首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of the balance between production of reactive oxygen species (ROS) by cellular processes and its removal by antioxidant defense system maintains normal physiological processes. Any condition leading to increased ROS results in oxidative stress which has been related with a number of diseases including cancer. Improvement in antioxidant defense system is required to overcome the damaging effects of oxidative stress. Therefore in the present study, effect of the aqueous extract of a medicinal plant Andrographis paniculata (AP) on antioxidant defense system in liver is investigated in lymphoma bearing AKR mice. Estimating catalase, superoxide dismutase and glutathione S transferase monitored the antioxidant action. Oral administration of the aqueous extract of A. paniculata in different doses causes a significant elevation of catalase, superoxide dismutase and glutathione S transferase activities. It reveals the antioxidant action of the aqueous extract of AP, which may play a role in the anticarcinogenic activity by reducing the oxidative stress. LDH activity is known to increase in various cancers due to hypoxic condition. Lactate dehydrogenase is used as tumor marker. We find a significant decrease in LDH activity on treatment with AP, which indicates a decrease in carcinogenic activity. A comparison with Doxorubicin (DOX), an anticancerous drug, indicates that the aqueous extract of AP is more effective than DOX with respect to its effect on catalase, superoxide dismutase, glutathione S transferase as well as on lactate dehydrogenase activities in liver of lymphoma bearing mice.  相似文献   

2.
Methotrexate (MTX), a folic acid antagonist, an effective chemotherapeutic agent is used in the treatment of a wide range of tumors and autoimmune diseases. Moreover, hepatotoxicity limits its clinical use. Several studies have already confirmed that the oxidative stress plays a major role in the pathogenesis of MTX-induced damage in the various organs especially in liver. The aim of this study was to determine the protective effect of Chrysin against MTX-induced hepatic oxidative stress and apoptosis in rats. In the present study, efficacy of Chrysin was investigated against hepatotoxicity caused by MTX in terms of biochemical investigations of antioxidant enzymes, apoptosis, and histopathological alteration in rat liver. In the MTX-treated group there was a significant increase in alanine transaminase, aspartate aminotransferase, lactate dehydrogenase activity and malondialdehyde content as well as decreased glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase activities and reduced glutathione content were also observed compared to the control group as a marker of oxidative stress. Histopathological alterations and apoptosis through the immunopositive staining of p53, cleaved caspases-3 and Bcl-2-associated X protein in rat liver were observed. Pretreatment of Chrysin at both doses prevents the hepatotoxicity by ameliorating oxidative stress, histopathological alterations, and apoptosis and thus our results suggest that Chrysin has a protective effect against hepatotoxicity induced by MTX and it may, therefore, improve the therapeutic index of MTX if co-administration is done.  相似文献   

3.
Radiation exposure is known to produce many harmful effects in biological systems, and these effects are often mediated by oxygen free radicals. Because blueberries are rich in antioxidant compounds such as anthocyanins and phenolic acids, we divided forty adult rats into four treatment groups of 10 (G1–4) as follows: G1 rats were used as a control, G2 rats were irradiated with 8?Gy at 2?Gy/week at a dose rate of 0.5?Gy/min, G3 rats were administered blueberry extract (200?mg/kg) and G4 rats were administered blueberry extract during the same irradiation period. In subsequent determinations, γ-irradiated rats had increased levels of cholesterol, triglyceride, high density lipoprotein (HDL) and low density lipoprotein (LDL), and significantly elevated liver enzyme activities, including alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP), and total bilirubin. In contrast, significant reductions in albumin, total protein and globulin were observed, whereas gamma irradiation decreased activities of the antioxidant enzymes glutathione (GSH), catalase (CAT), xanthine dehydrogenase (XDH) and superoxide dismutase (SOD). We also observed incremental increases in DNA fragmentation percentages and histopathological changes in liver tissues. Serum pro-inflammatory cytokine levels (IL-6, IL-10 and TNF-α) were significantly elevated and hepatic NF-кB was upregulated. In G4 rats, treatments with blueberry extract restored liver pro-oxidant status, reduced cytokine levels, ameliorated histopathological parameters and reduced DNA damage. In conclusion, γ-radiation exerts toxic effects in the rat livers, and blueberry extract is protective against these.  相似文献   

4.
To investigate the protective effects and the possible mechanisms of garlic oil (GO) against N-nitrosodiethylamine (NDEA)-induced hepatocarcinoma in rats, Wistar rats were gavaged with GO (20 or 40 mg/kg) for 1 week, and then were gavaged with GO and NDEA (10 mg/kg) for the next 20 weeks. The changes of morphology, histology, the biochemical indices of serum, and DNA oxidative damage of liver were examined to assess the protective effects. Lipid peroxidation (LPO), antioxidant defense system, and apoptosis-related proteins were measured to investigate potential mechanisms. At the end of the study (21 weeks), GO administration significantly inhibited the increase of the nodule incidence and average nodule number per nodule-bearing liver induced by NDEA, improved hepatocellular architecture, and dramatically inhibited NDEA-induced elevation of serum biochemical indices (alanine aminotransferase , aspartate aminotransferase, alkaline phosphatase and gamma-glutamyl transpeptidase) and hepatic 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in a dose-dependent manner. The mechanistic studies demonstrated that GO counteracted NDEA-induced oxidative stress in rats illustrated by the restoration of glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione-S-transferase (GST) levels, and the reduction of the malondialdehyde (MDA) levels in liver. Furthermore, the mRNA and protein levels of Bcl-2, Bcl-xl, andβ-arrestin-2 were significantly decreased whereas those of Bax and caspase-3 were significantly increased. These data suggest that GO exhibited significant protection against NDEA-induced hepatocarcinogenesis, which might be related with the enhancement of the antioxidant activity and the induction of apoptosis.  相似文献   

5.
Oxidative stress is thought to be involved in lead-induced toxicity. The aim of this study was to investigate the possible protective role of naringenin on lead-induced oxidative stress in the liver and kidney of rats. In the present investigation, lead acetate (500 mg Pb/L) was administered orally for 8 weeks to induce hepatotoxicity and nephrotoxicity. The levels of hepatic and renal markers such as alanine aminotransferase, aspartate aminotransferase, urea, uric acid, and creatinine were significantly (P < 0.05) increased following lead acetate administration. Lead-induced oxidative stress in liver and kidney tissue was indicated by a significant (P < 0.05) increase in the level of maleic dialdehyde and decreased levels of reduced glutathione, superoxide dismutase, catalase, and glutathione peroxidase. Naringenin markedly attenuated lead-induced biochemical alterations in serum, liver, and kidney tissues (P < 0.05). The present study suggests that naringenin shows antioxidant activity and plays a protective role against lead-induced oxidative damage in the liver and kidney of rats.  相似文献   

6.
The antioxidant and hepatoprotective actions of Terminalia catappa L. collected from Okinawa Island were evaluated in vitro and in vivo using leaves extract and isolated antioxidants. A water extract of the leaves of T. catappa showed a strong radical scavenging action for 1,1-diphenyl-2-picrylhydrazyl and superoxide (O(2)(.-)) anion. Chebulagic acid and corilagin were isolated as the active components from T. catappa. Both antioxidants showed a strong scavenging action for O(2)(.-) and peroxyl radicals and also inhibited reactive oxygen species production from leukocytes stimulated by phorbol-12-myristate acetate. Galactosamine (GalN, 600 mg/kg, s.c.,) and lipopolysaccharide (LPS, 0.5 microg/kg, i.p.)-induced hepatotoxicity of rats as seen by an elevation of serum alanine aminotransferase, aspartate aminotransferase and glutathione S-transferase (GST) activities was significantly reduced when the herb extract or corilagin was given intraperitoneally to rats prior to GalN/LPS treatment. Increase of free radical formation and lipid peroxidation in mitochondria caused by GalN/LPS treatment were also decreased by pretreatment with the herb/corilagin. In addition, apoptotic events such as DNA fragmentation and the increase in caspase-3 activity in the liver observed with GalN/LPS treatment were prevented by the pretreatment with the herb/corilagin. These results show that the extract of T. catappa and its antioxidant, corilagin are protective against GalN/LPS-induced liver injury through suppression of oxidative stress and apoptosis.  相似文献   

7.
Comparison of short-term toxicity between Nano-Se and selenite in mice   总被引:10,自引:0,他引:10  
Zhang J  Wang H  Yan X  Zhang L 《Life sciences》2005,76(10):1099-1109
We previously reported that, as compared with selenite, nano red elemental selenium (Nano-Se) had lower acute toxicity in mice and similar bioavailability in terms of up-regulating seleno-enzymes. The short-term toxicity of both selenite and Nano-Se in mice was further compared in this study. At an oral dose of 6 mg/kg bw per day administered for consecutive 12 days, selenite and Nano-Se completely and partially suppressed mice growth respectively. Abnormal liver function was more pronounced with selenite treatment than Nano-Se as indicated by the increase of both alanine aminotransferase and aspartate aminotransferase in serum. Selenite inhibited liver catalase and superoxide dismutase activities, whereas, Nano-Se did not affect these two antioxidant enzymes. Selenite increased the malondialdehyde content of liver, but Nano-Se decreased it. Both Se forms had similar effects on depletion of reduced glutathione and up-regulated glutathione peroxidase. Nano-Se was more potent than selenite in the induction of glutathione S-transferase. At oral doses of 2 or 4 mg/kg bw per day for consecutive 15 days, selenite was more active than Nano-Se in supressing growth, deleting reduced glutathione, and inhibiting superoxide dismutase activities. Taken together, these results indicate that over a short-term, a high-dose of selenite caused more pronounced oxidative stress, greater liver injury, and prominent retardation of growth as compared to Nano-Se.  相似文献   

8.
We previously reported that the mold Monascus anka, traditionally used for fermentation of food, showed antioxidant and hepatoprotective actions against chemically induced liver injuries. In the present study, the antioxidant component of M. anka was isolated and identified. The antioxidant was elucidated to be dimerumic acid. DPPH (1,1-diphenyl-2-picrylhydrazyl) radical was significantly scavenged by the antioxidant whereas hydroxyl radical and superoxide anion were moderately scavenged. When the antioxidant (12 mg/kg) was given to mice prior to carbon tetrachloride (CCl(4), 20 microl/kg, ip) treatment, the CCl(4)-induced liver toxicity in mice seen in an elevation of serum aspartate aminotransferase and alanine aminotransferase activities was depressed, suggesting the hepatoprotective action of the antioxidant. The liver microsomal glutathione S-transferase activity, which is known to be activated by oxidative stress or active metabolites, was increased by CCl(4) treatment and the increase was also depressed by pretreatment with the mold antioxidant. Thus these data confirmed that the dimerumic acid isolated from M. anka is the potential antioxidant and protective against CCl(4)-induced liver injury.  相似文献   

9.
dd(+)-Galactosamine is a well-known experimental hepatotoxin. The present study was conducted to determine the protective role of a 43-kD protein isolated from the leaves of the herb Cajanus indicus L against D(+)-galactosamine (GalN) induced liver damage in mice. Both preventive and curative effects of the protein have been investigated in the study. The protein was administered intraperitoneally at a dose of 2 mg/kg body weight for 4 days before and after GalN intoxication at a dose of 800 mg/kg body weight for 3 days. The increased activities of serum marker enzymes, alanine aminotransferase, and alkaline phosphatase because of GalN administration, were significantly reduced by the protein treatment. The protein also normalized the altered activities of antioxidant enzymes superoxide dismutase, catalase, glutathione reductase, and glutathione-S-transferase as well as the levels of cellular metabolites, reduced glutathione, glutathione disulfide, and total thiols. In addition, the enhanced hepatic lipid peroxidation because of GalN intoxication was also effectively inhibited by the protein treatment. Results suggest that GalN caused hepatic damages via oxidative insult and that the protein provided protection through its antioxidant mechanism.  相似文献   

10.
The protective effects of carvedilol, an antihypertensive agent, against oxidative injury caused by acetaminophen were studied in rat liver. Male Wistar rats (250 +/- 30 g) were pre-treated with carvedilol (3.6 mg/kg, p.o.) for 10 days and on the 11th day received an overdose of acetaminophen (800 mg/kg, p.o.). Four hours after acetaminophen administration, blood was collected to determine serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). After that, rats were killed and the livers were excised to determine reduced glutathione (GSH), thiobarbituric acid reactive substances (TBARS) and carbonyl protein contents, and the activity of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione S-transferase (GST), and also the DNA damage index. Acetaminophen significantly increased the levels of TBARS, the DNA damage and SOD, AST and ALT activities. Carvedilol was able to prevent lipid peroxidation, protein carbonilation and DNA fragmentation caused by acetaminophen. Moreover, this drug prevented increases in SOD, AST and ALT activities. These results show that carvedilol exerts cytoprotective effects against oxidative injury caused by acetaminophen in rat liver. These effects are probably related to the O2*- scavenging property of carvedilol or its metabolites.  相似文献   

11.
Diabetes is known to involve oxidative stress and changes in lipid metabolism. Many secondary plant metabolites have been shown to possess antioxidant activities, improving the effects of oxidative stress on diabetes. This study evaluated the effects of extracts from Gongronema latifolium leaves on antioxidant enzymes and lipid profile in a rat model of non insulin dependent diabetes mellitus (NIDDM). The results confirmed that the untreated diabetic rats were subjected to oxidative stress as indicated by significantly abnormal activities of their scavenging enzymes (low superoxide dismutase and glutathione peroxide activities), compared to treated diabetic rats, and in the extent of lipid peroxidation (high malondialdehyde levels) present in the hepatocytes. The ethanolic extract of G. latifolium leaves possessed antioxidant activity as shown by increased superoxide dismutase and glutathione peroxidase activities and decreases in malondialdehyde levels. High levels of triglycerides and total cholesterol, which are typical of the diabetic condition, were also found in our rat models of diabetes. The ethanolic extract also significantly decreased triglyceride levels and normalized total cholesterol concentration.  相似文献   

12.
We investigated the antioxidant preventive effect of betaine on isoprenaline-induced myocardial infarction in male albino rats. Isoprenaline induced myocardial infarction was manifested by a moderate elevation in the levels of diagnostic marker enzymes (alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase and creatine phosphokinase) and homocysteine in plasma of experimental rats. Significant rise in the level of lipid peroxidation with a concomitant decline in the levels of myocardial non-enzymic (reduced glutathione) and enzymic antioxidants (glutathione peroxidase, glutathione-S-transferase, catalase and superoxide dismutase) was also observed. Oral pretreatment with betaine significantly prevented isoprenaline-induced alterations in the levels of diagnostic marker enzymes and homocysteine in plasma of experimental groups of rats. It counteracted the isoprenaline-induced lipid peroxidation and maintained the myocardial antioxidant defense system at near normal. Histopathological observations also confirmed the protective effect of betaine against isoprenaline-induced myocardial infarction. The results of the present investigation indicate that the protective effect of betaine is probably related to its ability to strengthen the myocardial membrane by its membrane stabilizing action or to a counteraction of free radicals by its antioxidant property.  相似文献   

13.
Antioxidants are likely potential pharmaceutical agents for the treatment of alcoholic liver disease. Metallothionein (MT) is a cysteine-rich protein and functions as an antioxidant. This study was designed to determine whether MT confers resistance to acute alcohol-induced hepatotoxicity and to explore the mechanistic link between oxidative stress and alcoholic liver injury. MT-overexpressing transgenic and wild-type mice were administrated three gastric doses of alcohol at 5 g/kg. Liver injury, oxidative stress, and ethanol metabolism-associated changes were determined. Acute ethanol administration in the wild-type mice caused prominent microvesicular steatosis, along with necrosis and elevation of serum alanine aminotransferase. Ultrastructural changes of the hepatocytes include glycogen and fat accumulation, organelle abnormality, and focal cytoplasmic degeneration. This acute alcohol hepatotoxicity was significantly inhibited in the MT-transgenic mice. Furthermore, ethanol treatment decreased hepatic-reduced glutathione, but increased oxidized glutathione along with lipid peroxidation, protein oxidation, and superoxide generation in the wild-type mice. This hepatic oxidative stress was significantly suppressed in the MT-transgenic mice. However, MT did not affect the ethanol metabolism-associated decrease in NAD(+)/NADH ratio or increase in cytochrome P450 2E1. In conclusion, MT is an effective agent in cytoprotection against alcohol-induced liver injury, and hepatic protection by MT is likely through inhibition of alcohol-induced oxidative stress.  相似文献   

14.
The present work was aimed at studying the antioxidative activity and hepatoprotective effects of methanolic extract (ME) of Hammada scoparia leaves against ethanol-induced liver injury in male rats. The animals were treated daily with 35 % ethanol solution (4 g?kg?1?day?1) during 4 weeks. This treatment led to an increase in the lipid peroxidation, a decrease in antioxidative enzymes (catalase, superoxide dismutase, and glutathione peroxidase) in liver, and a considerable increase in the serum levels of aspartate and alanine aminotransferase and alkaline phospahatase. However, treatment with ME protects efficiently the hepatic function of alcoholic rats by the considerable decrease in aminotransferase contents in serum of ethanol-treated rats. The glycogen synthase kinase-3 β was inhibited after ME administration, which leads to an enhancement of glutathione peroxidase activity in the liver and a decrease in lipid peroxidation rate by 76 %. These biochemical changes were consistent with histopathological observations, suggesting marked hepatoprotective effect of ME. These results strongly suggest that treatment with methanolic extract normalizes various biochemical parameters and protects the liver against ethanol induced oxidative damage in rats.  相似文献   

15.
Increased oxidative stress and impaired antioxidant defense mechanism are important factors in the pathogenesis and progression of diabetes mellitus and other oxidant-related diseases. The present study was undertaken to evaluate the possible protective effects of S-allyl cysteine (SAC) against oxidative stress in streptozotocin (STZ) induced diabetic rats. SAC was administered orally for 45 days to control and STZ induced diabetic rats. The effects of SAC on glucose, plasma insulin, thiobarbituric acid reactive substances (TBARS), hydroperoxide, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), oxidized glutathione (GSSG) and GSH/GSSG ratio were studied. The levels of glucose, TBARS, hydroperoxide, and GSSG were increased significantly whereas the levels of plasma insulin, reduced glutathione, GSH/GSSG ratio, superoxide dismutase, catalase and GPx were decreased in STZ induced diabetic rats. Administration of SAC to diabetic rats showed a decrease in plasma glucose, TBARS, hydroperoxide and GSSG. In addition, the levels of plasma insulin, superoxide dismutase, catalase, GPx and reduced glutathione (GSH) were increased in SAC treated diabetic rats. The above findings were supported by histological observations of the liver and kidney. The antioxidant effect of SAC was compared with glyclazide, a well-known antioxidant and antihyperglycemic drug. The present study indicates that the SAC possesses a significant favorable effect on antioxidant defense system in addition to its antidiabetic effect.  相似文献   

16.
Aim of the study was to evaluate in vivo antioxidant action of medicinal herb Rhodococcum vitis-idaea (Rh.v) on galactosamine (GalN)-induced rat liver toxicity. The results showed that the hepatotoxicity and oxidative stress induced by GalN (700 mg/kg, s.c.) after 24 h evidenced by an increase in serum alanine aminotransferase and glutathione (GSH) S-transferase activities, and lipid peroxidation in liver homogenate were significantly inhibited, when 10 times diluted Rh.v. extract (5 ml/kg, i.p.) was given to rats 12 and 1 h before GalN treatment demonstrating that the extract of Rh.v is a potent antioxidant and protective against GalN-induced hepatotoxicity. The main antioxidant compound of the herb water extract used in the experiment was determined as arbutin, which possess 8% of dry weight of the herb. The electron spin resonance (ESR) spectrometer analysis revealed that the arbutin isolated from Rh.v exhibited strong superoxide and hydroxyl radical scavenging ability.  相似文献   

17.
Paracetamol caused liver damage as evident by significant increase in the activities of aspartate and alanine transferases. There were general statistically significant losses in the activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione transferase and an increase in thiobarbituric acid reactive substances in the liver of paracetamol treated group compared with the control group. However, treatment with ethanol extract of A. flos-aquae (EEAFA) was able to counteract these effects. Protection offered by silymarin (standard reference drug) seemed relatively greater. The results suggest that EEAFA can act as hepatoprotective agent against paracetamol induced toxicity as an antioxidant.  相似文献   

18.
Abstract

The present study was undertaken to evaluate the effect of the aqueous extract of Podophyllum hexandrum against free radical-mediated damage and also explore its anticancer activity. The extract exhibited significant activity in scavenging 1, 1-diphenyl-2-picryl-hydrazyl radicals, ?OH radical-mediated DNA damage, and lipid peroxide production in rat liver microsomes. The extract was also tested for its reducing abilities. The activity of liver marker enzymes and antioxidant defense enzymes in rat liver homogenate was assessed in control and carbon tetrachloride (CCl4)-treated animals. It was observed that CCl4-induced changes viz., increases in the activities of aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase, a decrease in reduced glutathione as well as decreases in the activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase. All these parameters showed reversal when pretreated with aqueous extract of P. hexandrum. Podophylotoxin and etoposide are the two known anticancer agents derived from P. hexandrum and interestingly the aqueous extract of P. hexandrum showed a typical DNA ladder formation in HL-60 cells confirming its role as an inducer of apoptosis. The results obtained suggest that the plant extract exhibits inhibition of and free radical production and lipid peroxidation, increase in antioxidant enzyme activities, revealing its antioxidant properties, and is also able to show potent anticancer activity as depicted by its ability to cause fragmentation of DNA.  相似文献   

19.
Mercury is a highly toxic metal which induces oxidative stress. Superoxide dismutases, catalase, and glutathion peroxidase are proteins involved in the endogenous antioxidant defence system. In the present study rats were administered orally, by gavage, a single daily dose of HgCl2 for three consecutive days. In order to find a relation between the proteins involved in the antioxidant defence and mercury intoxication, parameters of liver injury, redox state of the cells, as well as intracellular protein levels and enzyme activities of Mn-dependent superoxide dismutase (MnSOD), Cu-Zn-dependent superoxide dismutase (CuZnSOD), catalase, and glutathione peroxidase (GPx) were assayed both in blood and in liver homogenates. HgCl2 at the doses of 0.1 mg/kg produced liver damage which that was detected by a slight increase in serum alanine aminotransferase and gamma glutamyl transferase. Hepatic GSH/GSSG ratio was assayed as a parameter of oxidative stress and a significant decrease was detected, as well as significant increases in enzyme activities and protein levels of hepatic antioxidant defence systems. Changes in both MnSOD and CuZnSOD were parallel to those of liver injury and oxidative stress, while the changes detected in catalase and GPx activities were progressively increased along with the mercury intoxication. Other enzyme activities related to the glutathione redox cycle, such as glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PDH), also increased progressively. We conclude that against low doses of mercury that produce a slight oxidative stress and liver injury, the response of the liver was to induce the synthesis and activity of the enzymes involved in the endogenous antioxidant system. The activities of all the enzymes assayed showed a rapidly induced coordinated response.  相似文献   

20.
Oxidative stress and oxidative damage to tissues are common end points of chronic diseases such as atherosclerosis, diabetes, and rheumatoid arthritis. Oxidative stress in diabetes coexists with a reduction in the antioxidant status, which can further increase the deleterious effects of free radicals. The aim of the present study was to evaluate the possible protective effects of Murraya koenigii leaves extract against beta-cell damage and antioxidant defense systems of plasma and pancreas in streptozotocin induced diabetes in rats. The levels of glucose and glycosylated hemoglobin in blood and insulin, Vitamin C, Vitamin E, ceruloplasmin, reduced glutathione and TBARS were estimated in plasma of control and experimental groups of rats. To assess the changes in the cellular antioxidant defense system such as the level of reduced glutathione and activities of superoxide dismutase, catalase and glutathione peroxidase were assayed in pancreatic tissue homogenate. The levels of glucose, glycosylated hemoglobin, insulin, TBARS, enzymatic and non-enzymatic antioxidants were altered in diabetic rats. These alterations were reverted back to near control levels after the treatment of M. koenigii leaves extract. Transmission electron microscopic studies also revealed the protective nature of M. koenigii leaves on pancreatic beta-cells. These findings suggest that M. koenigii treatment exerts a therapeutic protective nature in diabetes by decreasing oxidative stress and pancreatic beta-cell damage. The antioxidant effect of the M. koenigii extract was compared with glibenclamide, a well-known hypoglycemic drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号