首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Despite the long‐standing interest in nonstationarity of both phenotypic evolution and diversification rates, only recently have methods been developed to study this property. Here, we propose a methodological expansion of the phylogenetic signal‐representation (PSR) curve based on phylogenetic eigenvectors to test for nonstationarity. The PSR curve is built by plotting the coefficients of determination R2 from phylogenetic eigenvector regression (PVR) models increasing the number of phylogenetic eigenvectors against the accumulated eigenvalues. The PSR curve is linear under a stationary model of trait evolution (i.e. the Brownian motion model). Here we describe the distribution of shifts in the models R2 and used a randomization procedure to compare observed and simulated shifts along the PSR curve, which allowed detecting nonstationarity in trait evolution. As an applied example, we show that the main evolutionary pattern of variation in the theropod dinosaur skull was nonstationary, with a significant shift in evolutionary rates in derived oviraptorosaurs, an aberrant group of mostly toothless, crested, birdlike theropods. This result is also supported by a recently proposed Bayesian‐based method (AUTEUR). A significant deviation between Ceratosaurus and Limusaurus terminal branches was also detected. We purport that our new approach is a valuable tool for evolutionary biologists, owing to its simplicity, flexibility and comprehensiveness.  相似文献   

2.
Several metrics have been developed for estimating phylogenetic signal in comparative data. These may be important both in guiding future studies on correlated evolution and for inferring broad-scale evolutionary and ecological processes (e.g., phylogenetic niche conservatism). Notwithstanding, the validity of some of these metrics is under debate, especially after the development of more sophisticated model-based approaches that estimate departure from particular evolutionary models (i.e., Brownian motion). Here, two of these model-based metrics (Blomberg’s K-statistics and Pagel’s λ) are compared with three statistical approaches [Moran’s I autocorrelation coefficient, coefficients of determination from the autoregressive method (ARM), and phylogenetic eigenvector regression (PVR)]. Based on simulations of a trait evolving under Brownian motion for a phylogeny with 209 species, we showed that all metrics are strongly, although non-linearly, correlated to each other. Our analyses revealed that statistical approaches provide valid results and may be still particularly useful when detailed phylogenies are unavailable or when trait variation among species is difficult to describe by more standard Brownian or O-U evolutionary models.  相似文献   

3.
The aim of this study was to evaluate the levels of phylogenetic heritability of the geographical range size, shape and position for 88 species of fiddler crabs of the world, using phylogenetic comparative methods and simulation procedures to evaluate their fit to the neutral model of Brownian motion. The geographical range maps were compiled from literature, and range size was based on the entire length of coastline occupied by each species, and the position of each range was calculated as its latitudinal and longitudinal midpoint. The range shape of each species was based in fractal dimension (box‐counting technique). The evolutionary patterns in the geographical range metrics were explored by phylogenetic correlograms using Moran’s I autocorrelation coefficients, autoregressive method (ARM) and phylogenetic eigenvector regression (PVR). The correlograms were compared with those obtained by simulations of Brownian motion processes across phylogenies. The distribution of geographical range size of fiddler crabs is right‐skewed and weak phylogenetic autocorrelation was observed. On the other hand, there was a strong phylogenetic pattern in the position of the range (mainly along longitudinal axis). Indeed, the ARM and PVR evidenced, respectively, that ca. 86% and 91% of the longitudinal midpoint could be explained by phylogenetic relationships among the species. The strong longitudinal phylogenetic pattern may be due to vicariant allopatric speciation and geographically structured cladogenesis in the group. The traits analysed (geographical range size and position) did not follow a Brownian motion process, thus suggesting that both adaptive ecological and evolutionary processes must be invoked to explain their dynamics, not following a simple neutral inheritance in the fiddler‐crab evolution.  相似文献   

4.
Eigenfunction analyses have been widely used to model patterns of autocorrelation in time, space and phylogeny. In a phylogenetic context, Diniz-Filho et al. (1998) proposed what they called Phylogenetic Eigenvector Regression (PVR), in which pairwise phylogenetic distances among species are submitted to a Principal Coordinate Analysis, and eigenvectors are then used as explanatory variables in regression, correlation or ANOVAs. More recently, a new approach called Phylogenetic Eigenvector Mapping (PEM) was proposed, with the main advantage of explicitly incorporating a model-based warping in phylogenetic distance in which an Ornstein-Uhlenbeck (O-U) process is fitted to data before eigenvector extraction. Here we compared PVR and PEM in respect to estimated phylogenetic signal, correlated evolution under alternative evolutionary models and phylogenetic imputation, using simulated data. Despite similarity between the two approaches, PEM has a slightly higher prediction ability and is more general than the original PVR. Even so, in a conceptual sense, PEM may provide a technique in the best of both worlds, combining the flexibility of data-driven and empirical eigenfunction analyses and the sounding insights provided by evolutionary models well known in comparative analyses.  相似文献   

5.
Ancestral state reconstruction is a method used to study the evolutionary trajectories of quantitative characters on phylogenies. Although efficient methods for univariate ancestral state reconstruction under a Brownian motion model have been described for at least 25 years, to date no generalization has been described to allow more complex evolutionary models, such as multivariate trait evolution, non‐Brownian models, missing data, and within‐species variation. Furthermore, even for simple univariate Brownian motion models, most phylogenetic comparative R packages compute ancestral states via inefficient tree rerooting and full tree traversals at each tree node, making ancestral state reconstruction extremely time‐consuming for large phylogenies. Here, a computationally efficient method for fast maximum likelihood ancestral state reconstruction of continuous characters is described. The algorithm has linear complexity relative to the number of species and outperforms the fastest existing R implementations by several orders of magnitude. The described algorithm is capable of performing ancestral state reconstruction on a 1,000,000‐species phylogeny in fewer than 2 s using a standard laptop, whereas the next fastest R implementation would take several days to complete. The method is generalizable to more complex evolutionary models, such as phylogenetic regression, within‐species variation, non‐Brownian evolutionary models, and multivariate trait evolution. Because this method enables fast repeated computations on phylogenies of virtually any size, implementation of the described algorithm can drastically alleviate the computational burden of many otherwise prohibitively time‐consuming tasks requiring reconstruction of ancestral states, such as phylogenetic imputation of missing data, bootstrapping procedures, Expectation‐Maximization algorithms, and Bayesian estimation. The described ancestral state reconstruction algorithm is implemented in the Rphylopars functions anc.recon and phylopars.  相似文献   

6.
Many phylogenetic comparative methods that are currently widely used in the scientific literature assume a Brownian motion model for trait evolution, but the suitability of that model is rarely tested, and a number of important factors might affect whether this model is appropriate or not. For instance, we might expect evolutionary change in adaptive radiations to be driven by the availability of ecological niches. Such evolution has been shown to produce patterns of change that are different from those modelled by the Brownian process. We applied two tests for the assumption of Brownian motion that generally have high power to reject data generated under non-Brownian niche-filling models for the evolution of traits in adaptive radiations. As a case study, we used these tests to explore the evolution of feeding adaptations in two radiations of warblers. In one case, the patterns revealed do not accord with Brownian motion but show characteristics expected under certain niche-filling models.  相似文献   

7.
We propose a new method to estimate and correct for phylogenetic inertia in comparative data analysis. The method, called phylogenetic eigenvector regression (PVR) starts by performing a principal coordinate analysis on a pairwise phylogenetic distance matrix between species. Traits under analysis are regressed on eigenvectors retained by a broken-stick model in such a way that estimated values express phylogenetic trends in data and residuals express independent evolution of each species. This partitioning is similar to that realized by the spatial autoregressive method, but the method proposed here overcomes the problem of low statistical performance that occurs with autoregressive method when phylogenetic correlation is low or when sample size is too small to detect it. Also, PVR is easier to perform with large samples because it is based on well-known techniques of multivariate and regression analyses. We evaluated the performance of PVR and compared it with the autoregressive method using real datasets and simulations. A detailed worked example using body size evolution of Carnivora mammals indicated that phylogenetic inertia in this trait is elevated and similarly estimated by both methods. In this example, Type I error at α = 0.05 of PVR was equal to 0.048, but an increase in the number of eigenvectors used in the regression increases the error. Also, similarity between PVR and the autoregressive method, defined by correlation between their residuals, decreased by overestimating the number of eigenvalues necessary to express the phylogenetic distance matrix. To evaluate the influence of cladogram topology on the distribution of eigenvalues extracted from the double-centered phylogenetic distance matrix, we analyzed 100 randomly generated cladograms (up to 100 species). Multiple linear regression of log transformed variables indicated that the number of eigenvalues extracted by the broken-stick model can be fully explained by cladogram topology. Therefore, the broken-stick model is an adequate criterion for determining the correct number of eigenvectors to be used by PVR. We also simulated distinct levels of phylogenetic inertia by producing a trend across 10, 25, and 50 species arranged in “comblike” cladograms and then adding random vectors with increased residual variances around this trend. In doing so, we provide an evaluation of the performance of both methods with data generated under different evolutionary models than tested previously. The results showed that both PVR and autoregressive method are efficient in detecting inertia in data when sample size is relatively high (more than 25 species) and when phylogenetic inertia is high. However, PVR is more efficient at smaller sample sizes and when level of phylogenetic inertia is low. These conclusions were also supported by the analysis of 10 real datasets regarding body size evolution in different animal clades. We concluded that PVR can be a useful alternative to an autoregressive method in comparative data analysis.  相似文献   

8.
Directional evolution is one of the most compelling evolutionary patterns observed in macroevolution. Yet, despite its importance, detecting such trends in multivariate data remains a challenge. In this study, we evaluate multivariate evolution of shell shape in 93 bivalved scallop species, combining geometric morphometrics and phylogenetic comparative methods. Phylomorphospace visualization described the history of morphological diversification in the group; revealing that taxa with a recessing life habit were the most distinctive in shell shape, and appeared to display a directional trend. To evaluate this hypothesis empirically, we extended existing methods by characterizing the mean directional evolution in phylomorphospace for recessing scallops. We then compared this pattern to what was expected under several alternative evolutionary scenarios using phylogenetic simulations. The observed pattern did not fall within the distribution obtained under multivariate Brownian motion, enabling us to reject this evolutionary scenario. By contrast, the observed pattern was more similar to, and fell within, the distribution obtained from simulations using Brownian motion combined with a directional trend. Thus, the observed data are consistent with a pattern of directional evolution for this lineage of recessing scallops. We discuss this putative directional evolutionary trend in terms of its potential adaptive role in exploiting novel habitats.  相似文献   

9.
Among the statistical methods available to control for phylogenetic autocorrelation in ecological data, those based on eigenfunction analysis of the phylogenetic distance matrix among the species are becoming increasingly important tools. Here, we evaluate a range of criteria to select eigenvectors extracted from a phylogenetic distance matrix (using phylogenetic eigenvector regression, PVR) that can be used to measure the level of phylogenetic signal in ecological data and to study correlated evolution. We used a principal coordinate analysis to represent the phylogenetic relationships among 209 species of Carnivora by a series of eigenvectors, which were then used to model log‐transformed body size. We first conducted a series of PVRs in which we increased the number of eigenvectors from 1 to 70, following the sequence of their associated eigenvalues. Second, we also investigated three non‐sequential approaches based on the selection of 1) eigenvectors significantly correlated with body size, 2) eigenvectors selected by a standard stepwise algorithm, and 3) the combination of eigenvectors that minimizes the residual phylogenetic autocorrelation. We mapped the mean specific component of body size to evaluate how these selection criteria affect the interpretation of non‐phylogenetic signal in Bergmann's rule. For comparison, the same patterns were analyzed using autoregressive model (ARM) and phylogenetic generalized least‐squares (PGLS). Despite the robustness of PVR to the specific approaches used to select eigenvectors, using a relatively small number of eigenvectors may be insufficient to control phylogenetic autocorrelation, leading to flawed conclusions about patterns and processes. The method that minimizes residual autocorrelation seems to be the best choice according to different criteria. Thus, our analyses show that, when the best criterion is used to control phylogenetic structure, PVR can be a valuable tool for testing hypotheses related to heritability at the species level, phylogenetic niche conservatism and correlated evolution between ecological traits.  相似文献   

10.
We investigate cochlear variation, an indirect evidence of auditory capacities among early hominins and extant catarrhine species, in order to assess (i) the phylogenetic signal of relative external cochlear length (RECL) and oval window area (OWA), (ii) the evolutionary model with the highest probability of explaining our observed data, (iii) some hominin ancestral nodes for RECL and OWA. RECL has a high phylogenetic signal under a Brownian motion model, and is closely correlated with body mass. Our model-based method has the advantage over parsimony-based methods of incorporating branch lengths in a phylo-morphospace, and this shows RECL shifted towards significantly higher values at the Homo erectus-Homo sapiens node. We also observe that the StW 53 and KB 6067 fossil specimens from Sterkfontein and Kromdraai likely represent one or two distinct, smaller-bodied and less derived hominin form(s) compared to Paranthropus specimens represented at Swartkrans.  相似文献   

11.
Some of the most basic questions about the history of life concern evolutionary trends. These include determining whether or not metazoans have become more complex over time, whether or not body size tends to increase over time (the Cope-Depéret rule), or whether or not brain size has increased over time in various taxa, such as mammals and birds. Despite the proliferation of studies on such topics, assessment of the reliability of results in this field is hampered by the variability of techniques used and the lack of statistical validation of these methods. To solve this problem, simulations are performed using a variety of evolutionary models (gradual Brownian motion, speciational Brownian motion, and Ornstein-Uhlenbeck), with or without a drift of variable amplitude, with variable variance of tips, and with bounds placed close or far from the starting values and final means of simulated characters. These are used to assess the relative merits (power, Type I error rate, bias, and mean absolute value of error on slope estimate) of several statistical methods that have recently been used to assess the presence of evolutionary trends in comparative data. Results show widely divergent performance of the methods. The simple, nonphylogenetic regression (SR) and variance partitioning using phylogenetic eigenvector regression (PVR) with a broken stick selection procedure have greatly inflated Type I error rate (0.123-0.180 at a 0.05 threshold), which invalidates their use in this context. However, they have the greatest power. Most variants of Felsenstein's independent contrasts (FIC; five of which are presented) have adequate Type I error rate, although two have a slightly inflated Type I error rate with at least one of the two reference trees (0.064-0.090 error rate at a 0.05 threshold). The power of all contrast-based methods is always much lower than that of SR and PVR, except under Brownian motion with a strong trend and distant bounds. Mean absolute value of error on slope of all FIC methods is slightly higher than that of phylogenetic generalized least squares (PGLS), SR, and PVR. PGLS performs well, with low Type I error rate, low error on regression coefficient, and power comparable with some FIC methods. Four variants of skewness analysis are examined, and a new method to assess significance of results is presented. However, all have consistently low power, except in rare combinations of trees, trend strength, and distance between final means and bounds. Globally, the results clearly show that FIC-based methods and PGLS are globally better than nonphylogenetic methods and variance partitioning with PVR. FIC methods and PGLS are sensitive to the model of evolution (and, hence, to branch length errors). Our results suggest that regressing raw character contrasts against raw geological age contrasts yields a good combination of power and Type I error rate. New software to facilitate batch analysis is presented.  相似文献   

12.
13.
Regressions of biological variables across species are rarely perfect. Usually, there are residual deviations from the estimated model relationship, and such deviations commonly show a pattern of phylogenetic correlations indicating that they have biological causes. We discuss the origins and effects of phylogenetically correlated biological variation in regression studies. In particular, we discuss the interplay of biological deviations with deviations due to observational or measurement errors, which are also important in comparative studies based on estimated species means. We show how bias in estimated evolutionary regressions can arise from several sources, including phylogenetic inertia and either observational or biological error in the predictor variables. We show how all these biases can be estimated and corrected for in the presence of phylogenetic correlations. We present general formulas for incorporating measurement error in linear models with correlated data. We also show how alternative regression models, such as major axis and reduced major axis regression, which are often recommended when there is error in predictor variables, are strongly biased when there is biological variation in any part of the model. We argue that such methods should never be used to estimate evolutionary or allometric regression slopes.  相似文献   

14.
The evolution of a particular trait or combination of traits within lineages may affect subsequent evolutionary outcomes, leading closely related species to exhibit higher phenotypic similarity than expected under a simple Brownian‐motion evolutionary model. Niche theory postulates that phenotypes determine species distribution across environmental gradients, leading to a phylogenetic signature in the community assembly. Thus, the incorporation of species phylogeny in the analysis of community ecology structure allows one to link broader environmental, spatial and temporal factors to local, small‐scale ecological processes, thus enabling understanding of community assembly patterns in a broader context. We used the net relatedness index to assess phylogenetic structure within avian communities across a harshness gradient in coastal habitats in southern Brazil. We also evaluated phylogenetic beta diversity, to test whether closely related species exploit habitats with similar environmental conditions. In order to do so, we scaled up phylogenetic information from the species to site level using phylogenetic fuzzy weighting. We found a pattern of phylogenetic clustering in less‐vegetated habitats, namely sandy beach and dunes, which are subject to harsher conditions because of proximity to the ocean. Basal lineages were associated with the more structurally homogeneous sandy beach, while late‐divergence clades occurred in more complex habitats, which were positively related to vegetation cover and height. The observed pattern of phylogenetic clustering suggested the importance of harsh conditions in constraining the distribution of avian lineages. Furthermore, contrasting environmental features between habitats influenced phylogenetic variation, demonstrating the prevalence of phylogenetic habitat filtering. From an applied point of view, such as planning and management of biological reserves, we showed that the full array of habitat patches embedded within coastal ecological gradients must be included in order to preserve distinct evolutionary lineages.  相似文献   

15.
Avian acoustic communication has resulted from evolutionary pressures and ecological constraints. We therefore expect that auditory detectability in birds might be predictable by species traits and phylogenetic relatedness. We evaluated the relationship between phylogeny, species traits, and field‐based estimates of the two processes that determine species detectability (singing rate and detection distance) for 141 bird species breeding in boreal North America. We used phylogenetic mixed models and cross‐validation to compare the relative merits of using trait data only, phylogeny only, or the combination of both to predict detectability. We found a strong phylogenetic signal in both singing rates and detection distances; however the strength of phylogenetic effects was less than expected under Brownian motion evolution. The evolution of behavioural traits that determine singing rates was found to be more labile, leaving more room for species to evolve independently, whereas detection distance was mostly determined by anatomy (i.e. body size) and thus the laws of physics. Our findings can help in disentangling how complex ecological and evolutionary mechanisms have shaped different aspects of detectability in boreal birds. Such information can greatly inform single‐ and multi‐species models but more work is required to better understand how to best correct possible biases in phylogenetic diversity and other community metrics.  相似文献   

16.
Most recent papers avoid describing macroecological relationships and interpreting then without a previous control of non-independence in data caused by phylogenetic patterns in data. In this paper, we analyzed the geographic range size – body size relationship for 70 species of New World terrestrial Carnivora (fissipeds) using various phylogenetic comparative methods and simulation procedures to assess their statistical performance. Autocorrelation analyses suggested a strong phylogenetic pattern for body size, but not for geographic range size. The correlation between the two traits was estimated using standard Pearson correlation across species (TIPS) and four different comparative methods: Felsenstein's independent contrasts (PIC), autoregressive method (ARM), phylogenetic eigenvector regression (PVR) and phylogenetic generalized least-squares (PGLS). The correlation between the two variables was significant for all methods, except PIC, in such a way that ecological mechanisms (i.e., minimum viable population or environmental heterogeneity- physiological homeostasis), could be valid explanations for the relationship. Simulations using different O-U processes for each trait were run in order to estimate true Type I errors of each method. Type I errors at 5% were similar for all phylogenetic methods (always lower than 8%), but equal to 13.1% for TIPS. PIC usually performs better than all other methods under Brownian motion evolution, but not in this case using a more complex combination of evolutionary models. So, recent claims that using independent contrasts in ecological research can be too conservative are correct but, on the other hand, using simple across-species correlation is too liberal even under the more complex evolutionary models exhibited by the traits analyzed here.  相似文献   

17.
Evolution is a fundamentally population level process in which variation, drift and selection produce both temporal and spatial patterns of change. Statistical model fitting is now commonly used to estimate which kind of evolutionary process best explains patterns of change through time using models like Brownian motion, stabilizing selection (Ornstein–Uhlenbeck) and directional selection on traits measured from stratigraphic sequences or on phylogenetic trees. But these models assume that the traits possessed by a species are homogeneous. Spatial processes such as dispersal, gene flow and geographical range changes can produce patterns of trait evolution that do not fit the expectations of standard models, even when evolution at the local‐population level is governed by drift or a typical OU model of selection. The basic properties of population level processes (variation, drift, selection and population size) are reviewed and the relationship between their spatial and temporal dynamics is discussed. Typical evolutionary models used in palaeontology incorporate the temporal component of these dynamics, but not the spatial. Range expansions and contractions introduce rate variability into drift processes, range expansion under a drift model can drive directional change in trait evolution, and spatial selection gradients can create spatial variation in traits that can produce long‐term directional trends and punctuation events depending on the balance between selection strength, gene flow, extirpation probability and model of speciation. Using computational modelling that spatial processes can create evolutionary outcomes that depart from basic population‐level notions from these standard macroevolutionary models.  相似文献   

18.
To assess how ecological and morphological disparity is interrelated in the adaptive radiation of Antarctic notothenioid fish we used patterns of opercle bone evolution as a model to quantify shape disparity, phylogenetic patterns of shape evolution, and ecological correlates in the form of stable isotope values. Using a sample of 25 species including representatives from four major notothenioid clades, we show that opercle shape disparity is higher in the modern fauna than would be expected under the neutral evolution Brownian motion model. Phylogenetic comparative methods indicate that opercle shape data best fit a model of directional selection (Ornstein–Uhlenbeck) and are least supported by the “early burst” model of adaptive radiation. The main evolutionary axis of opercle shape change reflects movement from a broad and more symmetrically tapered opercle to one that narrows along the distal margin, but with only slight shape change on the proximal margin. We find a trend in opercle shape change along the benthic–pelagic axis, underlining the importance of this axis for diversification in the notothenioid radiation. A major impetus for the study of adaptive radiations is to uncover generalized patterns among different groups, and the evolutionary patterns in opercle shape among notothenioids are similar to those found among other adaptive radiations (three‐spined sticklebacks) promoting the utility of this approach for assessing ecomorphological interactions on a broad scale.  相似文献   

19.
Quantitative genetic theory specifies evolutionary expectations for morphological diversification by genetic drift in a monophyletic clade. If genetic drift is responsible for the evolutionary morphological diversification of a clade, patterns of within- and between-taxon morphological variance/covariance should be proportional. We tested for proportionality of within- and between-species craniofacial morphological variation in 12 species of tamarins (genus Saguinus). We found that within- and between-taxon morphological variations across the entire genus were not proportional, and hence not likely to be due to genetic drift alone. The primary deviation from proportionality is that size and size-related shape in the cranium is more variable relative to other aspects of cranial morphology than expected under genetic drift, suggesting differential size selection between the two major clades, the small-bodied and large-bodied tamarins. Within each of these major clades, most of the interspecific variation is consistent with the pattern expected under genetic drift, although specific contrasts may indicate the involvement of differential selection. Morphological distances among taxa do not correspond very closely to the phylogeny derived from mtDNA. In particular, S. oedipus and S. geoffroyi are very distinct morphologically from the rest of the tamarins, although they are phylogenetically the sister clade to a clade containing S. midas and S. bicolor. Morphological similarity is not a good guide to phylogenetic affinity in the tamarins, especially with regard to deeper nodes in the phylogenetic tree.  相似文献   

20.
A central focus of ecology and biogeography is to determine the factors that govern spatial variation in biodiversity. Here, we examined patterns of ant diversity along climatic gradients in three temperate montane systems: Great Smoky Mountains National Park (USA), Chiricahua Mountains (USA), and Vorarlberg (Austria). To identify the factors which potentially shape these elevational diversity gradients, we analyzed patterns of community phylogenetic structure (i.e. the evolutionary relationships among species coexisting in local communities). We found that species at low‐elevation sites tended to be evenly dispersed across phylogeny, suggesting that these communities are structured by interspecific competition. In contrast, species occurring at high‐elevation sites tended to be more closely related than expected by chance, implying that these communities are structured primarily by environmental filtering caused by low temperatures. Taken together, the results of our study highlight the potential role of niche constraints, environmental temperature, and competition in shaping broad‐scale diversity gradients. We conclude that phylogenetic structure indeed accounts for some variation in species density, yet it does not entirely explain why temperature and species density are correlated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号