首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A complete genomic library of Chainia was constructed in coliphage lambda vector gt10 and was screened for the xylanase gene using an 18-mer mixed oligonucleotide probe corresponding to a six-amino acid sequence of low molecular mass Chainia xylanase. Inserts from 11 putative clones, showing hybridization with the oligonucleotide probe at medium stringency, were subcloned in pUC8 and screened for xylanase gene expression using anti-xylanase antibodies. The restriction map of the insert (1.4 kb) from one of the four immunopositive clones (PVX8) showing detectable xylanase activity was constructed. The xylanase activity of PVX8 was not induced by IPTG or xylan. Reorientation of the insert by directional cloning into pUC9 had no effect on the xylanase activity suggesting that an indigenous promoter from Chainia is responsible for the xylanase activity.  相似文献   

2.
A metagenomic fosmid library was constructed from genomic DNA isolated from the microbial community residing in hindguts of a wood-feeding higher termite (Microcerotermes sp.) collected in Thailand. The library was screened for clones expressing lignocellulolytic activities. Fourteen independent active clones (2 cellulases and 12 xylanases) were obtained by functional screening at pH 10.0. Analysis of shotgun-cloning and pyrosequencing data revealed six ORFs, which shared less than 59% identity and 73% similarity of their amino acid sequences with known cellulases and xylanases. Conserved domain analysis of these ORFs revealed a cellulase belonging to the glycoside hydrolase family 5, whereas the other five xylanases showed significant identity to diverse families including families 8, 10, and 11. Interestingly, one fosmid clone was isolated carrying three contiguous xylanase genes that may comprise a xylanosome operon. The enzymes with the highest activities at alkaline pH from the initial activity screening were characterized biochemically. These enzymes showed a broad range of enzyme activities from pH 5.0 to 10.0, with pH optimal of 8.0 retaining more than 70% of their respective activities at pH 9.0. The optimal temperatures of these enzymes ranged from 50 degrees C to 55 degrees C. This study provides evidence for the diversity and function of lignocellulose-degrading enzymes in the termite gut microbial community, which could be of potential use for industrial processes such as pulp biobleaching and denim biostoning.  相似文献   

3.
A gene coding for xylanase activity in the ruminal bacterial strain 23, the type strain of Bacteroides ruminicola, was cloned into Escherichia coli JM83 by using plasmid pUC18. AB. ruminicola 23 genomic library was prepared in E. coli by using BamHI-digested DNA, and transformants were screened for xylanase activity on the basis of clearing areas around colonies grown on Remazol brilliant blue R-xylan plates. Six clones were identified as being xylanase positive, and all six contained the same 5.7-kilobase genomic insert. The gene was reduced to a 2.7-kilobase DNA fragment. Xylanase activity produced by the E. coli clone was found to be greater than that produced by the original B. ruminicola strain. Southern hybridization analysis of genomic DNA from the related B. ruminicola strains, D31d and H15a, by using the strain 23 xylanase gene demonstrated one hybridizing band in each DNA.  相似文献   

4.
A gene coding for xylanase activity in the ruminal bacterial strain 23, the type strain of Bacteroides ruminicola, was cloned into Escherichia coli JM83 by using plasmid pUC18. AB. ruminicola 23 genomic library was prepared in E. coli by using BamHI-digested DNA, and transformants were screened for xylanase activity on the basis of clearing areas around colonies grown on Remazol brilliant blue R-xylan plates. Six clones were identified as being xylanase positive, and all six contained the same 5.7-kilobase genomic insert. The gene was reduced to a 2.7-kilobase DNA fragment. Xylanase activity produced by the E. coli clone was found to be greater than that produced by the original B. ruminicola strain. Southern hybridization analysis of genomic DNA from the related B. ruminicola strains, D31d and H15a, by using the strain 23 xylanase gene demonstrated one hybridizing band in each DNA.  相似文献   

5.
The gut of the termite Reticulitermes santonensis contains an interesting diversity of prokaryotic and eukaryotic microorganisms not found elsewhere. These microorganisms produce many enzyme-digesting lignocellulosic compounds, probably in cooperation with endogenous enzymes. Regarding cellulose and hemicellulose digestion in the termite gut, much remains to be learned about the relative contributions of termite enzymes and enzymes produced by different microorganisms. Here we grew bacterial colonies from termite gut suspensions, identifying 11 of them after PCR amplification of their 16S rRNA genes. After constructing in Escherichia coli a genomic DNA library corresponding to all of the colonies obtained, we performed functional screening for α-amylase, xylanase, β-glucosidase, and endoglucanase activities. This screen revealed a clone producing β-glucosidase activity. Sequence analysis showed that the cloned genomic DNA fragment contained three complete ORFs (bglG, bglF, and bglB) organized in a putative bgl operon. The new β-glucosidase (BglB), identified with its regulators BglG and BglF, belongs to glycoside hydrolase family 1. The new β-glucosidase was expressed in E. coli and purified by affinity chromatography. The purified enzyme shows maximal activity at pH 6.0 and 40?°C. It also displays β-xylosidase activity.  相似文献   

6.
A lambda recombinant bacteriophage coding for xylanase and beta-xylosidase activity has been isolated from a genomic library of the extremely thermophilic anaerobe "Caldocellum saccharolyticum." Partial Sau3AI fragments of the lambda recombinant DNA were ligated into pBR322. A recombinant plasmid with an insertion of ca. 7 kilobases of thermophilic DNA expressing both enzymatic activities was isolated. The location of the genes has been established by analyzing deletion derivatives, and the DNA sequence of 6.067 kilobases of the insert has been determined. Five open reading frames (ORFs) were found, one of which (ORF1; Mr 40,455) appears to code for a xylanase (XynA) which also acts on o-nitrophenyl-beta-D-xylopyranoside. Another, ORF5 (Mr 56,365), codes for a beta-xylosidase (XynB). The xynA gene product shows significant homology with the xylanases from the alkalophilic Bacillus sp. strain C125 and Clostridium thermocellum.  相似文献   

7.
Summary The xylanase gene of Cellulomonas sp. NCIM 2353 was cloned in pUC 18 and selected by growth on xylan as the sole carbon source. The functional clone harboured the recombinant plasmid with an insert of 1.42 kbp, as determined by restriction mapping and Southern hydridization. The clone secreted a xylanase of 45 000 mol. wt. as determined by Western blot analysis using specific antixylanase antibodies. The DNA insert carried the full structural gene along with its promoter and possibly regulatory sequences, since xylanase activity in the clone Cs11 was inducible by xylan. Offprint requests to: D. N. Deobagkar  相似文献   

8.
Cellulomonas fimi genomic DNA encoding xylanase activity has been cloned and expressed in Escherichia coli. As judged by DNA hybridization and restriction analysis, twelve xylanase-positive clones carried a minimum of four different xylanase (xyn) genes. The encoded enzymes were devoid of cellulase activity but three of the four bound to Avicel.  相似文献   

9.
Four distinct DNA fragments encoding xylanase activities, pBX1.2, pXC30.2, pX14 and LX31, were cloned from plasmid and γ libraries constructed using genomic DNA from Fibrobacter succinogenes S85. pBX1.2 contained an insert which was homologous, and mapped similarly to that previously cloned in pBX1 while the three remaining clones pX14, pXC30 in plasmids, and LX31 in lambda, represented new xylanase activities. The X14 xylanase was a 73 kDa exo-type xylanase, which was exported to the periplasm of the Escherichia coli host, and produced large quantities of xylose and xylobiose from oat spelt xylan. The XC30 xylanase, also exported in E. coli, was a 77 kDa protein which exhibited both xylanase and endoglucanase activities, and a low cellobiosidase activity. The LX31 enzyme was a 58 kDa endoxylanase that produced a mixture of xylooligosaccharides. Zymograms of isoelectric focusing gels showed that the X14 xylanase had a neutral pI, XC30 contained acidic, neutral and basic enzymic components, while BX1 and LX31 were acidic. These results indicate that, in addition to the many other elements of its polysaccharide-degrading repertoire, F. succinogenes S85 possesses at least four distinct xylanases.  相似文献   

10.
Genes coding for three xylan-degrading activities, xylanase, xylosidase, and arabinosidase, were simultaneously cloned from the colonic anaerobic organism Bacteriodes ovatus. The genes for the three enzymes were located on a 3.8-kilobase EcoRI genomic insert and were cloned by using plasmid pUC18. All three activities were expressed in Escherichia coli JM83, and all were cell associated. Expression of the xylanase gene was independent from expression of the xylosidase and arabinosidase genes, whereas expression of the latter two genes appeared to be coordinated. Restriction endonuclease analysis of the arabinosidase and xylosidase genes and partial purification of these enzyme activities from E. coli suggested that these activities were catalyzed by a bifunctional protein or two proteins of very similar molecular weight. All three enzyme activities were regulated in B. ovatus in response to the carbon source used for growth. This is the first report of the cloning and expression of B. ovatus genes.  相似文献   

11.
Unusual microbial xylanases from insect guts   总被引:2,自引:0,他引:2  
Recombinant DNA technologies enable the direct isolation and expression of novel genes from biotopes containing complex consortia of uncultured microorganisms. In this study, genomic libraries were constructed from microbial DNA isolated from insect intestinal tracts from the orders Isoptera (termites) and Lepidoptera (moths). Using a targeted functional assay, these environmental DNA libraries were screened for genes that encode proteins with xylanase activity. Several novel xylanase enzymes with unusual primary sequences and novel domains of unknown function were discovered. Phylogenetic analysis demonstrated remarkable distance between the sequences of these enzymes and other known xylanases. Biochemical analysis confirmed that these enzymes are true xylanases, which catalyze the hydrolysis of a variety of substituted beta-1,4-linked xylose oligomeric and polymeric substrates and produce unique hydrolysis products. From detailed polyacrylamide carbohydrate electrophoresis analysis of substrate cleavage patterns, the xylan polymer binding sites of these enzymes are proposed.  相似文献   

12.
Unusual Microbial Xylanases from Insect Guts   总被引:6,自引:0,他引:6       下载免费PDF全文
Recombinant DNA technologies enable the direct isolation and expression of novel genes from biotopes containing complex consortia of uncultured microorganisms. In this study, genomic libraries were constructed from microbial DNA isolated from insect intestinal tracts from the orders Isoptera (termites) and Lepidoptera (moths). Using a targeted functional assay, these environmental DNA libraries were screened for genes that encode proteins with xylanase activity. Several novel xylanase enzymes with unusual primary sequences and novel domains of unknown function were discovered. Phylogenetic analysis demonstrated remarkable distance between the sequences of these enzymes and other known xylanases. Biochemical analysis confirmed that these enzymes are true xylanases, which catalyze the hydrolysis of a variety of substituted β-1,4-linked xylose oligomeric and polymeric substrates and produce unique hydrolysis products. From detailed polyacrylamide carbohydrate electrophoresis analysis of substrate cleavage patterns, the xylan polymer binding sites of these enzymes are proposed.  相似文献   

13.
The gene encoding xylanase activity in the ruminal bacteriumBacteroides ruminicola D31d was cloned and expressed inEscherichia coli with the plasmid vector pUC18. The gene was isolated on a 4.7-kilobase pair partialPstI genomic DNA fragment. The xylanase activity expressed inE. coli was cell associated and could degrade both oatspelt xylan and Remazol Brilliant Blue-xylan. The xylanase did not have detectable activity against carboxymethylcellulose. Utilization of an endogenous promoter byE. coli was indicated by expression of xylanase activity after subcloning of the insert into pBR322 in opposite orientations. TheB. ruminicola D31d xylanase gene was compared by Southern hybridization analyses with xylanase genes cloned fromB. ruminocola 23 andB. ovatus V975, a human intestinal isolate. The D31d xylanase gene did not cross-hybridize with either of the other two genes. In addition, the 23 xylanase gene did not cross-hybridize with the other two genes according to the same technique. These results indicate that the three cloned genes do not share a high degree of genetic similarity, despite the similar enzymatic activities. This is the first study to compare cloned genes from ruminal and colonicBacteroides species.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

14.
Xanthomonas axonopodis pv. punicae strain—a potent plant pathogen that causes blight disease in pomegranate—was screened for cellulolytic and xylanolytic enzyme production. This strain produced endo-β-1,4-glucanase, filter paper lyase activity (FPA), β-glucosidase and xylanase activities. Enzyme production was optimized with respect to major nutrient sources like carbon and nitrogen. Carboxy methyl cellulose (CMC) was a better inducer for FPA, CMCase and xylanase production, while starch was found to be best for cellobiase. Soybean meal/yeast extract at 0.5 % were better nitrogen sources for both cellulolytic and xylanolytic enzyme production while cellobiase and xylanase production was higher with peptone. Surfactants had no significant effect on levels of extracellular cellulases and xylanases. A temperature of 28 °C and pH 6–8 were optimum for production of enzyme activities. Growth under optimized conditions resulted in increases in different enzyme activities of around 1.72- to 5-fold. Physico-chemical characterization of enzymes showed that they were active over broad range of pH 4–8 with an optimum at 8. Cellulolytic enzymes showed a temperature optimum at around 55 °C while xylanase had highest activity at 45 °C. Heat treatment of enzyme extract at 75 °C for 1 h showed that xylanase activity was more stable than cellulolytic activities. Xanthomonas enzyme extracts were able to act on biologically pretreated paddy straw to release reducing sugars, and the amount of reducing sugars increased with incubation time. Thus, the enzymes produced by X. axonopodis pv. punicae are more versatile and resilient with respect to their activity at different pH and temperature. These enzymes can be overproduced and find application in different industries including food, pulp and paper and biorefineries for conversion of lignocellulosic biomass.  相似文献   

15.
Xylanases randomly clear the backbone of xylans, which are hemicelluloses representing a considerable source of fixed carbon in nature. Consequently, these enzymes have important industrial applications. To characterize the genes responsible for producing these enzymes, we cloned xylanase genes belonging to the GH11 and GH10 families from Aspergillus versicolor MKU3 using a 2-step polymerase chain reaction (PCR) protocol involving degenerate PCR and genome-walking PCR (GWPCR). We amplified a family 10 xylanase consensus fragment using degenerate PCR primers exhibiting specificity for conserved motifs within fungal family 10 xylanase genes. We identified a single family 10 xylanase gene (xynv10) and determined its entire gene sequence during the second step of GWPCR, which was used to amplify genomic DNA fragments upstream and downstream of xynv10. The xynv10 sequence contains a 1,378-bp open reading frame separated by 8 introns with an average size of 49 bp. We also amplified a partial GH11 xylanase gene sequence (xynv11) using degenerate PCR and genome-walking methods. Amplification of the C-terminal region of xynv11 using a degenerate primer designed from sequences revealed strong homology with the partial GH11 xylanase gene of A. versicolor MKU3. The structural region in xynv11 was approximately 680 bp and has one intron that is approximately 64 bp in length. Further expression and characterization of these genes will give better understanding of the role of these genes in xylan degradation by A. versicolor.  相似文献   

16.
A genomic library of the Dictyoglomus sp. strain Rt46B.1 was constructed in the phage vector lambda ZapII and screened for xylanase activity. A plaque expressing xylanase activity, designated B6-77, was isolated and shown to contain a genomic insert of 5.3 kb. Subcloning revealed that the xylanase activity was restricted to a internal 1,507-bp PstI-HindIII fragment which was subsequently sequenced and shown to contain a single complete open reading frame coding for a single-domain xylanase, XynA, with a putative length of 352 amino acids. Homology comparisons show that XynA is related to the family F group of xylanases. The temperature and pH optima of the recombinant enzyme were determined to be 85 degrees C and pH 6.5, respectively. However, the enzyme was active across a broad pH range, with over 50% activity between pH 5.5 and 9.5. XynA was shown to be a true endo-acting xylanase, being capable of hydrolyzing xylan to xylotriose and xylobiose, but it could not hydrolyze xylobiose to monomeric xylose. XynA was also shown to hydrolyze xylan present in Pinus radiata kraft pulp, indicating that it may be of use as an aid in pulp bleaching. The equivalent xylanase gene was also isolated from the related bacterium Dictyoglomus thermophilum, and DNA sequencing showed these genes to be identical, which, together with the 16S small-subunit rRNA gene sequencing data, indicates that Rt46B.1 and D. thermophilum are very closely related.  相似文献   

17.
Extracellular enzymes from Lentinus edodes M290 on normal woods (Quercus mongolica) and waste logs from oak mushroom production were comparatively investigated. Endoglucanase, cellobiohydrolase, beta-glucosidase, and xylanase activities were higher on waste mushroom logs than on normal woods after L. edodes M290 inoculation. Xylanase activity was especially different, with a three times higher activity on waste mushroom logs. When the waste mushroom logs were used as a carbon source, a new 35 kDa protein appeared. After the purification, the optimal pH and temperature for xylanase activity were determined to be 4.0 and 50 degrees C, respectively. More than 50% of the optimal xylanase activity was retained when the temperature was increased from 20 to 60 degrees C, after a 240 min reaction. At 40 degrees C, the xylanase maintained 93% of the optimal activity, after a 240 min reaction. The purified xylanase showed a very high homology to the xylanase family 10 from Aspergillus terreus by LC/MS-MS analysis. The highest Xcorr (1.737) was obtained from the peptide KWI SQGIPIDGIG SQTHLGSGGS WTVK originated from Aspergillus terreus, indicating that the 35 kDa protein was xylanase. This protein showed low homology to a previously reported L. edodes xylanase sequence.  相似文献   

18.
 A genomic library of the extremely thermophilic eubacterial strain Rt8B.4 was constructed in λZapII and screened for the expression of xylanase activity. One recombinant bacteriophage showed xylanase, xylosidase and arabinosidase activity. Sequence analysis and homology comparisons showed that this plasmid derivative, pNZ2011, was composed of 6.7 kb thermophilic DNA and contained what appeared to be an operon-like structure involving genes associated with xylose metabolism. The xylanase gene, xynA was shown to code for a multi-domain protein. Xylanase activity was shown to be associated with the carboxy-terminal domain (domain 2) by deletion analysis and also by selective polymerase chain reaction (PCR) amplification and expression of the individual domains. Denaturing polyacrylamide gel analysis of the protein encoded by the PCR product showed three main overexpressed proteins to be present in cell extracts, presumably caused by proteolytic degradation in the Escherichia coli host. The xylanase activity from domain 2 is associated with a 36-kDa protein, which is stable at 70°C for at least 12 h at pH 7. The small size of this active enzymatic domain and its temperature stability suggest that it may be of value in the enzyme-enhanced bleaching of kraft pulp. Received: 18 April 1995/Received revision: 4 August 1995/Accepted: 22 August 1995  相似文献   

19.
The proteinaceous ethylene biosynthesis-inducing factor (EIF) that was purified from Cellulysin was also shown to contain a xylanase activity. In all nondenaturing protein separation methods employed (Sephacryl S-200 chromatography, and preparative isoelectric focusing and agarose electrophoresis), xylanase activity copurified with the ethylene biosynthesis-inducing activity. Treatment with heat (60°C) or proteases in 8 molar urea inhibited both ethylene-inducing and xylanase activities. Antibodies raised against purified EIF, which contains three polypeptides of 18, 14, and 10 kilodaltons, immunoprecipitated both ethylene biosynthesis-inducing and xylanase activities. The purified EIF contained no detectable cellulase, polygalacturonase, or protease activity. Other hydrolytic activities as estimated by using p-nitrophenyl derivatives of several sugars as substrates also were not detected. Different commercially available hydrolytic enzyme preparations were tested for both ethylene biosynthesis-inducing and xylanase activities. All enzymes tested contained xylanase activity, but only a few induced ethylene biosynthesis. Western blots of proteins separated by SDS-PAGE, using antibodies prepared against the non-denatured purified EIF, revealed two major bands of about 18 and 14 kilodaltons in EIF. These antibodies seem to be specific for these proteins from Trichoderma viride, because there was little cross-reactivity with the other proteins in Cellulysin and other commercial enzyme preparations. Based on these data, we suggest that EIF contains a specific xylanase activity which is involved in inducing ethylene biosynthesis.  相似文献   

20.
A genomic library of Bacillus lyticus was constructed in lambda GEM 11 vector and screened for the xylanase gene using Congo red plate assay. A 16-kb fragment containing the xylanase gene was obtained which was further subcloned using Mbo I partial digestion in an E. coli pUC 19 vector. A 1.3-kb sub-fragment was obtained which coded for a xylanase gene of Mr 23,650 Da. This fragment was sequenced and the homology was checked with known xylanases. The maximum homology was 97%, which was obtained with an endo xylanase gene from Bacillus species at the DNA level, while the translated sequence showed only one amino acid change from alanine to serine at position number 102. Expression was checked in E. coli, using the native promoter, and an extracellular activity of 5.25 U/mL was obtained. Cloning of the gene was done in Bacillus subtilis using a shuttle vector pHB 201, which resulted in increasing the basal level xylanase activity from 14.02 to 22.01 U/mL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号