首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: The aim of the present study was to purify and characterize a natural antimicrobial compound from Bacillus sp. strain N associated with a novel rhabditid entomopathogenic nematode. Methods and Results: The cell‐free culture filtrate of a bacterium associated with a novel entomopathogenic nematode (EPN), Rhabditis (Oscheius) sp. exhibited strong antimicrobial activity. The ethyl acetate extract of the bacterial culture filtrate was purified by column chromatography, and two bioactive compounds were isolated and their chemical structures were established based on spectral analysis. The compounds were identified as 3,4′,5‐trihydroxystilbene (1) and 3,5‐dihydroxy‐4‐isopropylstilbene (2). The presence of 3,4′,5‐trihydroxystilbene (resveratrol) is reported for the first time in bacteria. Compound 1 showed antibacterial activity against all the four test bacteria, whereas compound 2 was effective against the Gram‐positive bacteria only. Compounds 1 and 2 were active against all the five fungi tested and are more effective than bavistin, the standard fungicide. The antifungal activity of the compounds against the plant pathogenic fungi, Rhizoctonia solani is reported for the first time. Conclusions: Cell‐free extract of the bacterium and isolated stilbenes demonstrated high antibacterial activity against bacteria and fungi especially against plant pathogenic fungi. We conclude that the bacterium‐associated EPN are promising sources of natural bioactive secondary metabolites. Significance and Impact of the Study: Stilbene compounds can be used for the control of fungi and bacteria.  相似文献   

2.
The culture conditions and nutritional rations influencing the production of extra cellular antileukemic enzyme by novel Enterobacter aerogenes KCTC2190/MTCC111 were optimized in shake-flask culture. Process variables like pH, temperature, incubation time, carbon and nitrogen sources, inducer concentration, and inoculum size were taken into account. In the present study, finest enzyme activity achieved by traditional one variable at a time method was 7.6 IU/mL which was a 2.6-fold increase compared to the initial value. Further, the L-asparaginase production was optimized using response surface methodology, and validated experimental result at optimized process variables gave 18.35 IU/mL of L-asparaginase activity, which is 2.4-times higher than the traditional optimization approach. The study explored the E. aerogenes MTCC111 as a potent and potential bacterial source for high yield of antileukemic drug.  相似文献   

3.
Thirty-eight haloalkaliphilic bacterial strains were isolated from Sambhar Salt Lake, India and screened for their ability to secrete haloalkaliphilic proteases. Among them, a moderately halophilic, mesophilic and alkaliphilic potent strain Geomicrobium sp. EMB2 produced an extracellular protease, which was remarkably stable in organic solvents, salt, surfactants, detergents and alkaline pH. Statistically based experimental designs were applied to study the interactions and optimization of medium constituents for efficient protease production by Geomicrobium sp. EMB2. An overall 20-fold increase in protease production was achieved in the optimized medium (721 U/ml) as compared with the unoptimized medium (37 U/ml). The high production level coupled with novel properties makes it a prospective industrial enzyme. The Geomicrobium sp. EMB2 isolate is deposited in Microbial Type Culture Collection, Chandigarh, India with accession number MTCC 10310.  相似文献   

4.
Antifungal lipopeptide produced by Bacillus sp. BH072 was extracted from fermentation liquor and determined as iturin A by liquid chromatography-mass spectrometry (LC-MS). For industrial-scale production, the yield of iturin A was improved by optimizing medium components and fermentation conditions. A one-factor test was conducted; fermentation conditions were then optimized by response surface methodology (RSM) to obtain the following: temperature, 29.5°C; pH 6.45; inoculation quantity, 6.7%; loading volume, 100 ml (in 500 ml flasks); and rotary speed, 150 rpm. Under these conditions, the mass concentration of iturin A was increased from 45.30 mg/ml to 47.87 mg/ml. The following components of the medium were determined: carbon sources (glucose, fructose, sucrose, xylose, rhamnose, and soluble starch); nitrogen sources (peptone, soybean meal, NH4Cl, urea, and ammonium citrate); and metal ions (Zn2+, Fe3+, Mg2+, Mn2+, Ca2+, and K+). The effects of these components on iturin A production were observed in LB medium. We selected sucrose, soybean meal, and Mg2+ for RSM to optimize the conditions because of several advantages, including maximum iturin A production, high antifungal activity, and low cost. The optimum concentrations of these components were 0.98% sucrose, 0.94% soybean meal, and 0.93% Mg2+. After iturin A production was optimized by RSM, the mass concentration reached 52.21 mg/ml. The antifungal specific activity was enhanced from 350.11 AU/mg to 513.92 AU/mg, which was 46.8% higher than the previous result. The present study provides an important experimental basis for the industrial-scale production of iturin A and the agricultural applications of Bacillus sp. BH072.  相似文献   

5.
BioMetals - Isolation of Microorganisms capable of reducing toxic chromium (VI) into less toxic one (Cr (III)) has been given attention due to their significance in bioremediation of the...  相似文献   

6.
The production of a neutral lipase from a Bacillus sp. was improved tremendously (193-fold) following media optimization involving both the "one-at-a-time" and the statistical designing approaches. The present lipase was poorly induced by oils, instead its production was induced in the presence of sugars and sugar alcohols, mainly galactose, lactose, glycerol, and mannitol. A high inoculum density of 15% v/v (A550 = 0.8) led to maximum lipase production. Interestingly, the enzyme induction was growth independent, a property very different from most of the lipases investigated to date. The optimal composition of the growth medium to achieve maximum lipase production was determined to be as follows: NH4Cl, 35 g x L(-1); glycerol, 10 mL x L(-1); K2HPO4, 3 g x L(-1); KH2PO4, 1 g x L(-1); MgSO4.7H2O, 0.1 g x L(-1); glucose, 2 g x L(-1); MgCl2, 0.6 mmol x L(-1), with 15% inoculum density and an incubation period of 24 h. About 62 U x mL(-1) of enzyme production was achieved in the optimized medium.  相似文献   

7.
Aims: The aim was to obtain evidences for lignin degradation by unicellular bacterium Comamonas sp. B‐9. Methods and Results: Comamonas sp. B‐9 was inoculated into kraft lignin‐mineral salt medium (KL‐MSM) at pH 7·0 and 30°C for 7 days of incubation. The bacterial growth, chemical oxygen demand (COD) reduction, secretion of ligninolytic enzymes and productions of low‐molecular‐weight compounds revealed that Comamonas sp. B‐9 was able to degrade kraft lignin (KL). COD in KL‐MSM reduced by 32% after 7 days of incubation. The maximum activities of manganese peroxidase (MnP) of 2903·2 U l?1 and laccase (Lac) of 1250 U l?1 were observed at 4th and 6th day, respectively. The low‐molecular‐weight compounds such as ethanediol, 3, 5‐dimethyl‐benzaldehyde and phenethyl alcohol were formed in the degradation of KL by Comamonas sp. B‐9 based on GC‐MS analysis. Conclusions: This study confirmed that Comamonas sp. B‐9 could utilize KL as a sole carbon source and degrade KL to low‐molecular‐weight compounds. Significance and Impact of the Study: Comamonas sp. B‐9 may be useful in the utilization and bioconversion of lignin and lignin‐derived aromatic compounds in biotechnological applications. Meanwhile, using Comamonas sp. B‐9 in treatment of wastewater in pulp and paper industry is a meaningful work.  相似文献   

8.
Z-phenylacetaldoxime (Z-PAOx) degrading bacterium, identified as Bacillus sp. strain OxB-1, was isolated from soil after 2 months acclimation. The enzyme involved in the degradation of Z-PAOx was induced by the aldoxime and required FMN for its activity. The enzyme was partially purified from the cell-free extract of the strain and shown to catalyze the stoichiometric dehydration reaction of Z-PAOx to form phenylacetonitrile (PAN). Activities of nitrilase and amidase acting on PAN and phenylacetamide (PAAm), respectively, to form phenylacetate (PAA) were found in the strain grown on Z-PAOx. This is the first report of aldoxime dehydratase co-existing with nitrile degrading enzymes in bacteria.  相似文献   

9.
Response surface methodology (RSM) was employed to optimize culture medium for production of lipase with Candida sp. 99-125. In the first step, a Plackett–Burmen design was used to evaluate the effects of different components in the culture medium. Soybean oil, soybean powder and K2HPO4 have significant influences on the lipase production. The concentrations of three factors were optimized subsequently using central composite designs and response surface analysis. The optimized condition allowed the production of lipase to be increased from 5000 to 6230 IU/ml in shake flask system. The lipase fermentation in 5 l fermenter reached 9600 IU/ml.  相似文献   

10.
Many different oligosaccharides were produced by transferring the fructose residue of sucrose to maltose, cellobiose, lactose and sucrose (self-transfer), where their yields of fructosylated acceptor products accounted for 26–30% (w/w). The maximum conversion yield (30%) was obtained in fructosyl cellobioside formation with 500 g sucrose l–1 (substrate) and 200 g cellobiose l–1 (acceptor). These four acceptors gave various products having DP (degree of polymerization) 2–7 by successive transfer reactions.  相似文献   

11.
Abstract

The microbial polysaccharides secreted and produced from various microbes into their extracellular environment is known as exopolysaccharide. These polysaccharides can be secreted from the microbes either in a soluble or insoluble form.Lactobacillus sp. is one of the organisms that have been found to produce exopolysaccharide. Exo-polysaccharides (EPS) have various applications such as drug delivery, antimicrobial activity, surgical implants and many more in different fields. Medium composition is one of the major aspects for the production of EPS from Lactobacillus sp., optimization of medium components can help to enhance the synthesis of EPS . In the present work, the production of exopolysaccharide with different medium composition was optimized by response surface methodology (RSM) followed by tested for fitting with artificial neural networks (ANN). Three algorithms of ANN were compared to investigate the highest yeild of EPS. The highest yeild of EPS production in RSM was achieved by the medium composition that consists of (g/L) dextrose 15, sodium dihydrogen phosphate 3, potassium dihydrogen phosphate 2.5, triammonium citrate 1.5, and, magnesium sulfate 0.25. The output of 32 sets of RSM experiments were tested for fitting with ANN with three algorithms viz. Levenberg–Marquardt Algorithm (LMA), Bayesian Regularization Algorithm (BRA) and Scaled Conjugate Gradient Algorithm (SCGA) among them LMA found to have best fit with the experiments as compared to the SCGA and BRA.  相似文献   

12.
Phylogenetic relationships of a thermophilic, halophilic, aerobic spore-forming strain 4-1(T), isolated from the water of a shallow sea hot spring at Vulcano Island (Italy), revealed its relatedness to members of the genus Bacillus. Chemotaxonomic and phenotypic properties of strain 4-1(T) are sufficiently different from related moderately thermophilic species, e.g., B. smithii, B. fumarioli, B. oleronius, B. sporothermodurans and B. infernus to describe strain 4-1(T) as a new Bacillus species, for which the name Bacillus aeolius sp. nov. is proposed. Strain 4-1(T) is characterised by the potential biotechnological important properties such as exopolysaccharide production, surfactant activity, and utilisation of hydrocarbons.  相似文献   

13.
Response surface methodology (RSM) was employed to study the effect of culture medium on the production of lovastatin in mixed solid-liquid state (or submerged) cultures by Monascus ruber. The maximal lovastatin yield (131 mg/L, average of three repeats) appeared at the region where the respective concentrations of rice powder, peptone, glycerin, and glucose were around 34.4 g/L, 10.8 g/L, 26.4 ml/L, and 129.2 g/L, respectively. The optimized medium resulted in a significant increase of lovastatin yield, as compared with that obtained by the fermentation of many other M. ruber species.  相似文献   

14.
In the present study, two cellulose-degrading bacteria (CDB-5 and CDB-12) were isolated from mangrove soils of Mahanadi river delta, based on halo zone formation in Congo red agar medium and evaluation for cellulase production in CMC broth medium. Based on morphological, biochemical and 16S rRNA gene sequencing, the two strains, CDB-5 and CDB-12, were identified as Brucella sp. and Bacillus licheniformis, respectively. The gene bank accession number of the strains CDB-5 and CDB-12 are KR632646 and KR632645, respectively. The strain Brucella sp. and B. licheniformis showed an enzyme activity of 96.37?U/ml and 98.25?U/ml, respectively, after 72?h of incubation period. Enzyme production was optimized under different growth conditions such as pH, temperature, agitation rate, carbon source, sodium chloride (NaCl), and nitrogen sources. Maximum cellulase production by both the strains was obtained in the same parameter condition such as pH (7.0), rpm (150), and NaCl (2%, w/v) which varies for other parameters. The strain, CDB-5, produced maximum cellulase at 35?°C temperature, maltose as a carbon source, and yeast extract as a nitrogen source where as the strain CDB-12 produces maximum cellulase at 45?°C temperature, carboxyl methyl cellulose (CMC) as carbon source and trypton as a nitrogen source. The bacterial crude enzyme was purified by ammonium sulfate precipitation followed by overnight dialysis. SDS-PAGE analysis of the partially purified cellulase enzyme exhibited band sizes of approximately 55 and 72?kDa.  相似文献   

15.
The new bacteriocin is produced from Bacillus lentus NG121 isolated from Khameera – a traditional fermented food from Himachal Pradesh, India which has been reported for the first time in the literature to produce bacteriocin and exhibited very high activity units of 20 × 105 AU (Arbitrary Units)/ml. This bacteriocin was partially purified and was further characterized to assess its preservation characteristics. It showed strong antimicrobial activity against the most challenging and serious test indicators like Listeria monocytogens and Staphylococcus aureus. There was a drastic decrease up to 70% in viable cells of the indicators within the first 10 h of adding partially purified bacteriocin thus proving its bactericidal action. It could withstand the high heat of 100 °C for 10 min of heating time without losing any activity. A wide range of pH tolerance i.e. from 5.0–10.0 was expressed by this bacteriocin. It was found completely sensitive to proteolytic enzyme trypsin. The unique combination of all the above mentioned characteristics makes the bacteriocin of newly isolated Bacillus lentus NG121, a food grade bacteria, highly desirable for preservation of different food items in the food industry.  相似文献   

16.
Of the 316 actinomycetes strains isolated from various habitats, Streptomyces sp. strain JJ45 showed the strongest antibiotic activity against the plant pathogenic bacteria Xanthomonas campestris pv. campestris and was thus chosen for further study. The 16S rRNA gene sequence (1500 bp) and rpoB gene partial sequence (306 bp) of Streptomyces strains JJ45A and JJ45B were determined. The respective strain JJ45B sequences exhibited 96.8% identity with the Streptococcus gelaticus 16S rRNA gene sequence and 98.4% identity with the Streptococcus vinaceus ATCC 27478 rpoB partial sequence. The fermentation broth of the JJ45B strain was extracted to find an inhibitor of bacterial growth. The distilled water extract showed the highest activity against pathogenic bacteria. The active molecule was isolated by column chromatography on polyacrylamide or silica gel, thin-layer chromatography, and HPLC. It showed growth inhibition activity only toward phytopathogenic Xanthomonas sp. The structure of the compound was identified as α- l -sorbofuranose (3→2)-β- d -altrofuranose based on the interpretation of the nuclear magnetic resonance spectra.  相似文献   

17.
An endospore-forming bacterium, designated strain B-16T, was isolated from a forest soil sample in Yunnan, China. The isolate presented remarkable nematotoxic activity against nematode Panagrellus redivivus. The organism was strictly aerobic, motile, spore forming and rod shaped, catalase- and oxidase-positive. The predominant isoprenoid quinone was menaquinone 7 (MK-7). The major cellular fatty acid profiles were anteiso-C15:0 (48.67%), iso-C15:0 (13.45%), C16:0 (9.06%) and anteiso-Cl7:0 (8.29%). The DNA G+C content was 46%. Phylogenetic analyses based on 16S rDNA sequence revealed that isolate belongs to the genus Bacillus. Strain B-16T exhibited high 16S rDNA similarity with its closest neighbors Bacillus vallismortis (99.79%), B. subtilis (99.43%), B. atrophaeus (99.43%), B. amyloliquefaciens (99.36%), B. licheniformis (98.0%) and less than 97.0% with all the other relative type strains in the genus Bacillus. The phenotypic and genotypic characteristics and DNA-DNA relatedness data indicate that strain B-16T should be distinguished from all the relative species of genus Bacillus. Therefore, on the basis of the polyphasic taxonomic data presented, a new species of the genus Bacillus, B. nematocida, with the type strain B-16T ( = CGMCC 1128T) is proposed. The GenBank accession number for the sequence reported in this paper is AY820954.  相似文献   

18.
An attempt was made to isolate bacterial strains capable of biologically removing tungstate (WO42−). Thirty-eight water samples were collected from various areas of Anzali lagoon, Iran. Initial screening of a total of 100 bacterial isolates at pH 5, resulted in the selection of one isolate with maximum adsorption capacity of 65.4 mg tungstate/g dry weight. It was tentatively identified as Bacillus sp. according to morphological and biochemical properties and named strain MGG-83. Tungsten concentration was measured spectrophotometrically using the dithiol method. Higher adsorption capacity was observed in the acidic pH ranging from 1 to 3. At pH 2, the strain removed 274.4 mg tungstate/g dry weight within 5 min from the solution with 300 mg WO42−/l initial concentration and thereafter adsorption rate decreased remarkably. The applicability of the Freundlich isotherm for representation of the experimental data was investigated. Using 1 mM sodium azide and 10 mM 2,4−dinitrophenol, it was shown that only 20% reduction occurred in adsorption and steam sterilization of the bacterial cells resulted in 11% decrease in tungstate uptake. Temperature variations (20–40°C) had no significant effect on tungstate uptake. Pretreatment with the cations had no effect in uptake but pretreatment with anions decreased the tungstate uptake as indicated: sulfate > chromate > nitrate > molybdate > selenate > rhenate. Tungstate was removed from metal-laden biomass after desorption treatments by addition of different desorbing solutions with the results sodium acetate > EDTA > NaCl > KOH > H2SO4.  相似文献   

19.
20.
Alkaliphilic Bacillus sp. strain 41M-1, isolated from soil, produced xylan-degrading enzymes extracellularly. Optimum pH for the crude xylanase preparation was about pH 9, confirming the production of novel alkaline xylanase(s) by the isolate. Xylanases were induced by xylan, but were not produced in the presence of xylose, arabinose or glucose. Xylanase productivity was influenced by culture pH, and production at pH 10.5 was higher than that at pH 8.0. Zymogram analysis of the culture supernatant showed the alkaline xylanase with a molecular mass of 36 kDa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号