首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jean JM  Hall KB 《Biochemistry》2004,43(31):10277-10284
The structure and dynamics of DNA trimers are experimentally assessed using the fluorescent purine analogue 2-aminopurine (2AP), incorporating 2AP between purine and pyrimidine bases to form 5'dXp2APpY3' molecules. Circular dichroism and fluorescence quenching of the 2AP show that the bases are stacked; at the same time, fluorescence decay lifetimes are heterogeneous, indicative of conformational sampling. 2AP does not exhibit the long fluorescence decay time characteristic of the free nucleoside, suggesting that its motions in the trimers bring it into proximity of the neighboring bases, resulting in efficient charge transfer and average fluorescence lifetimes on the order of 1-2 ns.  相似文献   

2.
We investigated the native-state dynamics of the Bacillus caldolyticus cold-shock protein mutant Bc-Csp L66E, using fluorescence and appropriate molecular dynamics methods. Two fluorescence lifetimes were found, the amplitudes of which agree very well with tryptophan rotamer populations, obtained from parallel tempering calculations. Rotamer lifetimes were predicted by transition-state theory from high-temperature simulations. Transition pathways were extracted from the transition rates between individual rotameric states. The molecular dynamics also reveal the loop fluctuations in the native state.  相似文献   

3.
The peptide bond quenches tryptophan fluorescence by excited-state electron transfer, which probably accounts for most of the variation in fluorescence intensity of peptides and proteins. A series of seven peptides was designed with a single tryptophan, identical amino acid composition, and peptide bond as the only known quenching group. The solution structure and side-chain chi(1) rotamer populations of the peptides were determined by one-dimensional and two-dimensional (1)H-NMR. All peptides have a single backbone conformation. The -, psi-angles and chi(1) rotamer populations of tryptophan vary with position in the sequence. The peptides have fluorescence emission maxima of 350-355 nm, quantum yields of 0.04-0.24, and triple exponential fluorescence decays with lifetimes of 4.4-6.6, 1.4-3.2, and 0.2-1.0 ns at 5 degrees C. Lifetimes were correlated with ground-state conformers in six peptides by assigning the major lifetime component to the major NMR-determined chi(1) rotamer. In five peptides the chi(1) = -60 degrees rotamer of tryptophan has lifetimes of 2.7-5.5 ns, depending on local backbone conformation. In one peptide the chi(1) = 180 degrees rotamer has a 0.5-ns lifetime. This series of small peptides vividly demonstrates the dominant role of peptide bond quenching in tryptophan fluorescence.  相似文献   

4.
The interaction of pyridoxine (Vitamin B6) with bovine serum albumin (BSA) is investigated under pseudo-physiological conditions by UV–Vis, fluorescence and FTIR spectroscopy. The intrinsic fluorescence of BSA was quenched by VB6, which was rationalized in terms of the static quenching mechanism. According to fluorescence quenching calculations, the bimolecular quenching constant (kq), dynamic quenching (KSV) and static quenching (KLB) at 310 K were obtained. The efficiency of energy transfer and the distance between the donor (BSA) and the acceptor (VB6) were calculated by Foster’s non-radiative energy transfer theory and were equal to 41.1% and 2.11 nm.The collected UV–Vis and fluorescence spectra were combined into a row-and column-wise augmented matrix and resolved by multivariate curve resolution-alternating least squares (MCR-ALS). MCR-ALS helped to estimate the stoichiometry of interactions, concentration profiles and pure spectra for three species (BSA, VB6 and VB6-BSA complex) existed in the interaction procedure. Based on the MCR-ALS results, using mass balance equations, a model was developed and binding constant of complex was calculated using non-linear least squares curve fitting. FT-IR spectra showed that the conformation of proteins was altered in presence of VB6. Finally, the combined docking and molecular dynamics (MD) simulations were used to estimate the binding affinity of VB6 to BSA. Five-nanosecond MD simulations were performed on bovine serum albumin (BSA) to study the conformational features of its ligand binding site. From MD results, eleven BSA snapshots were extracted, at every 0.5 ns, to explore the binding affinity (GOLD score) of VB6 using a docking procedure. MD simulations indicated that there is a considerable flexibility in the structure of protein that affected ligand recognition. Structural analyses and docking simulations indicated that VB6 binds to site I and GOLD score values depend on the conformations of both BSA and ligand. Molecular modeling results showed that VB6–BSA complex formed not only on the basis of electrostatic forces, but also on the basis of π–π staking and hydrogen bond. There was an excellent agreement between the experimental and computational results. The results presented in this paper, will offer a reference for detailed and systematic studies on the biological effects and action mechanism of small molecules with proteins.  相似文献   

5.
We have used 2-aminopurine (2AP) as a fluorescent probe in the template strand of a 13/20mer primer/template (D) to detect deoxynucleoside triphosphates (N)-dependent conformational changes exhibited by RB69 DNA polymerase (ED) complexes. The rates and amplitudes of fluorescence quenching depend hyperbolically on the [dTTP] when a dideoxy-primer/template (ddP/T) with 2AP as the templating base (n position) is used. No detectable fluorescence changes occur when a ddP/T with 2AP positioned 5′ to the templating base (n + 1 position) is used. With a deoxy-primer/template (dP/T) with 2AP in the n position, a rapid fluorescence quenching occurs within 2 ms, followed by a second, slower fluorescence quenching with a rate constant similar to base incorporation as determined by chemical quench. With a dP/T having 2AP in the n + 1 position, there is a [dNTP]-dependent fluorescence enhancement that occurs at a rate comparable to dNMP incorporation. Collectively, the results favor a minimal kinetic scheme in which population of two distinct biochemical states of the ternary EDN complex precedes the nucleotidyl transfer reaction. Observed differences between dP/T and ddP/T ternary complexes indicate that the 3′ hydroxyl group of the primer plays a critical role in determining the rate constants of transitions that lead to strong deoxynucleoside triphosphate binding prior to chemistry.  相似文献   

6.
Histone deacetylases (HDACs) are a family of proteins involved in the deacetylation of histones and other non-histones substrates. HDAC6 belongs to class II and shares similar biological functions with others of its class. Nevertheless, its three-dimensional structure that involves the catalytic site remains unknown for exploring the ligand recognition properties. Therefore, in this contribution, homology modeling, 100-ns-long Molecular Dynamics (MD) simulation and docking calculations were combined to explore the conformational complexity and binding properties of the catalytic domain 2 from HDAC6 (DD2-HDAC6), for which activity and affinity toward five different ligands have been reported. Clustering analysis allowed identifying the most populated conformers present during the MD simulation, which were used as starting models to perform docking calculations with five DD2-HDAC6 inhibitors: Cay10603 (CAY), Rocilinostat (RCT), Tubastatin A (TBA), Tubacin (TBC), and Nexturastat (NXT), and then were also submitted to 100-ns-long MD simulations. Docking calculations revealed that the five inhibitors bind at the DD2-HDAC6 binding site with the lowest binding free energy, the same binding mode is maintained along the 100-ns-long MD simulations. Overall, our results provide structural information about the molecular flexibility of apo and holo DD2-HDAC6 states as well as insight of the map of interactions between DD2-HDAC6 and five well-known DD2-HDAC6 inhibitors allowing structural details to guide the drug design. Finally, we highlight the importance of combining different theoretical approaches to provide suitable structural models for structure-based drug design.  相似文献   

7.
Mallik B  Lambris JD  Morikis D 《Proteins》2003,53(1):130-141
Compstatin is a 13-residue cyclic peptide that has the potential to become a therapeutic agent against unregulated complement activation. In our effort to understand the structural and dynamic characteristics of compstatin that form the basis for rational and combinatorial optimization of structure and activity, we performed 1-ns molecular dynamics (MD) simulations. We used as input in the MD simulations the ensemble of 21 lowest energy NMR structures, the average minimized structure, and a global optimization structure. At the end of the MD simulations we identified five conformations, with populations ranging between 9% and 44%. These conformations are as follows: 1) coil with alphaR-alphaR beta-turn, as was the conformation of the initial ensemble of NMR structures; 2) beta-hairpin with epsilon-alphaR beta-turn; 3) beta-hairpin with alphaR-alphaR beta-turn; 4) beta-hairpin with alphaR-beta beta-turn; and 5) alpha-helical. Conformational switch was possible with small amplitude backbone motions of the order of 0.1-0.4 A and free energy barrier crossing of 2-11 kcal/mol. All of the 21 MD structures corresponding to the NMR ensemble possessed a beta-turn, with 14 structures retaining the alphaR-alphaR beta-turn type, but the average minimized structure and the global optimization structures were converted to alpha-helical conformations. Overall, the MD simulations have aided to gain insight into the conformational space sampled by compstatin and have provided a measure of conformational interconversion. The calculated conformers will be useful as structural and possibly dynamic templates for optimization in the design of compstatin using structure-activity relations (SAR) or dynamics-activity relations (DAR).  相似文献   

8.
Hariharan C  Reha-Krantz LJ 《Biochemistry》2005,44(48):15674-15684
The fluorescence of the base analogue 2-aminopurine (2AP) was used to probe bacteriophage T4 DNA polymerase-induced conformational changes in the template strand produced during the nucleotide incorporation and proofreading reactions. 2AP fluorescence in DNA is quenched by 2AP interactions with neighboring bases, but T4 DNA polymerase binding to DNA substrates labeled with 2AP in the templating position produces large increases in fluorescence intensity. Fluorescence lifetime studies were performed to characterize the fluorescent complexes. Three fluorescence lifetime components were observed for unbound DNA substrates as reported previously, but T4 DNA polymerase binding modulated the amplitudes of these components and created a new, highly fluorescent 10.5 ns component. Experimental evidence for correlation of fluorescence lifetimes with functionally distinct complexes was obtained by forming complexes under different reaction conditions. T4 DNA polymerase complexes were formed with DNA substrates with matched and mismatched primer ends and with A+T- or G+C-rich primer-terminal regions. dTTP was added to binary complexes to form ternary DNA polymerase-DNA-nucleotide complexes. The effect of temperature on complex formation was studied, and complexes were formed with proofreading-defective T4 DNA polymerases. Complexes characterized by the 10.5 ns lifetime were demonstrated to be formed at the crossroads of the primer-extension and proofreading pathways.  相似文献   

9.
2-Aminopurine (2AP) is a fluorescent adenine analog that probes mainly base stacking in nucleic acids. We labeled the loop or the stem of the RNA hairpin gacUACGguc with 2AP to study folding thermodynamics and kinetics at both loci. Thermal melts and fast laser temperature jumps detected by 2AP fluorescence monitored the stability and folding/unfolding kinetics. The observed thermodynamic and kinetic traces of the stem and loop mutants, though strikingly different at a first glance, can be fitted to the same free-energy landscape. The differences between the two probe locations arise because base stacking decreases upon unfolding in the stem, whereas it increases in the loop. We conclude that 2AP is a conservative adenine substitution for mapping out the contributions of different RNA structural elements to the overall folding process. Molecular dynamics (MD) totaling 0.6 μsec were performed to look at the conformations populated by the RNA at different temperatures. The combined experimental data, and MD simulations lead us to propose a minimal four-state free-energy landscape for the RNA hairpin. Analysis of this landscape shows that a sequential folding model is a good approximation for the full folding dynamics. The frayed state formed initially from the native state is a heterogeneous ensemble of structures whose stem is frayed either from the end or from the loop.  相似文献   

10.
The single tryptophan at position 121 of human interleukin-2 (IL-2) can form an NH-pi hydrogen bond with Phe 117 involving the indole nitrogen and the benzene aromatic ring. At pH 5.5, this type of aromatic interaction results in a fluorescence quantum yield three-fold lower than that of a fully solvent exposed tryptophan. At pH 2.1, IL-2 forms a compact denatured state with twice the emission intensity of the native protein. Global analysis of time-resolved fluorescence emission at multiple emission wavelengths shows that native and acid-denatured IL-2 can be described by four decay components. The fractional amplitudes of the shortest sub-nanosecond lifetimes are higher in the native state, suggesting rapid quenching due to the NH-pi hydrogen bond. In the denatured state, longer lifetimes have greater fractional amplitudes, indicating a smaller population of hydrogen-bonded species. Electrostatic-dipolar relaxation of the tryptophan microenvironment upon excitation is greater in the native-state of IL-2 than the acid-denatured state. This suggests that acid-denaturation sequesters Trp 121 from polar residues, while maintaining an interaction with Phe 117. This is consistent with the model of secondary structure preservation and hydrophobic clustering in molten-globule intermediates.  相似文献   

11.
2-Aminopurine (2AP) is an analogue of adenine that has been utilized widely as a fluorescence probe of protein-induced local conformational changes in DNA. Within a DNA strand, this fluorophore demonstrates characteristic decreases in quantum yield and emission decay lifetime that vary sensitively with base sequence, temperature, and helix conformation but that are accompanied by only small changes in emission wavelength. However, the molecular interactions that give rise to these spectroscopic changes have not been established. To develop a molecular model for interpreting the fluorescence measurements, we have investigated the effects of environmental polarity, hydrogen bonding, and the purine and pyrimidine bases of DNA on the emission energy, quantum yield, and intensity decay kinetics of 2AP in simple model systems. The effects of environmental polarity were examined in a series of solvents of varying dielectric constant, and hydrogen bonding was investigated in binary mixtures of water with 1,4-dioxane or N,N-dimethylformamide (DMF). The effects of the purine and pyrimidine bases were studied by titrating 2AP deoxyriboside (d2AP) with the nucleosides adenosine (rA), cytidine (rC), guanosine (rG), and deoxythymidine (dT), and the nucleoside triphosphates ATP and GTP in neutral aqueous solution. The nucleosides and NTPs each quench the fluorescence of d2AP by a combination of static (affecting only the quantum yield) and dynamic (affecting both the quantum yield and the lifetime, proportionately) mechanisms. The peak wavelength and shape of the emission spectrum are not altered by either of these effects. The static quenching is saturable and has half-maximal effect at approximately 20 mM nucleoside or NTP, consistent with an aromatic stacking interaction. The rate constant for dynamic quenching is near the diffusion limit for collisional interaction (k(q) approximately 2 x 10(9) M(-1) s(-1)). Neither of these effects varies significantly between the various nucleosides and NTPs studied. In contrast, hydrogen bonding with water was observed to have a negligible effect on the emission wavelength, fluorescence quantum yield, or lifetime of 2AP in either dioxane or DMF. In nonpolar solvents, the fluorescence lifetime and quantum yield decrease dramatically, accompanied by significant shifts in the emission spectrum to shorter wavelengths. However, these effects of polarity do not coincide with the observed emission wavelength-independent quenching of 2AP fluorescence in DNA. Therefore, we conclude that the fluorescence quenching of 2AP in DNA arises from base stacking and collisions with neighboring bases only but is insensitive to base-pairing or other hydrogen bonding interactions. These results implicate both structural and dynamic properties of DNA in quenching of 2AP and constitute a simple model within which the fluorescence changes induced by protein-DNA binding or other perturbations may be interpreted.  相似文献   

12.
The NMR solution structure of bovine pancreatic trypsin inhibitor (BPTI) obtained by distance geometry calculations with the program DIANA is compared with groups of conformers generated by molecular dynamics (MD) simulations in explicit water at ambient temperature and pressure. The MD simulations started from a single conformer and were free or restrained either by the experimental NOE distance restraints or by time-averaged restraints; the groups of conformers were collected either in 10 ps intervals during 200 ps periods of simulation, or in 50 ps intervals during a 1 ns period of simulation. Overall, these comparisons show that the standard protein structure determination protocol with the program DIANA provides a picture of the protein structure that is in agreement with MD simulations using “realistic” potential functions over a nanosecond timescale. For well-constrained molecular regions there is a trend in the free MD simulation of duration 1 ns that the sampling of the conformation space is slightly increased relative to the DIANA calculations. In contrast, for surface-exposed side-chains that are less extensively constrained by the NMR data, the DIANA conformers tend to sample larger regions of conformational space than conformers selected from any of the MD trajectories. Additional insights into the behavior of surface side-chains come from comparison of the MD runs of 200 ps or 1 ns duration. In this time range the sampling of conformation space by the protein surface depends strongly on the length of the simulation, which indicates that significant side-chain transitions occur on the nanosecond timescale and that much longer simulations will be needed to obtain statistically significant data on side-chain dynamics.  相似文献   

13.
To test the hypothesis of charge-transfer quenching between an electrophile in the alanyl sidechain (carbonyl carbon or protonated amino group) and the excited aromatic phenol-subunit, which leads to a bi-exponential fluorescence decay of tyrosine in acidic aqueous solution, we investigated the dynamics of this amino acid and of the peptide Gly-Tyr-Gly in vacuo and in water with classical molecular dynamics (MD) and with stochastic dynamics (SD) computer simulation. The proposed low-frequency of interconversions between sidechain rotamers on a fluorescence time-scale could not be confirmed. Instead, frequent transitions for both, chi 1 and chi 2, dihedrals were observed. Simulating a low pH situation (protonated carboxylate group) did not significantly affect the transition frequency. Rotamer interconversions in the peptide Gly-Tyr-Gly, though significantly less, were also observed although the fluorescence decay of this compound could be described by a uni-modal lifetime distribution centered at 0.8 ns. The results obtained from simulations in vacuo and in solution were critically compared with those of stochastic simulations. We found the stochastic simulation in a better agreement to full MD (water explicitly included), which is highly time consuming, whereas the in vacuo simulations clearly deviated from both. We conclude from our results that, since the rotamers do frequently interconvert within the fluorescence lifetime of tyrosine, their contribution to the non-exponential fluorescence decay should be negligible.  相似文献   

14.
The subtilisin-like serine proteinases, VPR, from a psychrotrophic Vibrio species and aqualysin I (AQUI) from the thermophile Thermus aquaticus, are structural homologues, but differ significantly with respect to stability and catalytic properties. It has been postulated that the higher catalytic activity of cold adapted enzymes when compared to homologues from thermophiles, reflects their higher molecular flexibility. To assess a potential difference in molecular flexibility between the two homologous proteinases, we have measured their Trp fluorescence quenching by acrylamide at different temperatures. We also investigated protein dynamics of VPR and AQUI at an atomic level by molecular dynamics simulations. VPR contains four Trp residues, three of which are at corresponding sites in the structure of AQUI. To aid in the comparison, a Tyr at the fourth corresponding site in AQUI was mutated to Trp (Y191W). A lower quenching effect of acrylamide on the intrinsic fluorescence of the thermophilic AQUI_Y191W was observed at all temperatures measured (10–55 °C), suggesting that it possesses a more rigid structure than VPR. The MD analysis (Cα rmsf profiles) showed that even though VPR and AQUI have similar flexibility profiles, the cold adapted VPR displays higher flexibility in most regions of the protein structure. Some of these regions contain or are in proximity to some of the Trp residues (Trp6, Trp114 and Trp208) in the proteins. Thus, we observe an overall agreement between the fluorescence quenching data and the flexibility profiles obtained from the MD simulations to different flexibilities of specific regions in the proteins.  相似文献   

15.
The effects of hydrostatic pressure on the excited state reactions of the photosynthetic system of cyanobacteria were studied with the use of stationary and dynamic fluorescence spectroscopy. When the cells were excited with blue light (442 nm), hydrostatic pressure promoted a large increase in the fluorescence emission of the phycobilisomes (PBS). When PBS were excited at 565 nm, the shoulder originating from photosystem II (PSII) emission (F685) disappeared under 2.4 kbar compression, suggesting suppression of the energy transfer from PBS to PSII. At atmospheric pressure, the excited state decay was complex due to energy transfer processes, and the best fit to the data consisted of a broad Lorentzian distribution of short lifetimes. At 2.4 kbar, the decay data changed to a narrower distribution of longer lifetimes, confirming the pressure-induced suppression of the energy transfer between the PBS and PSII. When the cells were excited with blue light, the decay at atmospheric pressure was even more complex and the best fit to the data consisted of a two-component Lorentzian distribution of short lifetimes. Under compression, the broad distribution of lifetimes spanning the region 100-1,000 ps disappeared and gave rise to the appearance of a narrow distribution characteristic of the PBS centered at 1.2 ns. The emission of photosystem I underwent 2.2-fold increase at 2.4 kbar and room temperature. A decrease in temperature from 20 to -10 degrees C at 2.4 kbar promoted a further increase in the fluorescence emission from photosystem I to a level comparable with that obtained at temperatures below 120 degrees K and atmospheric pressure. On the other hand, when the temperature was decreased under pressure, the PBS emission diminished to very low value at blue or green excitation, suggesting the disassembly into the phycobiliprotein subunits.  相似文献   

16.
An immunomodulating tetrapeptide, rigin (H‐Gly‐Gln‐Pro‐Arg‐OH), has been examined for its secondary structure preferences through combined use of high‐temperature unrestrained MD simulations in implicit water and 1D and 2D 1H NMR spectroscopy. The distribution of backbone torsion angles revealed the predominance of trans conformers across the Xaa‐Pro peptide bond. The results of MD simulations revealed that of the five predicted families A–E, the predominant families, family A (92 structures), family C (63 structures) and family D (31 structures), could be complemented by extensive 1D and 2D 1H NMR parameters acquired in aqueous PBS solution. A survey of specific inter‐ and intraresidue NOEs substantiated the predominance of an unusual type VII β‐turn structure, defined by two torsion angles, i.e. ψGln ~ 155° and ?Pro ~ ? 65° across the Gln‐Pro segment. The proposed semi‐folded kinked topology precluded formation of any intramolecular interaction, i.e. hydrogen bond or electrostatic interaction. Far‐UV CD spectral characteristics of rigin in aqueous PBS solution and non‐aqueous structure‐promoting organic solvents, TFE and TMP, revealed its strong solvent dependence. However, in aqueous PBS solution, the presence of a weak negative shoulder at nm could be ascribed to a small population with ordered, semi‐folded topology. We propose that the plausible structural attributes may be exploited for design and rigidification of the bioactive conformation of this immunomodulator toward improved immunopharmacological properties. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
The fluorescent adenine analog 2-aminopurine (2AP) has been used extensively to monitor conformational changes and macromolecular binding events involving nucleic acids because its fluorescence properties are highly sensitive to changes in chemical environment. Furthermore, site-specific incorporation of 2AP permits local DNA and RNA conformational events to be discriminated from the global structural changes monitored by UV-Vis spectroscopy and circular dichroism. However, although the steady-state fluorescence properties of 2AP have been well defined in diverse settings, interpretation of 2AP fluorescence lifetime parameters has been hampered by the heterogeneous nature of multiexponential 2AP intensity decays observed across populations of microenvironments. To resolve this problem, we tested the utility of multiexponential versus continuous Lorentzian lifetime distribution models to describe fluorescence intensity decays from 2AP in diverse chemical backgrounds and within the context of RNA. Heterogeneity was introduced into 2AP intensity decays by mixing solvents of differing polarities or by adding quenchers under high viscosity to evaluate the transient effect. Heterogeneity of 2AP fluorescence within the context of a synthetic RNA hairpin was introduced by structural remodeling using a magnesium salt. In each case except folded RNA (which required a bimodal distribution), 2AP lifetime properties were well described by single Lorentzian distribution functions, abrogating the need to introduce additional discrete lifetime subpopulations. Rather, heterogeneity in fluorescence decay processes was accommodated by the breadth of each distribution. This approach also permitted solvent relaxation effects on 2AP emission to be assessed by comparing lifetime distributions at multiple wavelengths. Together, these studies provide a new perspective for the interpretation of 2AP fluorescence lifetime properties that will further the utility of this fluorophore in analyses of the complex and heterogeneous structural microenvironments associated with nucleic acids.  相似文献   

18.
The configuration hyperspace of canonical and oxidized 14-mers of B-DNA comprising telomere repeat units d(ApGpGpGpTpT) was sampled over 40 ns via molecular dynamic (MD) simulations. The energetic and structural consequences of TRF1 binding to telomere B-DNA were compared with non-complexed systems. Energetic properties of analyzed pairs, di- and tri-nucleotide steps occurring in central telomere repeat unit were estimated by means of advanced quantum chemistry computations including not only BSSE corrections, electron correlation contributions but also non-negligible many-body terms. These data along with bases pair and base step parameters distributions allow for quantization of consequences of oxidation and/or TRF1 binding to telomere repeat units. Occurrence of 8-oxoguanine in central telomeric triad (CTT) is the source of high stiffness if compared to non-modified oligomer. The origin of this property comes from significantly alteration of intermolecular interactions introduced by 8-oxoguanine. The increased stability observed for base–base interactions are accumulated and characterizes also di- and tri-nucleotides. The observed changes in the intermolecular interactions originate from structural alterations imposed by TRF1 binding to canonical and oxidized telomere B-DNA. First and most direct consequence of TRF1 binding to oxidized telomere repeat unit is alteration of shift-slide correlations if compared to canonical system. This in turn leads to large differences in purine-purine overlapping in oxidized structures. Thus, oxidized telomere B-DNA double strands are sensitive to interactions with protein ligands and numerous structural and energetic changes are imposed on base pairs forming CTT.  相似文献   

19.
A molecular dynamics simulation approach has been utilized to understand the unusual fluorescence emission decay observed for beta-glycosidase from the hyperthermophilic bacterium Solfolobus sulfotaricus (Sbeta gly), a tetrameric enzyme containing 17 tryptophanyl residues for each subunit. The tryptophanyl emission decay of Sbeta gly results from a bimodal distribution of fluorescence lifetimes with a short-lived component centered at 2.5 ns and a long-lived one at 7.4 ns (Bismuto E, Nucci R, Rossi M, Irace G, 1999, Proteins 27:71-79). From the examination of the trajectories of the side chains capable of causing intramolecular quenching for each tryptophan microenvironment and using a modified Stern-Volmer model for the emission quenching processes, we calculated the fluorescence lifetime for each tryptophanyl residue of Sbeta gly at two different temperatures, i.e., 300 and 365 K. The highest temperature was chosen because in this condition Sbeta gly evidences a maximum in its catalytic activity and is stable for a very long time. The calculated lifetime distributions overlap those experimentally determined. Moreover, the majority of trytptophanyl residues having longer lifetimes correspond to those originally identified by inspection of the crystallographic structure. The tryptophanyl lifetimes appear to be a complex function of several variables, such as microenvironment viscosity, solvent accessibility, the chemical structure of quencher side chains, and side-chain dynamics. The lifetime calculation by MD simulation can be used to validate a predicted structure by comparing the theoretical data with the experimental fluorescence decay results.  相似文献   

20.
Laser flash-induced changes of the fluorescence yield were studied in aggregates of light-harvesting complex II (LHCII) on a time scale ranging from microseconds to seconds. Carotenoid (Car) and chlorophyll (Chl) triplet states, decaying with lifetimes of several microseconds and hundreds of microseconds, respectively, are responsible for initial light-induced fluorescence quenching via singlet-triplet annihilation. In addition, at times ranging from milliseconds to seconds, a slow decay of the light-induced fluorescence quenching can be observed, indicating the presence of additional quenchers generated by the laser. The generation of the quenchers is found to be sensitive to the presence of oxygen. It is proposed that long-lived fluorescence quenchers can be generated from Chl triplets that are not transferred to Car molecules. The quenchers could be Chl cations or other radicals that are produced directly from Chl triplets or via Chl triplet-sensitized singlet oxygen. Decay of the quenchers takes place on a millisecond to second time scale. The decay is slowed by a few orders of magnitude at 77 K indicating that structural changes or migration-limited processes are involved in the recovery. Fluorescence quenching is not observed for trimers, which is explained by a reduction of the quenching domain size compared to that of aggregates. This type of fluorescence quenching can operate under very high light intensities when Chl triplets start to accumulate in the light-harvesting antenna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号