Our results demonstrate that sub-lethal doses of imidacloprid (0.02 ppm) decreased sperm viability by 50%, 7 days after treatment. Sperm viability was a downward trend (about 33%) in queens treated with high doses of coumaphos (100 ppm), but there was not significant difference. The expression of genes that are involved in development, immune responses and detoxification in honey bee queens and workers exposed to chemicals was measured by qPCR analysis. The data showed that expression levels of specific genes were triggered 1 day after treatment. The expression levels of P450 subfamily genes, CYP306A1, CYP4G11 and CYP6AS14 were decreased in honey bee queens treated with low doses of coumaphos (5 ppm) and imidacloprid (0.02 ppm). Moreover, these two compounds suppressed the expression of genes related to antioxidation, immunity and development in queens at day 1. Up-regulation of antioxidants by these compounds in worker bees was observed at day 1. Coumaphos also caused a repression of CYP306A1 and CYP4G11 in workers. Antioxidants appear to prevent chemical damage to honey bees. We also found that DWV replication increased in workers treated with imidacloprid. This research clearly demonstrates that chemical exposure can affect sperm viability in queen honey bees.  相似文献   

13.
The effect of using acaricides to control varroa mites has long been a concern to the beekeeping industry due to unintended negative impacts on honey bee health. Irregular ontogenesis, suppression of immune defenses, and impairment of normal behavior have been linked to pesticide use. External stressors, including parasites and the pathogens they vector, can confound studies on the effects of pesticides on the metabolism of honey bees. This is the case of Varroa destructor, a mite that negatively affects honey bee health on many levels, from direct parasitism, which diminishes honey bee productivity, to vectoring and/or activating other pathogens, including many viruses. Here we present a gene expression profile comprising genes acting on diverse metabolic levels (detoxification, immunity, and development) in a honey bee population that lacks the influence of varroa mites. We present data for hives treated with five different acaricides; Apiguard (thymol), Apistan (tau-fluvalinate), Checkmite (coumaphos), Miteaway (formic acid) and ApiVar (amitraz). The results indicate that thymol, coumaphos and formic acid are able to alter some metabolic responses. These include detoxification gene expression pathways, components of the immune system responsible for cellular response and the c-Jun amino-terminal kinase (JNK) pathway, and developmental genes. These could potentially interfere with the health of individual honey bees and entire colonies.  相似文献   

14.
Three slow release experimental rotenone formulations were tested to evaluate their effectiveness against Varroa destructor Anderson & Trueman in colonies with sealed brood and to determine whether they left residues in honey and bees wax: we evaluated cardboard strip containing 1 g rotenone and two types of polyvinyl chloride (PVC) strips containing 1 (high-dose) and 0.5 (low-dose) g of rotenone, respectively. In general, the efficacy of the treatments, expressed as percentage of mite mortality, was highly variable in all treatment groups (range, 0-96.8%). The highest effectiveness was obtained with the high-dose-PVC strips, which caused an average percentage of mortality ranging between 47 and 69% in the adult bees and sealed brood, respectively. At the end of the treatment, rotenone residues ranged between 0.03 and 0.06 and 1.5-144.0 mg/kg in honey and wax, respectively. Rotenone residues in wax were still detectable 4 mo after the treatment period, whereas no residues were found in honey. The higher residues content and persistence recorded in wax samples, was probably due to the lipophilic nature of rotenone. A reduction in the amount of adults was recorded for the group treated with high-dose-PVC strips compared with the untreated colonies. Toxicological risks connected with the use of rotenone and the low maximum level recently fixed by European legislation (0.01 mg/kg) suggest that rotenone is not a good candidate for reducing varroa populations in honey bee colonies.  相似文献   

15.

Background

Recent declines in honey bees for crop pollination threaten fruit, nut, vegetable and seed production in the United States. A broad survey of pesticide residues was conducted on samples from migratory and other beekeepers across 23 states, one Canadian province and several agricultural cropping systems during the 2007–08 growing seasons.

Methodology/Principal Findings

We have used LC/MS-MS and GC/MS to analyze bees and hive matrices for pesticide residues utilizing a modified QuEChERS method. We have found 121 different pesticides and metabolites within 887 wax, pollen, bee and associated hive samples. Almost 60% of the 259 wax and 350 pollen samples contained at least one systemic pesticide, and over 47% had both in-hive acaricides fluvalinate and coumaphos, and chlorothalonil, a widely-used fungicide. In bee pollen were found chlorothalonil at levels up to 99 ppm and the insecticides aldicarb, carbaryl, chlorpyrifos and imidacloprid, fungicides boscalid, captan and myclobutanil, and herbicide pendimethalin at 1 ppm levels. Almost all comb and foundation wax samples (98%) were contaminated with up to 204 and 94 ppm, respectively, of fluvalinate and coumaphos, and lower amounts of amitraz degradates and chlorothalonil, with an average of 6 pesticide detections per sample and a high of 39. There were fewer pesticides found in adults and brood except for those linked with bee kills by permethrin (20 ppm) and fipronil (3.1 ppm).

Conclusions/Significance

The 98 pesticides and metabolites detected in mixtures up to 214 ppm in bee pollen alone represents a remarkably high level for toxicants in the brood and adult food of this primary pollinator. This represents over half of the maximum individual pesticide incidences ever reported for apiaries. While exposure to many of these neurotoxicants elicits acute and sublethal reductions in honey bee fitness, the effects of these materials in combinations and their direct association with CCD or declining bee health remains to be determined.  相似文献   

16.
Abstract. The distribution of coumaphos (the active component of perizin), fed to individual honeybees, in the honey stomach, haemolymph, midgut and rectum was studied over time. Concurrently, we investigated changes occurring in the haemolymph volume due to the ingestion of perizin, and we examined the influence of a Nosema apis infection on the survival of bees that had been fed perizin. The maximum amount of coumaphos in the haemolymph was found 4h after ingestion, but it was only 2–3% of the total amount recovered. After 15 min 55% of the total amount of the coumaphos recovered was in the honey stomach and available for distribution within the colony by trophallaxis, while 45% had already passed the proventriculus. Ultimately the coumaphos accumulated in the rectum. The volume of the haemolymph significantly increased in bees which were fed perizin compared with bees which were fed syrup and with non-fed bees. The lethal dose of coumaphos to 3-day-old bees was three times higher than the lethal dose for 18- and 1-day-old bees. The number of Nosema apis spores in the alimentary canal was not correlated with the survival of the bees that were fed perizin. It is concluded that coumaphos can act as a systemic agent and can be distributed to other individuals in a colony through trophallaxis, but these effects are limited to a maximum period of 12h after ingestion.  相似文献   

17.
Hybridisation and introgression can have negative impacts on regional biodiversity through the potential erosion of locally adapted lineages. The honey bee (Apis mellifera L.) occurs in twenty-seven subspecies across Europe, is an extremely economically important insect, yet threatened by multifarious impacts. Transhumance of the most commercially appealing varieties threatens native honey bee diversity by introgression and subsequent loss of locally adapted traits, or even by complete removal of some subspecies from parts of the range. Here levels of admixture and introgression are examined in UK honey bees suspected to be from hives of the dark European honey bee (Apis mellifera mellifera). Microsatellite DNA and STRUCTURE analyses reveal that the studied populations are generally admixed, and discriminant analysis of principal components shows them to be intermediate between A. m. mellifera and Apis mellifera carnica populations. However, examining mitochondrial haplotype data (COI-COII intergenic spacer region) and nuclear DNA reveal that some hives are relatively pure (from 4 to 15 hives, depending on the Q-value threshold). Genetic diversity is relatively high in comparison with other European populations. Implications for conservation and management are discussed.  相似文献   

18.
The small hive beetle (Aethina tumida Murray) is a scavenger and facultative predator in honey bee colonies, where it feeds on pollen, honey, and bee brood. Although a minor problem in its native Africa, it is an invasive pest of honey bees in the United States and Australia. Adult beetles enter bee hives to oviposit and feed. Larval development occurs within the hive, but mature larvae leave the hive to pupate in soil. The numbers leaving, which can be estimated by trapping, measure the reproductive success of adult beetles in the hive over any given period of time. We describe a trap designed to intercept mature larvae as they reach the end of the bottom board on their way to the ground. Trap efficiency was estimated by releasing groups of 100 larvae into empty brood boxes and counting the numbers trapped. Some larvae escaped, but mean efficiency ranged from 87.2 to 94.2%. We envision the trap as a research tool for study of beetle population dynamics, and we used it to track numbers of larvae leaving active hives for pupation in the soil. The traps detected large increases and then decreases in numbers of larvae leaving colonies that weakened and died. They also detected small numbers of larvae leaving strong European and African colonies, even when no larvae were observed in the hives.  相似文献   

19.
《Journal of Asia》2021,24(4):1153-1157
Natural honey is a highly sought-after product owing to its biological uniqueness. We developed a suitable analytical method for the quantitative analysis of (E)-2-decenedioic acid in Korean natural and sugar-fed honey samples. A total of 258 honey samples were screened using ultra-performance liquid chromatography (UPLC) for the detection and quantification of (E)-2-decenedioic acid. (E)-2-decenedioic acid was present in high concentrations (122–127 mg/kg) in sugar-fed honey but only in trace amounts (10.9–14.8 mg/kg) in natural honey. Findings indicate that the UPLC method is suitable and reliable for the quantitative evaluation of (E)-2-decenedioic acid in honey. We expect that this method will be applicable for detecting honey adulteration.  相似文献   

20.
Frass from the greater wax moth, Galleria mellonella, obtained from feral colonies of honey bees, Apis mellifera; from managed honey bee colonies; and from a laboratory culture of the wax moth was sampled for aerobic Gram-positive spore-forming rods. One hundred eighty-five strains belonging to the genus Bacillus were isolated, and most were identified. One hundred and three of the isolates were from frass from the wax moth culture, 61 were from frass from managed honey bee colonies, and 21 were from frass from feral honey bee colonies. The species most frequently isolated varied with the source. Fifty-eight isolates from frass from managed honey bee colonies were B. cereus which was isolated from this source only, but B. sphaericus was the most frequent isolate from frass from the wax moth culture. Bacillus megaterium and organisms belonging to the B. alvei-B. thiaminolyticus spectrum were the most frequent isolates from frass from feral honey bee colonies. Most strains isolated produced caprylate esterase-lipase, leucine aminopeptidase, and phosphoamidase. The numbers of isolates, the species, and the enzymatic activity of the strains varied with the source of the frass. In fact, the complete microbial complement varied with the source. These results are discussed in relation to possible roles of Bacillus spp. in the nutrition of the wax moth as well as the microbial ecology of the honey bee colony.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号