首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Embryonic stem (ES) cells are multipotent progenitors with unlimited developmental potential, and in vitro differentiated ES cell-derived neuronal progenitors can develop into functional neurons when transplanted in the central nervous system. As the capacity of naive primary ES cells to integrate in the adult brain and the role of host neural tissue therein are yet largely unknown, we grafted low densities of undifferentiated mouse ES (mES) cells in adult mouse brain regions associated with neurodegenerative disorders; and we demonstrate that ES cell-derived neurons undergo gradual integration in recipient tissue and acquire morphological and electrophysiological properties indistinguishable from those of host neurons. Only some brain areas permitted survival of mES-derived neural progenitors and formed instructive environments for neuronal differentiation and functional integration of naive mES cells. Hence, region-specific presence of microenvironmental cues and their pivotal involvement in controlling ES cell integration in adult brain stress the importance of recipient tissue characteristics in formulating cell replacement strategies for neurodegenerative disorders.  相似文献   

2.
Intrastriatal grafts of stem cell-derived dopamine (DA) neurons induce behavioral recovery in animal models of Parkinson''s disease (PD), but how they functionally integrate in host neural circuitries is poorly understood. Here, Wnt5a-overexpressing neural stem cells derived from embryonic ventral mesencephalon of tyrosine hydroxylase-GFP transgenic mice were expanded as neurospheres and transplanted into organotypic cultures of wild type mouse striatum. Differentiated GFP-labeled DA neurons in the grafts exhibited mature neuronal properties, including spontaneous firing of action potentials, presence of post-synaptic currents, and functional expression of DA D2 autoreceptors. These properties resembled those recorded from identical cells in acute slices of intrastriatal grafts in the 6-hydroxy-DA-induced mouse PD model and from DA neurons in intact substantia nigra. Optogenetic activation or inhibition of grafted cells and host neurons using channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR), respectively, revealed complex, bi-directional synaptic interactions between grafted cells and host neurons and extensive synaptic connectivity within the graft. Our data demonstrate for the first time using optogenetics that ectopically grafted stem cell-derived DA neurons become functionally integrated in the DA-denervated striatum. Further optogenetic dissection of the synaptic wiring between grafted and host neurons will be crucial to clarify the cellular and synaptic mechanisms underlying behavioral recovery as well as adverse effects following stem cell-based DA cell replacement strategies in PD.  相似文献   

3.
Embryonic stem (ES) cells are pluripotent cells capable of differentiating into cell lineages derived from all primary germ layers including neural cells. In this study we describe an efficient method for differentiating rhesus monkey ES cells to neural lineages and the subsequent isolation of an enriched population of Nestin and Musashi positive neural progenitor (NP) cells. Upon differentiation, these cells exhibit electrophysiological characteristics resembling cultured primary neurons. Embryoid bodies (EBs) were formed in ES growth medium supplemented with 50% MEDII. After 7 days in suspension culture, EBs were transferred to adherent culture and either differentiated in serum containing medium or expanded in serum free medium. Immunocytochemistry on differentiating cells derived from EBs revealed large networks of MAP-2 and NF200 positive neurons. DAPI staining showed that the center of the MEDII-treated EBs was filled with rosettes. NPs isolated from adherent EB cultures expanded in serum free medium were passaged and maintained in an undifferentiated state by culture in serum free N2 with 50% MEDII and bFGF. Differentiating neurons derived from NPs fired action potentials in response to depolarizing current injection and expressed functional ionotropic receptors for the neurotransmitters glutamate and gamma-aminobutyric acid (GABA). NPs derived in this way could serve as models for cellular replacement therapy in primate models of neurodegenerative disease, a source of neural cells for toxicity and drug testing, and as a model of the developing primate nervous system.  相似文献   

4.
Cell therapy has been perceived as the main or ultimate goal of human embryonic stem (ES) cell research. Where are we now and how are we going to get there? There has been rapid success in devising in vitro protocols for differentiating human ES cells to neuroepithelial cells. Progress has also been made to guide these neural precursors further to more specialized neural cells such as spinal motor neurons and dopamine-producing neurons. However, some of the in vitro produced neuronal types such as dopamine neurons do not possess all the phenotypes of their in vivo counterparts, which may contribute to the limited success of these cells in repairing injured or diseased brain and spinal cord in animal models. Hence, efficient generation of neural subtypes with correct phenotypes remains a challenge, although major hurdles still lie ahead in applying the human ES cell-derived neural cells clinically. We propose that careful studies on neural differentiation from human ES cells may provide more immediate answers to clinically relevant problems, such as drug discovery, mechanisms of disease and stimulation of endogenous stem cells.  相似文献   

5.
We have designed a cell culture system for thoracic neurons of adult Locusta migratoria that enables the establishment of functional synapses in vitro. Patch-clamp recordings revealed three different neuron classes. About half of the neurons (47%) had unexcitable somata with outward and no inward conductance. The other half generated either single (37%) or multiple action potentials (18%) and differed mainly in lower outward conductance. Selectively stained motor neurons were analyzed to demonstrate varied physiological properties due to culture conditions. Using paired patch clamp recordings we demonstrate directly synaptic transmission in morphologically connected neurons in vitro. Presynaptic stimulation resulted in postsynaptic potentials in 42 pairs of neurons tested, independent of the type of neuron. According to pharmacological experiments most of these synapses were either glutamatergic or GABAergic. In addition to these chemical synapses, electrical synapses were found. With the demonstration of synapse formation in cell culture of adult locust neurons, this study provides the basis for the future analysis of more defined insect neuronal circuits in culture.  相似文献   

6.
7.
Infection and injury of neurons by West Nile encephalitis virus   总被引:6,自引:0,他引:6       下载免费PDF全文
West Nile virus (WNV) infects neurons and leads to encephalitis, paralysis, and death in humans, animals, and birds. We investigated the mechanism by which neuronal injury occurs after WNV infection. Neurons in the anterior horn of the spinal cords of paralyzed mice exhibited a high degree of WNV infection, leukocyte infiltration, and degeneration. Because it was difficult to distinguish whether neuronal injury was caused by viral infection or by the immune system response, a novel tissue culture model for WNV infection was established in neurons derived from embryonic stem (ES) cells. Undifferentiated ES cells were relatively resistant to WNV infection. After differentiation, ES cells expressed neural antigens, acquired a neuronal phenotype, and became permissive for WNV infection. Within 48 h of exposure to an exceedingly low multiplicity of infection (5 x 10(-4)), 50% of ES cell-derived neurons became infected, producing nearly 10(7) PFU of infectious virus per ml, and began to die by an apoptotic mechanism. The establishment of a tractable virus infection model in ES cell-derived neurons facilitates the study of the molecular basis of neurotropism and the mechanisms of viral and immune-mediated neuronal injury after infection by WNV or other neurotropic pathogens.  相似文献   

8.
Many protocols have been designed to differentiate human embryonic stem cells (ESCs) and human induced pluripotent stem cells (iPSCs) into neurons. Despite the relevance of electrophysiological properties for proper neuronal function, little is known about the evolution over time of important neuronal electrophysiological parameters in iPSC-derived neurons. Yet, understanding the development of basic electrophysiological characteristics of iPSC-derived neurons is critical for evaluating their usefulness in basic and translational research. Therefore, we analyzed the basic electrophysiological parameters of forebrain neurons differentiated from human iPSCs, from day 31 to day 55 after the initiation of neuronal differentiation. We assayed the developmental progression of various properties, including resting membrane potential, action potential, sodium and potassium channel currents, somatic calcium transients and synaptic activity. During the maturation of iPSC-derived neurons, the resting membrane potential became more negative, the expression of voltage-gated sodium channels increased, the membrane became capable of generating action potentials following adequate depolarization and, at day 48–55, 50% of the cells were capable of firing action potentials in response to a prolonged depolarizing current step, of which 30% produced multiple action potentials. The percentage of cells exhibiting miniature excitatory post-synaptic currents increased over time with a significant increase in their frequency and amplitude. These changes were associated with an increase of Ca2+ transient frequency. Co-culturing iPSC-derived neurons with mouse glial cells enhanced the development of electrophysiological parameters as compared to pure iPSC-derived neuronal cultures. This study demonstrates the importance of properly evaluating the electrophysiological status of the newly generated neurons when using stem cell technology, as electrophysiological properties of iPSC-derived neurons mature over time.  相似文献   

9.
Our understanding of motor neuron biology in humans is derived mainly from investigation of human postmortem tissue and more indirectly from live animal models such as rodents. Thus generation of motor neurons from human embryonic stem cells and human induced pluripotent stem cells is an important new approach to model motor neuron function. To be useful models of human motor neuron function, cells generated in vitro should develop mature properties that are the hallmarks of motor neurons in vivo such as elaborated neuronal processes and mature electrophysiological characteristics. Here we have investigated changes in morphological and electrophysiological properties associated with maturation of neurons differentiated from human embryonic stem cells expressing GFP driven by a motor neuron specific reporter (Hb9::GFP) in culture. We observed maturation in cellular morphology seen as more complex neurite outgrowth and increased soma area over time. Electrophysiological changes included decreasing input resistance and increasing action potential firing frequency over 13 days in vitro. Furthermore, these human embryonic stem cell derived motor neurons acquired two physiological characteristics that are thought to underpin motor neuron integrated function in motor circuits; spike frequency adaptation and rebound action potential firing. These findings show that human embryonic stem cell derived motor neurons develop functional characteristics typical of spinal motor neurons in vivo and suggest that they are a relevant and useful platform for studying motor neuron development and function and for modeling motor neuron diseases.  相似文献   

10.
This study investigates the electrophysiological properties and functional integration of different phenotypes of transplanted human neural precursor cells (hNPCs) in immunodeficient NSG mice. Postnatal day 2 mice received unilateral injections of 100,000 GFP+ hNPCs into the right parietal cortex. Eight weeks after transplantation, 1.21% of transplanted hNPCs survived. In these hNPCs, parvalbumin (PV)-, calretinin (CR)-, somatostatin (SS)-positive inhibitory interneurons and excitatory pyramidal neurons were confirmed electrophysiologically and histologically. All GFP+ hNPCs were immunoreactive with anti-human specific nuclear protein. The proportions of PV-, CR-, and SS-positive cells among GFP+ cells were 35.5%, 15.7%, and 17.1%, respectively; around 15% of GFP+ cells were identified as pyramidal neurons. Those electrophysiologically and histological identified GFP+ hNPCs were shown to fire action potentials with the appropriate firing patterns for different classes of neurons and to display spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs). The amplitude, frequency and kinetic properties of sEPSCs and sIPSCs in different types of hNPCs were comparable to host cells of the same type. In conclusion, GFP+ hNPCs produce neurons that are competent to integrate functionally into host neocortical neuronal networks. This provides promising data on the potential for hNPCs to serve as therapeutic agents in neurological diseases with abnormal neuronal circuitry such as epilepsy.  相似文献   

11.
A 7-day-old hypoxic-ischemic encephalopathy (HIE) mouse model was used to study the effect of transplantation of embryonic stem (ES) cell-derived cells on the HIE. After the inducement in vitro, the ES cell-derived cells expressed Nestin and MAP-2, rather than GFAP mRNA. After transplantation, ES cell-derived cells can survive, migrate into the injury site, and specifically differentiate into neurons, showing improvement of the learning ability and memory of the HIE mouse at 8 months post-transplantation. The non-grafted HIE mouse brain showed typical pathological changes in the hippocampus and cerebral cortex, where the number of neurons was reduced, while in the cell graft group, number of the neurons increased in the same regions. Although further study is necessary to elucidate the precise mechanisms responsible for this functional recovery, we believe that ES cells have advantages for use as a donor source in HIE.  相似文献   

12.
We have established mouse embryonic stem (ES) cell lines from blastocysts derived by transfer of nuclei of fetal neuronal cells. These neuronal cell-derived embryonic cell lines had properties that characterize them as ES cells, including typical cell markers and alkaline phosphatase activity. Moreover, the cells had a normal karyotype and were pluripotent, as they were capable of differentiating into all three germ layers. Although they were derived from neuronal donor nuclei, the cells no longer expressed neuronal markers; however, they were capable of differentiating into cells with neuronal characteristics. These results suggest that the clone-derived cells have fully acquired an ES cell character. Thus, ES cells can be derived from embryos resulting from nuclear transfer, which results in reprogramming of the genetic information and acquisition of pluripotency. ES cells established from somatic cell-derived blastocysts could be useful not only as research tools for studying reprogramming but also as models for cell-based transplantation therapy.  相似文献   

13.
Neural cultures derived from differentiating embryonic stem (ES) cells are a potentially powerful in vitro model of neural development. We show that neural cells derived from mouse ES cells express mRNAs characteristic of GABAergic neurons. The glutamate decarboxylase genes (Gad1 and Gad2), required for GABA synthesis and the vesicular inhibitory amino acid transporter (Viaat) gene, required for GABA vesicular packaging are activated in the ES-derived cultures. Nearly half of the ES-derived neurons express the GAD67 protein, the product of the Gad1 gene. Building on these results we show that Gad1-lacZ "knockin" reporter ES cell lines can be used to easily monitor Gad1 expression patterns and expression levels during ES differentiation. We also demonstrate that the ES-derived neural progenitors can be infected with retroviruses or transfected with plasmids via lipofection. These experiments outline the basic strategies and methods required for studies of GABAergic gene expression and regulation in ES-derived neuronal cultures.  相似文献   

14.
Because of their ability to proliferate and to differentiate into diverse cell types, embryonic stem (ES) cells are a potential source of cells for transplantation therapy of various diseases, including Parkinson's disease. A critical issue for this potential therapy is the elimination of undifferentiated cells that, even in low numbers, could result in teratoma formation in the host brain. We hypothesize that an efficient solution would consist of purifying the desired cell types, such as neural precursors, prior to transplantation. To test this hypothesis, we differentiated sox1-green fluorescent protein (GFP) knock-in ES cells in vitro, purified neural precursor cells by fluorescence-activated cell sorting (FACS), and characterized the purified cells in vitro as well as in vivo. Immunocytofluorescence and RT-PCR analyses showed that this genetic purification procedure efficiently removed undifferentiated pluripotent stem cells. Furthermore, when differentiated into mature neurons in vitro, the purified GFP+ cell population generated enriched neuronal populations, whereas the GFP- population generated much fewer neurons. When treated with dopaminergic inducing signals such as sonic hedgehog (SHH) and fibroblast growth factor-8 (FGF8), FACS-purified neural precursor cells responded to these molecules and generated dopaminergic neurons as well as other neural subtypes. When transplanted, the GFP+ cell population generated well contained grafts containing dopaminergic neurons, whereas the GFP- population generated significantly larger grafts (about 20-fold) and frequent tumor-related deaths in the transplanted animals. Taken together, our results demonstrate that genetic purification of neural precursor cells using FACS isolation can effectively remove unwanted proliferating cell types and avoid tumor formation after transplantation.  相似文献   

15.
16.
Despite the existence of a functional arginine vasopressin (AVP) system in the adult heart and evidence that AVP induces myogenesis, its significance in cardiomyogenesis is currently unknown. In the present study, we hypothesized a role for AVP in cardiac differentiation of D3 and lineage-specific embryonic stem (ES) cells expressing green fluorescent protein under the control of atrial natriuretic peptide (Anp) or myosin light chain-2V (Mlc-2V) promoters. Furthermore, we investigated the nitric oxide (NO) involvement in AVP-mediated pathways. AVP exposure increased the number of beating embryoid bodies, fluorescent cells, and expression of Gata-4 and other cardiac genes. V1a and V2 receptors (V1aR and V2R) differentially mediated these effects in transgenic ES cells, and exhibited a distinct developmentally regulated mRNA expression pattern. A NO synthase inhibitor, L-NAME, powerfully antagonized the AVP-induced effects on cardiogenic differentiation, implicating NO signaling in AVP-mediated pathways. Indeed, AVP elevated the mRNA and protein levels of endothelial NO synthase (eNOS) through V2R stimulation. Remarkably, increased beating activity was found in AVP-treated ES cells with down-regulated eNOS expression, indicating the significant involvement of additional pathways in cardiomyogenic effects of AVP. Finally, patch clamp recordings revealed specific AVP-induced changes of action potentials and increased L-type Ca2+ (ICa,L) current densities in differentiated ventricular phenotypes. Thus, AVP promotes cardiomyocyte differentiation of ES cells and involves Gata-4 and NO signaling. AVP-induced action potential prolongation appears likely to be linked to the increased ICa,L current in ventricular cells. In conclusion, this report provides new evidence for the essential role of the AVP system in ES cell-derived cardiomyogenesis.  相似文献   

17.
Existing protocols for the neural differentiation of mouse embryonic stem (ES) cells require extended in vitro culture, yield variable differentiation results or are limited to the generation of selected neural subtypes. Here we provide a set of coculture conditions that allows rapid and efficient derivation of most central nervous system phenotypes. The fate of both fertilization- and nuclear transfer-derived ES (ntES) cells was directed selectively into neural stem cells, astrocytes, oligodendrocytes or neurons. Specific differentiation into gamma-aminobutyric acid (GABA), dopamine, serotonin or motor neurons was achieved by defining conditions to induce forebrain, midbrain, hindbrain and spinal cord identity. Neuronal function of ES cell-derived dopaminergic neurons was shown in vitro by electron microscopy, measurement of neurotransmitter release and intracellular recording. Furthermore, transplantation of ES and ntES cell-derived dopaminergic neurons corrected the phenotype of a mouse model of Parkinson disease, demonstrating an in vivo application of therapeutic cloning in neural disease.  相似文献   

18.
Recent advances in the neural stem cell field have provided a wealth of methods for generating large amounts of purified neuronal precursor cells. It has become a question of paramount importance to determine whether these cells integrate and interact with established neural circuitry after engraftment. In principle, neurons have to fulfill three basic functions: receive incoming signals via synapses, compute and forward processed information to other neurons or effector cells. It is anticipated that functionally integrating stem cell-derived donor neurons perform accordingly. Here we provide protocols for the efficient electrophysiological evaluation of engrafted cells and highlight current limitations thereof.  相似文献   

19.
Differentiation of embryonic stem cells into retinal neurons   总被引:14,自引:0,他引:14  
Mouse embryonic stem (ES) cells are continuous cell lines derived from the inner mass of blastocysts. Neural progenitors derived from these cells serve as an excellent model for controlled neural differentiation and as such have tremendous potential to understand and treat neurodegenerative diseases. Here, we demonstrate that ES cell-derived neural progenitors express regulatory factors needed for retinal differentiation and that in response to epigenetic cues a subset of them differentiate along photoreceptor lineage. During the differentiation, they activate photoreceptor regulatory genes, suggesting that ES cell-derived neural progenitors recruit mechanisms normally used for photoreceptor differentiation in vivo. These observations suggest that ES cells can serve as an excellent model for understanding mechanisms that regulate specification of retinal neurons and as an unlimited source of neural progenitors for treating degenerative diseases of the retina by cell replacement.  相似文献   

20.
In neurophysiology researches, peripheral stimulation is used along with recordings of neural activities to study the processing of somatosensory signals in the brain. However, limited precision of peripheral stimulation makes it difficult to activate the neuron with millisecond resolution and study its functional properties in this scale. Also, tissue/receptor damage that could occur in some experiments often limits the amount of responses that can be recorded and hence reduces data reproducibility. To overcome these limitations, electrical microstimulation (ES) of the brain could be used to directly and more precisely evoke neural responses. For this purpose, a deep-brain ES protocol for rat somatosensory relay neurons was developed in this study. Three male Wistar rats were used in the experiment. The ES was applied to the thalamic region responsive to hindpaw tactile stimulation (TS) via a theta glass microelectrode. The resulting ES-evoked cortical responses showed action potentials and thalamocortical relay latencies very similar to those evoked by TS. This result shows that the developed deep-brain ES protocol is an effective tool to bypass peripheral tissue for in vivo functional analysis of specific types of somatosensory neurons. This protocol could be readily applied in researches of nociception and other somatosensory systems to allow more extensive exploration of the neural functional networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号