首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Kang SM  Matsui H  Titus JS 《Plant physiology》1982,70(5):1367-1372
At least four different proteinases are present in senescing apple leaves (Malus domestica Borkh. cv. Golden Delicious) as determined by their pH optima, substrate specificity, and their reactivity to proteinase inhibitors. An enzyme active at pH 4.5 to 5.0 appears to be a sulfhydryl-dependent (iodoacetamide and phenylmercuric acetate-sensitive) endoproteinase, and degradation of the large subunit of ribulose bisphosphate carboxylase was observed only with this enzyme. It is tentatively concluded that this endoproteinase is responsible for the breakdown of ribulose bisphosphate carboxylase in vivo. However, the presence of more than one endoproteinase in apple leaves is suggested by the broad range of pH optima of the SH-dependent enzyme. Another enzyme active at pH 6.0 appears to be a carboxypeptidase, and was sensitive to phenylmethylsulfonylfluoride. This enzyme showed a strong hydrolytic activity against carbobenzoxyphenylalanylalanine. A sulfhydryl-dependent aminopeptidase and a second hydroxyl-dependent carboxypeptidase were active at pH 7.5

Total autolytic activity (the sulfhydryl-dependent endoproteinase) as measured by the disappearance of proteins decreased during the period of protein decline. Evidence is presented that the measured proteinase activity can be dependent on assay methods and substrates. While the disappearance of protein measures most of endo-type activity, the ninhydrin assay appears to measure exo-type activity preferentially.

  相似文献   

2.
欧芹叶片衰老过程中的核糖核酸酶类型与活性变化   总被引:3,自引:0,他引:3  
以凝胶电泳检测核糖核酸酶 (RNase)活性的结果表明 ,欧芹叶片中至少有 6种分子量各不相同的RNase显示出活性。其中一种aRNase活性在衰老过程中逐渐下降 ,赤霉素可延缓其下降 ,b、cRNase活性在衰老过程中显著增加 ,乙烯加速 ,而赤霉素则抑制这两种RNase活性上升。另一种dRNase活性虽然在赤霉素处理与否的叶片中均显著增加 ,但受乙烯抑制。e、fRNase活性在各种处理的叶片中均略呈上升趋势。b、cRNase活性变化与叶片衰老进程的关联最显著  相似文献   

3.
花生叶片衰老过程中某些酶活性的变化   总被引:3,自引:0,他引:3  
人们对花生叶片衰老的现象早就有所认识 ,认为叶片变黄脱落、叶斑病加重是花生叶片衰老的主要特征 ,但真正对花生叶片衰老的研究较少且意见不一。Kvien和Ozias Akins( 1 991 )认为花生播后1 46d(饱果期 )叶片仍未表现衰老迹象 ,叶中N含量仍保持 2 8mg/g的较高水平 ;Sahrawat等 ( 1 987)研究发现 ,随着花生叶片的衰老 ,叶片中N、P、K、Cu、Mn、Zn的含量逐渐降低 ,而叶片中Mg的含量有增加趋势 ,Ca的含量随衰老明显升高。Narayanan和Chand( 1 986)研究指出 ,花生主茎上、下叶片叶比重 …  相似文献   

4.
Photosynthetic activity, the content of various photosynthetic pigments, and the chloroplast ultrastructure were examined in the leaves of cucumber (Cucumis sativus L.) and pea (Pisum sativum L.) plants of different ages grown under red light (600–700 nm, 100 W/m2). In pea leaves tolerant to red-light irradiation, chloroplast ultrastructure did not essentially change. In the first true leaves of cucumber plants susceptible to red-light irradiation, we observed a considerable increase in the number and size of plastoglobules, the appearance of chloroplasts lacking grana or containing only infrequent grana, and stromal thylakoids. In the upper leaves of 22-day-old cucumber plants, the chloroplast structure was essentially similar to that of the control chloroplasts in white light, and we therefore suppose that these plants have acclimated to red light.  相似文献   

5.
The cytokinin levels of butanol and aqueous extracts of proximalportions of Streptocarpus leaves showed very little change duringthe summer and early autumn months, whereas those of the distalportions changed markedly. These changes appear to be closelyrelated to the formation of abscission layers and the subsequentsenescence of the distal part of the leaves. It is postulatedthat the increase in butanol-soluble cytokinins during Januarymay induce abscission, while the decrease in February appearsto be directly related to senescence of the distal portionsof the leaves.  相似文献   

6.
The biochemical changes occurring during the natural senescence of apple leaf tissue (Pyrus malus L., Golden Delicious) coincided with specific changes in the environment. Protein, sugars, and total nitrogen began declining in leaf tissue when the daylength first became less than 14 hours in the second week of August. The activity of triose phosphate dehydrogenase declined shortly afterwards, while the activities of malate dehydrogenase, glutamic dehydrogenase, and aspartate aminotransaminase increased. Chlorophyll, DNA, RNA, and fresh weight began declining when the daylength first became less than 12 hours at the end of September. At the same time sugars and the activities of RNase, polyphenol oxidase, and proteolytic enzymes began increasing. Protein synthesis, total nitrogen, and the activities of malate dehydrogenase, glutamic dehydrogenase, and aspartate aminotransaminase began declining rapidly and amino acids began to accumulate after the first frost of the year. RNase, polyphenol oxidase, and proteolytic activity reached their highest specific activities after the first frost.  相似文献   

7.
菜豆叶片叶绿体总脂和被膜膜脂中均含有单半乳糖甘油二脂和双半乳糖甘油二脂,在整个衰老期间两种糖脂的比值变化不大。叶绿体总脂中含有5种磷脂,脂肪酸以不饱和的亚麻酸为主,而被膜膜脂中仅含磷脂酰胆碱和磷脂酰甘油,脂肪酸以饱和的棕榈酸为主,不饱和亚油酸为次。叶片衰老过程中被膜所含两种磷脂比值明显降低,脂肪酸的不饱和指数也因亚麻酸相对含量显著减少、棕榈酸相对含量增加而降低。  相似文献   

8.
Antibodies against the individual subunits of protein complexes in the chloroplast membranes were used to follow the amounts of these polypeptides during foliar senescence. No change was found in the amount of polypeptides of photosystem I reaction center and the chloroplast coupling factor during senescence of oat (Avena sativa L.) and bean (Phaseolus vulgaris L.) leaves. A significant decrease in the amount of the different components of the cytochrome b6-f complex was detected. This change may account for the decrease in the rate of electron transport, which might be the rate limiting step of photosynthesis in senescing leaves.  相似文献   

9.
Relatively little change was observed in the partitioning ofphotosynthetically fixed carbon between sucrose and starch duringsenescence of vegetative leaves of wheat (Triticum aestivumL. cv. Roy). The maximum activities of sucrose phosphate synthaseand cytoplasmic fructose-1, 6-bisphosphatase in leaf extractsapproximated photosynthetic sucrose formation in leaf segmentsand the three parameters declined together with age. Changesin activities of sucrose synthase and uridine-5'-diphosphatase,and in leaf phosphate content did not parallel changes in sucroseformation with age. Chloroplast fructose-1, 6-bisphosphatase activity, activatedin vivo with light and in vitro with dithiothreitol, declinedcontinually throughout senescence of the second vegetative leaf.The ability of light to activate chloroplast fructose-1, 6-bisphosphatasedid not, however, appear to change with age. Ribulose-l, 5-bisphosphatecarboxylase activity also declined continually with age, butin vivo-activated ribulose-l, 5-bisphosphate carboxylase wasa minimum of three fold greater than needed to account for photosyntheticactivity. The percentage of ribulose-l, 5-bisphosphate carboxylaseactivated in vivo was essentially constant during senescence.In general, activities of soluble chloroplast enzymes declinedcontinually from the point of full leaf expansion throughoutsenescence, whereas the activities of cytoplasmic enzymes thatwere studied remained relatively constant until the latter stagesof senescence. Key words: Wheat leaf senescence, Sucrose metabolism enzymes, Chloroplast enzymes  相似文献   

10.
The changes in the amount, rale of synthesis and the nucleotide composition of different RNA fractions in excised barley leaves floated on water or kinetin (10 mg/l) in the dark were examined. In excised leaves floated on water all nucleic acid components declined and these declines were retarded by kinetin. Barley leaves floated on water showed a stimulation of 32P incorporation into various RNA fractions within 48 hours followed by a decline after 96–144 hours. The leaves floated on kinetin, however, showed an even higher incorporation of 32P into UNA by 48 hours which remained at a comparatively higher level throughout the experiment. In spite of the above changes in RNA synthesis significant differences in the 32P sucrose gradient profiles or in the 32P nucleotide composition of UNA from water and kinetin floated leaves were not noted. The results of this study show that important changes in nucleic acid metabolism occur during the early stages of leaf senescence and that alterations in nucleic acid metabolism during senescence and during kinetin treatment may involve quantitative and only subtle qualitative changes.  相似文献   

11.
12.
小麦叶片暗诱导衰老期间内肽酶的特性   总被引:8,自引:0,他引:8  
研究了小麦(Triticum aestivum L.cv.Yangmai 158)叶片暗诱导衰老期间内肽酶同工酶的变化及其部分生化特性,发现叶片衰老期间,内肽酶活性升高,同时出现5种新的内肽酶同工酶(EP1、EP2、EP4、EP5、EP6)。6-苄氨基嘌呤(6-BA)处理能延缓这些同工酶的出现,而脱落酸(ABA)处理则加速它们的表达。衰老期间小麦叶片内的6种内肽酶同工酶(EP1-EP6)中的EP1、EP2、EP4、EP5、EP6呈现活性的pH及温度范围较窄,而EP3有活性的pH范围和温度范围均较宽,且EP3在嫩叶、老叶中均有活性。另外,EP3、EP5、EP6对热不太敏感。蛋白酶抑制剂实验表明,EP1、EP2是需金属离子的半胱氨酸型内肽酶,EP4是丝氨酸型内肽酶。  相似文献   

13.
The characterization of senescence-associated endopeptidase (EP) isoenzymes in wheat (Triticum aestivum L. var. Yangmai 158) leaves during dark-induced senescence was performed. It was found that there was much higher endoproteolytic activity in dark-induced wheat leaves than in control. Six endopeptidase isoenzymes (EP1-EP6) were identified by natural gradient杙olyacrylamide gel electrophoresis (PAGE) co-polymerized gelatin in the gel, five of which (EP1, EP2, EP4, EP5 and EP6) were only detected in senescing leaves. Treatment with 6-benzylaminopurine (6-BA) delayed the expression of these EP isoenzymes and abscisic acid (ABA) accelerated it. The activity of EP3 could be detected at a wider range of pH and temperature levels while EP4, EP5 and EP 6 could be only detected at pH 4-5 and 30 45 ℃, EP1 and EP2 at pH 3 5 and 30 ℃ 45 ℃. All of the EP isoenzymes showed high thermal stability, especially EP3, EP5 and EP6 which still had activities even by incubation at 55 ℃ for 1 h. By using different class-specific inhibitors, EP1 and EP2 were characterized as metal-dependent cysteine-proteases, EP4 as a serine-protease.  相似文献   

14.
Chloroplasts contain approximately 80% of total leaf nitrogen and represent a major source of recycled nitrogen during leaf senescence. While bulk degradation of the cytosol and organelles in plants is mediated by autophagy, its role in chloroplast catabolism is largely unknown. We investigated the effects of autophagy disruption on the number and size of chloroplasts during senescence. When leaves were individually darkened, senescence was promoted similarly in both wild-type Arabidopsis (Arabidopsis thaliana) and in an autophagy-defective mutant, atg4a4b-1. The number and size of chloroplasts decreased in darkened leaves of wild type, while the number remained constant and the size decrease was suppressed in atg4a4b-1. When leaves of transgenic plants expressing stroma-targeted DsRed were individually darkened, a large accumulation of fluorescence in the vacuolar lumen was observed. Chloroplasts exhibiting chlorophyll fluorescence, as well as Rubisco-containing bodies, were also observed in the vacuole. No accumulation of stroma-targeted DsRed, chloroplasts, or Rubisco-containing bodies was observed in the vacuoles of the autophagy-defective mutant. We have succeeded in demonstrating chloroplast autophagy in living cells and provide direct evidence of chloroplast transportation into the vacuole.Chloroplasts contain 75% to 80% of total leaf nitrogen mainly as proteins (Makino and Osmond, 1991). During leaf senescence, chloroplast proteins are gradually degraded as a major source of nitrogen for new growth (Wittenbach, 1978; Friedrich and Huffaker, 1980; Mae et al., 1984), correlating with a decline in photosynthetic activity, while chloroplasts gradually shrink and transform into gerontoplasts, characterized by the disintegration of the thylakoid membranes and accumulation of plastoglobuli (for a recent review, see Krupinska, 2006). Concomitantly, a decline in the cellular population of chloroplasts is also evident in many cases, for example, during natural (Kura-Hotta et al., 1990; Inada et al., 1998), dark-induced (Wittenbach et al., 1982), and nutrient-limited senescence (Mae et al., 1984; Ono et al., 1995), suggesting the existence of a whole chloroplast degradation system. Some electron microscopic studies have shown whole chloroplasts in the central vacuole, which is rich in lytic hydrolases (Wittenbach et al., 1982; Minamikawa et al., 2001). However, there is no direct evidence of chloroplasts moving into the vacuole in living cells and the mechanism of transport is not yet understood (Hörtensteiner and Feller, 2002; Krupinska, 2006).The most abundant chloroplast protein is Rubisco (EC 4.1.1.39), comprising approximately 50% of the soluble protein (Wittenbach, 1978). The amount of Rubisco decreases rapidly in the early phase of leaf senescence, although more slowly in the later phase (Friedrich and Huffaker, 1980; Mae et al., 1984). In contrast, the chloroplast number remains relatively constant, making it impossible to explain Rubisco loss solely by whole chloroplast degradation. However, the mechanism of intrachloroplastic Rubisco degradation is still unknown (for review, see Feller et al., 2008). Using immunoelectron microscopy, we previously demonstrated in naturally senescing wheat (Triticum aestivum) leaves that Rubisco is released from chloroplasts into the cytoplasm and transported to the vacuole for subsequent degradation in small spherical bodies, named Rubisco-containing bodies (RCBs; Chiba et al., 2003). Similar chloroplast-derived structures were also subsequently confirmed in senescent leaves of soybean (Glycine max) and/or Arabidopsis (Arabidopsis thaliana) by electron microscopy (Otegui et al., 2005), and recently in tobacco (Nicotiana tabacum) leaves by immunoelectron microscopy, although the authors gave them a different name, Rubisco vesicular bodies (Prins et al., 2008). RCBs have double membranes, which seem to be derived from the chloroplast envelope; thus, the RCB-mediated degradation of stromal proteins represents a potential mechanism for chloroplast shrinkage during senescence. We recently demonstrated that Rubisco and stroma-targeted fluorescent proteins can be mobilized to the vacuole by ATG-dependent autophagy via RCBs, using leaves treated with concanamycin A, a vacuolar H+-ATPase inhibitor (Ishida et al., 2008). To investigate further, we wished to observe chloroplast autophagy and degradation directly in living cells to determine whether autophagy is responsible for chloroplast shrinkage and whether it is involved in the vacuolar degradation of whole chloroplasts during leaf senescence.Autophagy is known to be a major system for the bulk degradation of intracellular proteins and organelles in the vacuole in yeast and plants, or the lysosome in animals (for detailed mechanisms, see reviews by Ohsumi, 2001; Levine and Klionsky, 2004; Thompson and Vierstra, 2005; Bassham et al., 2006). In those systems, a portion of the cytoplasm, including entire organelles, is engulfed in membrane-bound vesicles and delivered to the vacuole/lysosome. A recent genome-wide search confirmed that Arabidopsis has many genes homologous to the yeast autophagy genes (ATGs; Doelling et al., 2002; Hanaoka et al., 2002; for detailed functions of ATGs, see the reviews noted above). Using knockout mutants of ATGs and a monitoring system with an autophagy marker, GFP-ATG8, numerous studies have demonstrated the presence of the autophagy system in plants and its importance in several biological processes (Yoshimoto et al., 2004; Liu et al., 2005; Suzuki et al., 2005; Thompson et al., 2005; Xiong et al., 2005, 2007; Fujiki et al., 2007; Phillips et al., 2008). These articles suggest that autophagy plays an important role in nutrient recycling during senescence, especially in nutrient-starved plants. The atg mutants exhibited an accelerated loss of some chloroplast proteins, but not all, under nutrient-starved conditions and during senescence, suggesting that autophagy is not the sole mechanism for the degradation of chloroplast proteins; other, as yet unidentified systems must be responsible for the degradation of chloroplast contents when the ATG system is compromised (Levine and Klionsky, 2004; Bassham et al., 2006). However, it still remains likely that autophagy is responsible for the vacuolar degradation of chloroplasts in wild-type plants.Prolonged observation is generally required to follow leaf senescence events in naturally aging leaves and senescence-associated processes tend to become chaotic over time. To observe chloroplast degradation over a short period, and to draw clear conclusions, a suitable experimental model of leaf senescence is required. Weaver and Amasino (2001) reported that senescence is rapidly induced in individually darkened leaves (IDLs) of Arabidopsis, but retarded in plants subjected to full darkness. In addition, Keech et al. (2007) observed a significant decrease of both the number and size of chloroplasts in IDLs within 6 d.In this study, using IDLs as a senescence model, we aimed to investigate the involvement of autophagy in chloroplast degradation. We show direct evidence for the transport of whole chloroplasts and RCBs to the vacuole by autophagy.  相似文献   

15.
蚕豆植株叶片随茎节自上而下表现出明显的发育与衰老顺序,可作为衰老特征的是叶绿素和蛋白质含量明显下降。蚕豆叶中SOD活性主要定位于12 000× g离心后所得的上清液和叶绿体组分。衰老叶片的SOD总活性和叶绿体组分的相对活性都有所下降,SOD同工酶谱也发生了改变。O_2~ 产生速率随叶龄增大而稍上升;而MDA含量在叶片外观表现枯黄衰老征兆前就急剧上升。可能因为衰老叶片过氧化氢酶活性大幅度下降与SOD之间的不平衡,致使O_2~ 代谢中间产物累积而引起膜的损伤.  相似文献   

16.
Changes of stomatal aperture during the course of developmentof rice leaves were directly observed with a scanning electronmicroscope. The stomata reached their maximal aperture sizeafter senescence began in seedling leaves and the flag leafof mature plants. The small stomatal aperture observed priorto senescence seems to be the normal size of stomata in riceleaves, and thus stomata closure does not seem to be the causeof leaf senescence in rice plants. The stomata retain theircapability of movement during senescence, suggesting that guardcells tend to live longer than mesophyll cells. 4Present address: Tobacco Taiwan, Republic of China ResearchInstitute, Taichung, Taiwan, Republic of China (Received March 12, 1987; Accepted September 30, 1987)  相似文献   

17.
The changes and characteristics of endopeptidase (EP) isoenzymes in cucumber (Cucumis sativus L.) leaves during dark-induced senescence were investigated by activity staining after gradient-polyacrylamide gel electrophoresis (G-PAGE) containing co-polymerized gelatin as substrate. The results showed that both the chlorophyll and the protein contents of leaves were decreased, and the protein degradation was correlated with the increase of proteolytic activity during the course of leaf senescence. Meanwhile, nine cucumber endopeptidases isoenzymes (CEP) with 140, 120, 106, 94, 76, 55, 46, 39 and 35 kDa molecular weights were detected. Four of these, CEP2, 3, 4 and CEP9 appeared all the time, but the changes of the activity were different during incubation. Another four CEPs (CEP5, 6, 7 and CEP8) whose activities increased with dark-induced time were only detected in senescent leaves. Furthermore, the biochemical properties of these nine CEP were also characterized. All the CEPs had high activities from 35 ℃ to 45 ℃, and the optimum temperature was found to be 40 ℃. However, the activities of CEPs were not detected below 25 ℃ or over 60 ℃. The activity bands appeared at a wide range of pH from 5.0 to 9.0, but the optimum pH was found at 7.0. No CEPs were detected at pH 4 or pH 10. By inhibition analysis we concluded that CEP2, 3, 4 and CEP9 were serine endopeptidases and CEP6 was a kind of cysteine protease. It is suggested that serine endopeptidases might play a major role in cucumber leaf senescence, and for the first time, six senescencerelated endopeptidases (CEP1, 5, 6, 7, 8 and 9) were found in cucumber leaves.  相似文献   

18.
The loss of chlorophyll and total leaf nitrogen during autumnal senescence of leaves from the deciduous tree Platanus occidentalis L. was accompanied by a marked decline in the photosynthetic capacity of O2 evolution on a leaf area basis. When expressed on a chlorophyll basis, however, the capacity for light-and CO2-saturated O2 evolution did not decline, but rather increased as leaf chlorophyll content decreased. The photon yield of O2 evolution in white light (400-700 nanometers) declined markedly with decreases in leaf chlorophyll content below 150 milligrams of chlorophyll per square meter on both an incident and an absorbed basis, due largely to the absorption of light by nonphotosynthetic pigments which were not degraded as rapidly as the chlorophylls. Photon yields measured in, and corrected for the absorptance of, red light (630-700 nanometers) exhibited little change with the loss of chlorophyll. Furthermore, PSII photochemical efficiency, as determined from chlorophyll fluorescence, remained high, and the chlorophyll a/b ratio exhibited no decline except in leaves with extremely low chlorophyll contents. These data indicate that the efficiency for photochemical energy conversion of the remaining functional components was maintained at a high level during the natural course of autumnal senescence, and are consistent with previous studies which have characterized leaf senescence as being a controlled process. The loss of chlorophyll during senescence was also accompanied by a decline in fluorescence emanating from PSI, whereas there was little change in PSII fluorescence (measured at 77 Kelvin), presumably due to decreased reabsorption of PSII fluorescence by chlorophyll. Nitrogen was the only element examined to exhibit a decline with senescence on a dry weight basis. However, on a leaf area basis, all elements (C, Ca, K, Mg, N, P, S) declined in senescent leaves, although the contents of sulfur and calcium, which are not easily retranslocated, decreased to the smallest extent.  相似文献   

19.
Changes in Chloroplast DNA Levels during Growth of Spinach Leaves   总被引:1,自引:0,他引:1  
In young spinach leaves, 1–4 mm long, 7–10% of thetotal DNA of the leaf was chloroplast (pt) DNA. Growth in theseleaves was mainly by cell division with plastid division keepingpace with cell division and maintaining about 10 plastids percell. About 1% of the leaf cells were formed in 4.0 mm leaves.Both cell division and cell expansion contribute to the nextstage of leaf growth, which was quantitatively the major periodof new cell formation, nuclear DNA synthesis and ptDNA synthesis.Relative to the nuclear DNA level ptDNA levels rose to 21% ofthe total DNA and chloroplast.plastome copy numbers from 1500to 5000 per cell while chloroplast numbers rose from 10 to 30per cell. In the final period of leaf growth, cell expansionwas the main determinant of growth and chloroplast number percell rose to 180. In contrast to young leaves, newly emergedcotyledons contained 20% of their DNA as ptDNA and, during cellexpansion, cell number per cotyledon doubled. On average, thecells became octoploid, and chloroplast numbers and plastomecopy numbers rose to 500 and 22 000 per cell respectively. Similarlevels of nuclear ploidy, chloroplast number and plastome copynumber were induced in the first leaf pair of spinach followingdecapitation. When senescence was induced in mature leaves byshading, no loss of nuclear or ptDNA occurred. Following theonset of leaf yellowing and a form of senescence induced bynitrogen deficiency in leaves which had not fully expanded,there was preferential loss of ptDNA which fell from 8200 to3700 plastome copies per cell over an 11 d period. Key words: Spinach, Chloroplast, DNA, Ploidy  相似文献   

20.
Eighty to ninety percent of vegetative cells of Saccharomyces cerevisiae DCL 740 incubated in KCl-acetate medium form asci, the majority of which are four-spored. Ascospores are visible in asci after about 24 hr, and spore formation is complete after about 48 hr. The dry weight of the cells increases by about 75% during 48 hr of incubation, while the lipid content of the cells increases by a factor of four. The increase in lipid content is attributed mainly to an increased synthesis of sterol esters and triacylglycerols and to a lesser extent of phospholipids. The phospholipid and sterol compositions do not change appreciably, but there is a marked increase in the proportion of unsaturated fatty acid residues in ascan lipids. Uniformly labeled (14)C-acetate is incorporated mainly into sterol esters and triacylglycerols and phospholipids. Pulse-labeling by adding acetate-U-(14)C to sporulating cultures and harvesting after a further 6 hr of incubation reveal two main periods of acetate incorporation, namely between 0 and 18 hr, and between 24 and 30 hr. Electron micrographs of thin sections through developing asci show that the principal changes in fine structure occur between 18 and 24 hr and include the appearance of numerous electron-transparent vesicles which become aligned around the meiotic nucleus, and the laying down of extensive endoplasmic reticulum membranes. Changes in fine structure are discussed in relation to the alterations in lipid content and composition of asci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号