首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methanosarcina strain 227 exhibited exponential growth on sodium acetate in the absence of added H2. Under these conditions, rates of methanogenesis were limited by concentrations of acetate below 0.05 M. One mole of methane was formed per mole of acetate consumed. Additional evidence from radioactive labeling studies indicated that sufficient energy for growth was obtained by the decarboxylation of acetate. Diauxic growth and sequential methanogenesis from methanol followed by acetate occurred in the presence of mixtures of methanol and acetate. Detailed studies showed that methanol-grown cells did not metabolize acetate in the presence of methanol, although acetate-grown cells did metabolize methanol and acetate simultaneously before shifting to methanol. Acetate catabolism appeared to be regulated in response to the presence of better metabolizable substrates such as methanol or H2-CO2 by a mechanism resembling catabolite repression. Inhibition of methanogenesis from acetate by 2-bromoethanesulfonate, an analog of coenzyme M, was reversed by addition of coenzyme M. Labeling studies also showed that methanol may lie on the acetate pathway. These results suggested that methanogenesis from acetate, methanol, and H2-CO2 may have some steps in common, as originally proposed by Barker. Studies with various inhibitors, together with molar growth yield data, suggest a role for electron transport mechanisms in energy metabolism during methanogenesis from methanol, acetate, and H2-CO2.  相似文献   

2.
Isomerization of butyrate and isobutyrate was investigated with the recently isolated strictly anaerobic bacterium strain WoG13 which ferments glutarate to butyrate, isobutyrate, CO2, and small amounts of acetate. Dense cell suspensions converted butyrate to isobutyrate and isobutyrate to butyrate. 13C-nuclear magnetic resonance experiments proved that this isomerization was accomplished by migration of the carboxyl group to the adjacent carbon atom. In cell extracts, both butyrate and isobutyrate were activated to their coenzyme A (CoA) esters by acyl-CoA:acetate CoA-transferases. The reciprocal rearrangement of butyryl-CoA and isobutyryl-CoA was catalyzed by a butyryl-CoA:isobutyryl-CoA mutase which depended strictly on the presence of coenzyme B12. Isobutyrate was completely degraded via butyrate to acetate and methane by a defined triculture of strain WoG13, Syntrophomonas wolfei, and Methanospirillum hungatei.  相似文献   

3.
By using random mutagenesis and enrichment by chemostat culturing, we have developed mutants of Methanobacterium thermoautotrophicum that were unable to grow under hydrogen-deprived conditions. Physiological characterization showed that these mutants had poorer growth rates and growth yields than the wild-type strain. The mRNA levels of several key enzymes were lower than those in the wild-type strain. A fed-batch study showed that the expression levels were related to the hydrogen supply. In one mutant strain, expression of both methyl coenzyme M reductase isoenzyme I and coenzyme F420-dependent 5,10-methylenetetrahydromethanopterin dehydrogenase was impaired. The strain was also unable to form factor F390, lending support to the hypothesis that the factor functions in regulation of methanogenesis in response to changes in the availability of hydrogen.  相似文献   

4.
Unlike most Lactobacillus acidophilus strains, a specific strain, L. acidophilus IFO 3532, was found to grow in rich medium containing 1 M sodium acetate, KCl, or NaCl. This strain could also grow with up to 1.8 M NaCl or 3 M nonelectrolytes (fructose, xylose, or sorbitol) added. Thus, this strain was tolerant to osmotic pressures up to 2.8 osM. A search for an intracellular solute which conferred osmoprotection led to the identification of glycine betaine (betaine). Betaine was accumulated to high concentrations in cells growing in MRS medium supplemented with 1 M KCl or NaCl. Uptake of [14C]betaine by L. acidophilus 3532 cells suspended in buffer was stimulated by increasing the medium osmotic pressure with 1 M KCl or NaCl. The accumulated betaine was not metabolized further; transport was relatively specific for betaine and was dependent on an energy source. Other lactobacilli, more osmosensitive than strain 3532, including L. acidophilus strain E4356, L. bulgaricus 8144, and L. delbrueckii 9649, showed lower betaine transport rates in response to an osmotic challenge than L. acidophilus 3532. Experiments with chloramphenicol-treated L. acidophilus 3532 cells indicated that the transport system was not induced but appeared to be activated by an increase in osmotic pressure.  相似文献   

5.
Campylobacter jejuni strain M1 (laboratory designation 99/308) is a rarely documented case of direct transmission of C. jejuni from chicken to a person, resulting in enteritis. We have sequenced the genome of C. jejuni strain M1, and compared this to 12 other C. jejuni sequenced genomes currently publicly available. Compared to these, M1 is closest to strain 81116. Based on the 13 genome sequences, we have identified the C. jejuni pan-genome, as well as the core genome, the auxiliary genes, and genes unique between strains M1 and 81116. The pan-genome contains 2,427 gene families, whilst the core genome comprised 1,295 gene families, or about two-thirds of the gene content of the average of the sequenced C. jejuni genomes. Various comparison and visualization tools were applied to the 13 C. jejuni genome sequences, including a species pan- and core genome plot, a BLAST Matrix and a BLAST Atlas. Trees based on 16S rRNA sequences and on the total gene families in each genome are presented. The findings are discussed in the background of the proven virulence potential of M1.  相似文献   

6.
Mycobacterium abscessus is an environmental bacterium with increasing clinical relevance. Here, we report the annotated whole-genome sequence of M. abscessus strain M152.  相似文献   

7.
Hydroxycinnamates, aromatic compounds that play diverse roles in plants, are dissimilated by enzymes encoded by the hca genes in the nutritionally versatile, naturally transformable bacterium Acinetobacter sp. strain ADP1. A key step in the hca-encoded pathway is activation of the natural substrates caffeate, p-coumarate, and ferulate by an acyl:coenzyme A (acyl:CoA) ligase encoded by hcaC. As described in this paper, Acinetobacter cells with a knockout of the next enzyme in the pathway, hydroxycinnamoyl-CoA hydratase/lyase (HcaA), are extremely sensitive to the presence of the three natural hydroxycinnamate substrates; Escherichia coli cells carrying a subclone with the hcaC gene are hydroxycinnamate sensitive as well. When the hcaA mutation was combined with a mutation in the repressor HcaR, exposure of the doubly mutated Acinetobacter cells to caffeate, p-coumarate, or ferulate at 10−6 M totally inhibited the growth of cells. The toxicity of p-coumarate and ferulate to a ΔhcaA strain was found to be a bacteriostatic effect. Although not toxic to wild-type cells initially, the diphenolic caffeate was itself converted to a toxin over time in the absence of cells; the converted toxin was bactericidal. In an Acinetobacter strain blocked in hcaA, a secondary mutation in the ligase (HcaC) suppresses the toxic effect. Analysis of suppression due to the mutation of hcaC led to the development of a positive-selection strategy that targets mutations blocking HcaC. An hcaC mutation from one isolate was characterized and was found to result in the substitution of an amino acid that is conserved in a functionally characterized homolog of HcaC.  相似文献   

8.
The addition of sodium acetate to chemically defined MP2 medium was found to increase and stabilize solvent production and also increase glucose utilization by Clostridium beijerinckii NCIMB 8052. RNA and enzyme analyses indicated that coenzyme A (CoA) transferase was highly expressed and has higher activity in C. beijerinckii NCIMB 8052 grown in MP2 medium containing added sodium acetate than in the microorganism grown without sodium acetate. RNA analysis suggested the existence of a sol operon and confirmed the presence of a ptb-buk operon in C. beijerinckii NCIMB 8052. In addition to CoA transferase, C. beijerinckii NCIMB 8052 grown in MP2 medium containing added acetate demonstrated higher acetate kinase- and butyrate kinase-specific activity than when the culture was grown in MP2 medium containing no added acetate. Southern blot analysis with chromosomal DNA isolated from solventogenic and degenerated C. beijerinckii NCIMB 8052 indicated that C. beijerinckii NCIMB 8052 strain degeneration does not involve loss of the CoA transferase genes. The addition of acetate to MP2 medium may induce the expression of the sol operon, which ensures solvent production and prevents strain degeneration in C. beijerinckii NCIMB 8052.  相似文献   

9.
The gene loci fcs, encoding feruloyl coenzyme A (feruloyl-CoA) synthetase, ech, encoding enoyl-CoA hydratase/aldolase, and aat, encoding β-ketothiolase, which are involved in the catabolism of ferulic acid and eugenol in Pseudomonas sp. strain HR199 (DSM7063), were localized on a DNA region covered by two EcoRI fragments (E230 and E94), which were recently cloned from a Pseudomonas sp. strain HR199 genomic library in the cosmid pVK100. The nucleotide sequences of parts of fragments E230 and E94 were determined, revealing the arrangement of the aforementioned genes. To confirm the function of the structural genes fcs and ech, they were cloned and expressed in Escherichia coli. Recombinant strains harboring both genes were able to transform ferulic acid to vanillin. The feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase activities of the fcs and ech gene products, respectively, were confirmed by photometric assays and by high-pressure liquid chromatography analysis. To prove the essential involvement of the fcs, ech, and aat genes in the catabolism of ferulic acid and eugenol in Pseudomonas sp. strain HR199, these genes were inactivated separately by the insertion of omega elements. The corresponding mutants Pseudomonas sp. strain HRfcsΩGm and Pseudomonas sp. strain HRechΩKm were not able to grow on ferulic acid or on eugenol, whereas the mutant Pseudomonas sp. strain HRaatΩKm exhibited a ferulic acid- and eugenol-positive phenotype like the wild type. In conclusion, the degradation pathway of eugenol via ferulic acid and the necessity of the activation of ferulic acid to the corresponding CoA ester was confirmed. The aat gene product was shown not to be involved in this catabolism, thus excluding a β-oxidation analogous degradation pathway for ferulic acid. Moreover, the function of the ech gene product as an enoyl-CoA hydratase/aldolase suggests that ferulic acid degradation in Pseudomonas sp. strain HR199 proceeds via a similar pathway to that recently described for Pseudomonas fluorescens AN103.  相似文献   

10.
Novel processing strategies for hydrolysis and fermentation of lignocellulosic biomass in a single reactor offer large potential cost savings for production of biocommodities and biofuels. One critical challenge is retaining high enzyme production in the presence of elevated product titers. Toward this goal, the cellulolytic, ethanol-producing bacterium Clostridium phytofermentans was adapted to increased ethanol concentrations. The resulting ethanol-tolerant (ET) strain has nearly doubled ethanol tolerance relative to the wild-type level but also reduced ethanol yield and growth at low ethanol concentrations. The genome of the ET strain has coding changes in proteins involved in membrane biosynthesis, the Rnf complex, cation homeostasis, gene regulation, and ethanol production. In particular, purification of the mutant bifunctional acetaldehyde coenzyme A (CoA)/alcohol dehydrogenase showed that a G609D variant abolished its activities, including ethanol formation. Heterologous expression of Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase in the ET strain increased cellulose consumption and restored ethanol production, demonstrating how metabolic engineering can be used to overcome disadvantageous mutations incurred during adaptation to ethanol. We discuss how genetic changes in the ET strain reveal novel potential strategies for improving microbial solvent tolerance.  相似文献   

11.
A degradative bacterium, M6, was isolated and presumptively identified as Plesiomonas sp. strain M6 was able to hydrolyze methyl parathion to p-nitrophenol. A novel organophosphate hydrolase gene designated mpd was selected from its genomic library prepared by shotgun cloning. The nucleotide sequence of the mpd gene was determined. The gene could be effectively expressed in Esherichia coli.  相似文献   

12.
The expression of genes involved in methanogenesis in a thermophilic hydrogen-utilizing methanogen, Methanothermobacter thermoautotrophicus strain TM, was investigated both in a pure culture sufficiently supplied with H2 plus CO2 and in a coculture with an acetate-oxidizing hydrogen-producing bacterium, Thermacetogenium phaeum strain PB, in which hydrogen partial pressure was constantly kept very low (20 to 80 Pa). Northern blot analysis indicated that only the mcr gene, which encodes methyl coenzyme M reductase I (MRI), catalyzing the final step of methanogenesis, was expressed in the coculture, whereas mcr and mrt, which encodes methyl coenzyme M reductase II (MRII), the isofunctional enzyme of MRI, were expressed at the early to late stage of growth in the pure culture. In contrast to these two genes, two isofunctional genes (mtd and mth) for N5,N10-methylene-tetrahydromethanopterin dehydrogenase, which catalyzes the fourth step of methanogenesis, and two hydrogenase genes (frh and mvh) were expressed both in a pure culture and in a coculture at the early and late stages of growth. The same expression pattern was observed for Methanothermobacter thermoautotrophicus strain ΔH cocultured with a thermophilic butyrate-oxidizing syntroph, Syntrophothermus lipocalidus strain TGB-C1. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of whole proteins of M. thermoautotrophicus strain TM obtained from a pure culture and a coculture with the acetate-oxidizing syntroph and subsequent N-terminal amino acid sequence analysis confirmed that MRI and MRII were produced in the pure culture, while only MRI was produced in the coculture. These results indicate that under syntrophic growth conditions, the methanogen preferentially utilizes MRI but not MRII. Considering that hydrogenotrophic methanogens are strictly dependent for growth on hydrogen-producing fermentative microbes in the natural environment and that the hydrogen supply occurs constantly at very low concentrations compared with the supply in pure cultures in the laboratory, the results suggest that MRI is an enzyme primarily functioning in natural methanogenic ecosystems.  相似文献   

13.
Myxomatosis is a rapidly lethal disease of European rabbits that is caused by myxoma virus (MYXV). The introduction of a South American strain of MYXV into the European rabbit population of Australia is the classic case of host-pathogen coevolution following cross-species transmission. The most virulent strains of MYXV for European rabbits are the Californian viruses, found in the Pacific states of the United States and the Baja Peninsula, Mexico. The natural host of Californian MYXV is the brush rabbit, Sylvilagus bachmani. We determined the complete sequence of the MSW strain of Californian MYXV and performed a comparative analysis with other MYXV genomes. The MSW genome is larger than that of the South American Lausanne (type) strain of MYXV due to an expansion of the terminal inverted repeats (TIRs) of the genome, with duplication of the M156R, M154L, M153R, M152R, and M151R genes and part of the M150R gene from the right-hand (RH) end of the genome at the left-hand (LH) TIR. Despite the extreme virulence of MSW, no novel genes were identified; five genes were disrupted by multiple indels or mutations to the ATG start codon, including two genes, M008.1L/R and M152R, with major virulence functions in European rabbits, and a sixth gene, M000.5L/R, was absent. The loss of these gene functions suggests that S. bachmani is a relatively recent host for MYXV and that duplication of virulence genes in the TIRs, gene loss, or sequence variation in other genes can compensate for the loss of M008.1L/R and M152R in infections of European rabbits.  相似文献   

14.
Succinoyl trehalose lipids (STLs) are promising glycolipid biosurfactants produced from n-alkanes that are secreted by Rhodococcus species bacteria. These compounds not only exhibit unique interfacial properties but also demonstrate versatile biochemical actions. In this study, three novel types of genes involved in the biosynthesis of STLs, including a putative acyl coenzyme A (acyl-CoA) transferase (tlsA), fructose-bisphosphate aldolase (fda), and alkane monooxygenase (alkB), were identified. The predicted functions of these genes indicate that alkane metabolism, sugar synthesis, and the addition of acyl groups are important for the biosynthesis of STLs. Based on these results, we propose a biosynthesis pathway for STLs from alkanes in Rhodococcus sp. strain SD-74. By overexpressing tlsA, we achieved a 2-fold increase in the production of STLs. This study advances our understanding of bacterial glycolipid production in Rhodococcus species.  相似文献   

15.
4-Chlorobenzoate degradation in cell extracts of Acinetobacter sp. strain 4-CB1 occurs by initial synthesis of 4-chlorobenzoyl coenzyme A (4-chlorobenzoyl CoA) from 4-chlorobenzoate, CoA, and ATP. 4-Chlorobenzoyl CoA is dehalogenated to 4-hydroxybenzoyl CoA. Following the dehalogenation reaction, 4-hydroxybenzoyl CoA is hydrolyzed to 4-hydroxybenzoate and CoA. Possible roles for the CoA moiety in the dehalogenation reaction are discussed.  相似文献   

16.
Nutritional Requirements of Methanosarcina sp. Strain TM-1   总被引:2,自引:1,他引:1       下载免费PDF全文
Methanosarcina sp. strain TM-1, an acetotrophic, thermophilic methanogen isolated from an anaerobic sludge digestor, was originally reported to require an anaerobic sludge supernatant for growth. It was found that the sludge supernatant could be replaced with yeast extract (1 g/liter), 6 mM bicarbonate-30% CO2, and trace metals, with a doubling time on methanol of 14 h. For growth on either methanol or acetate, yeast extract could be replaced with CaCl2 · 2H2O (13.6 μM minimum) and the vitamin p-aminobenzoic acid (PABA, ca. 3 nM minimum), with a doubling time on methanol of 8 to 9 h. Filter-sterilized folic acid at 0.3 μM could not replace PABA. The antimetabolite sulfanilamide (20 mM) inhibited growth of and methanogenesis by Methanosarcina sp. strain TM-1, and this inhibition was reversed by the addition of 0.3 μM PABA. When a defined medium buffered with 20 mM N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid was used, it was shown that Methanosarcina sp. strain TM-1 required 6 mM bicarbonate-30% CO2 for optimal growth and methanogenesis from methanol. Cells growing on acetate were less dependent on bicarbonate-CO2. When we used a defined medium in which the only organic compounds present were methanol or acetate, nitrilotriacetic acid (0.2 mM), and PABA, it was possible to limit batch cultures of Methanosarcina sp. strain TM-1 for nitrogen at NH4+ concentrations at or below 2.0 mM, in marked contrast with Methanosarcina barkeri 227, which fixes dinitrogen when grown under NH4+ limitation.  相似文献   

17.

Background

Molecular genotyping methods have shown infection with more than one Mycobacterium tuberculosis strain genotype in a single sputum culture, indicating mixed infection.

Aim

This study aimed to develop a PCR-based genotyping tool to determine the population structure of M. tuberculosis strain genotypes in primary Mycobacterial Growth Indicator Tubes (MGIT) and Löwenstein–Jensen (LJ) cultures to identify mixed infections and to establish whether the growth media influenced the recovery of certain strain genotypes.

Method

A convenience sample of 206 paired MGIT and LJ M. tuberculosis cultures from pulmonary tuberculosis patients resident in Khayelitsha, South Africa were genotyped using an in-house PCR-based method to detect defined M. tuberculosis strain genotypes.

Results

The sensitivity and specificity of the PCR-based method for detecting Beijing, Haarlem, S-family, and LAM genotypes was 100%, and 75% and 50% for detecting the Low Copy Clade, respectively. Thirty-one (15%) of the 206 cases showed the presence of more than one M. tuberculosis strain genotype. Strains of the Beijing and Haarlem genotypes were significantly more associated with a mixed infection (on both media) when compared to infections with a single strain (Beijing MGIT p = 0.02; LJ, p<0.01) and (Haarlem: MGIT p<0.01; LJ, p = 0.01). Strains with the Beijing genotype were less likely to be with “other genotype” strains (p<0.01) while LAM, Haarlem, S-family and LCC occurred independently with the Beijing genotype.

Conclusion

The PCR-based method was able to identify mixed infection in at least 15% of the cases. LJ media was more sensitive in detecting mixed infections than MGIT media, implying that the growth characteristics of M. tuberculosis on different media may influence our ability to detect mixed infections. The Beijing and Haarlem genotypes were more likely to occur in a mixed infection than any of the other genotypes tested suggesting pathogen-pathogen compatibility.  相似文献   

18.
Chitinolytic microflora may contribute to biological control of plant-parasitic nematodes by causing decreased egg viability through degradation of egg shells. Here, the influence of Lysobacter enzymogenes strain C3 on Caenorhabditis elegans, Heterodera schachtii, Meloidogyne javanica, Pratylenchus penetrans, and Aphelenchoides fragariae is described. Exposure of C. elegans to L. enzymogenes strain C3 on agar resulted in almost complete elimination of egg production and death of 94% of hatched juveniles after 2 d. Hatch of H. schachtii eggs was about 50% on a lawn of L. enzymogenes strain C3 on agar as compared to 80% on a lawn of E. coli. Juveniles that hatched on a lawn of L. enzymogenes strain C3 on agar died due to disintegration of the cuticle and body contents. Meloidogyne javanica juveniles died after 4 d exposure to a 7-d-old chitin broth culture of L. enzymogenes strain C3. Immersion of A. fragariae, M. javanica, and P. penetrans juveniles and adults in a nutrient broth culture of L. enzymogenes strain C3 led to rapid death and disintegration of the nematodes. Upon exposure to L. enzymogenes strain C3 cultures in nutrient broth, H. schachtii juveniles were rapidly immobilized and then lysed after three days. The death and disintegration of the tested nematodes suggests that toxins and enzymes produced by this strain are active against a range of nematode species.  相似文献   

19.
The first genome sequence of a group A Streptococcus pyogenes serotype M23 (emm23) strain (M23ND), isolated from an invasive human infection, has been completed. The genome of this opacity factor-negative (SOF) strain is composed of a circular chromosome of 1,846,477 bp. Gene profiling showed that this strain contained six phage-encoded and 24 chromosomally inherited well-known virulence factors, as well as 11 pseudogenes. The bacterium has acquired four large prophage elements, ΦM23ND.1 to ΦM23ND.4, harboring genes encoding streptococcal superantigen (ssa), streptococcal pyrogenic exotoxins (speC, speH, and speI), and DNases (spd1 and spd3), with phage integrase genes being present at one flank of each phage insertion, suggesting that the phages were integrated by horizontal gene transfer. Comparative analyses revealed unique large-scale genomic rearrangements that result in genomic rearrangements that differ from those of previously sequenced GAS strains. These rearrangements resulted in an imbalanced genomic architecture and translocations of chromosomal virulence genes. The covS sensor in M23ND was identified as a pseudogene, resulting in the attenuation of speB function and increased expression of the genes for the chromosomal virulence factors multiple-gene activator (mga), M protein (emm23), C5a peptidase (scpA), fibronectin-binding proteins (sfbI and fbp54), streptolysin O (slo), hyaluronic acid capsule (hasA), streptokinase (ska), and DNases (spd and spd3), which were verified by PCR. These genes are responsible for facilitating host epithelial cell binding and and/or immune evasion, thus further contributing to the virulence of M23ND. In conclusion, strain M23ND has become highly pathogenic as the result of a combination of multiple genetic factors, particularly gene composition and mutations, prophage integrations, unique genomic rearrangements, and regulated expression of critical virulence factors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号