首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The efficient retrieval of synaptic vesicle membrane and cargo in central nerve terminals is dependent on the efficient recruitment of a series of endocytosis modes by different patterns of neuronal activity. During intense neuronal activity the dominant endocytosis mode is activity-dependent endocytosis (ADBE). Triggering of ADBE is linked to calcineurin-mediated dynamin I dephosphorylation since the same stimulation intensities trigger both. Dynamin I dephosphorylation is maximised by a simultaneous inhibition of its kinase glycogen synthase kinase 3 (GSK3) by the protein kinase Akt, however it is unknown how increased neuronal activity is transduced into Akt activation. To address this question we determined how the activity-dependent increases in intracellular free calcium ([Ca2+]i) control activation of Akt. This was achieved using either trains of high frequency action potentials to evoke localised [Ca2+]i increases at active zones, or a calcium ionophore to raise [Ca2+]i uniformly across the nerve terminal. Through the use of either non-specific calcium channel antagonists or intracellular calcium chelators we found that Akt phosphorylation (and subsequent GSK3 phosphorylation) was dependent on localised [Ca2+]i increases at the active zone. In an attempt to determine mechanism, we antagonised either phosphatidylinositol 3-kinase (PI3K) or calmodulin. Activity-dependent phosphorylation of both Akt and GSK3 was arrested on inhibition of PI3K, but not calmodulin. Thus localised calcium influx in central nerve terminals activates PI3K via an unknown calcium sensor to trigger the activity-dependent phosphorylation of Akt and GSK3.  相似文献   

2.
Activity‐dependent bulk endocytosis (ADBE) is the dominant synaptic vesicle (SV) endocytosis mode in central nerve terminals during intense neuronal activity. By definition this mode is triggered by neuronal activity; however, key questions regarding its mechanism of activation remain unaddressed. To determine the basic requirements for ADBE triggering in central nerve terminals, we decoupled SV fusion events from activity‐dependent calcium influx using either clostridial neurotoxins or buffering of intracellular calcium. ADBE was monitored both optically and morphologically by observing uptake of the fluid phase markers tetramethylrhodamine‐dextran and horse radish peroxidase respectively. Ablation of SV fusion with tetanus toxin resulted in the arrest of ADBE, but had no effect on other calcium‐dependent events such as activity‐dependent dynamin I dephosphorylation, indicating that SV exocytosis is necessary for triggering. Furthermore, the calcium chelator EGTA abolished ADBE while leaving SV exocytosis intact, demonstrating that ADBE is triggered by intracellular free calcium increases outside the active zone. Activity‐dependent dynamin I dephosphorylation was also arrested in EGTA‐treated neurons, consistent with its proposed role in triggering ADBE. Thus, SV fusion and increased cytoplasmic free calcium are both necessary but not sufficient individually to trigger ADBE.

  相似文献   


3.
Central nerve terminals release neurotransmitter in response to a wide variety of stimuli. Because maintenance of neurotransmitter release is dependent on the continual supply of synaptic vesicles (SVs), nerve terminals possess an array of endocytosis modes to retrieve and recycle SV membrane and proteins. During mild stimulation conditions, single SV retrieval modes such as clathrin-mediated endocytosis predominate. However, during increased neuronal activity, additional SV retrieval capacity is required, which is provided by activity-dependent bulk endocytosis (ADBE). ADBE is the dominant SV retrieval mechanism during elevated neuronal activity. It is a high capacity SV retrieval mode that is immediately triggered during such stimulation conditions. This review will summarize the current knowledge regarding the molecular mechanism of ADBE, including molecules required for its triggering and subsequent steps, including SV budding from bulk endosomes. The molecular relationship between ADBE and the SV reserve pool will also be discussed. It is becoming clear that an understanding of the molecular physiology of ADBE will be of critical importance in attempts to modulate both normal and abnormal synaptic function during intense neuronal activity.  相似文献   

4.
The regulation of activity-dependent bulk endocytosis, the dominant mode of membrane retrieval in response to intense neuronal activity, is poorly understood. In this JCB issue, Peng et al. (2021. J. Cell. Biol. https://doi.org/10.1083/jcb.202011028) propose a novel molecular mechanism for the coordination of activity-dependent bulk endocytosis that builds on Minibrain kinase and its presynaptic substrate synaptojanin-1.

Brain function necessitates sustained synaptic transmission regardless of activity demands. The preservation of synaptic transmission depends on the efficient (re)formation of synaptic vesicles (SVs) by endocytosis after their insertion into the synaptic plasma membrane during neuronal stimulation (1). During mild and sparse stimulation, the dominant endocytosis modes are ultrafast endocytosis and clathrin-mediated endocytosis (CME; 1). Both modes appear to have a fixed rate and limited capacity, and therefore cannot adapt to high frequency stimulations that accumulate inserted SV membranes at the presynaptic terminal. Under these conditions, a different endocytosis mode is predominantly used, termed activity-dependent bulk endocytosis (ADBE). ADBE retrieves large areas of the presynaptic plasma membrane to form bulk endosomes, from which new SVs are then generated (1). This form of endocytosis is particularly common in synapses that operate with high rates of neurotransmission, e.g., ribbon synapses of sensory neurons. ADBE contributes to presynaptic plasticity, having recently been demonstrated to control neurotransmitter release probability (2). Importantly, defects in ADBE and SV endocytosis in general have profound consequences on neuronal function and survival, with dysfunction linked to a series of neurodevelopmental disorders (3).Considering the importance of ADBE to brain physiology and pathology, it is essential to understand the molecular machinery that controls this process and synchronizes it with other synaptic events. Amazingly, despite the fact that ADBE was described in the early 1970s, its regulation remains mysterious. Several protein kinases and phosphatases that contribute to regulation of CME and other endocytosis modes (1) may also contribute to ADBE. For example, the calcium/calmodulin-dependent phosphatase calcineurin activates ADBE, working with glycogen synthase kinase-3 to provide bidirectional control via the phosphorylation of specific substrates (4). However, many presynaptic proteins are calcineurin substrates, suggesting other protein kinases may perform complementary roles.In a recent paper, Chang and colleagues (5) present data in support of calcineurin and Minibrain (Mnb) as coregulators of ADBE in fruit flies via bidirectional control of the phosphorylation status of synaptojanin (Synj)-1 phosphatase. The authors argue that the Synj-1 phosphorylation status coordinates the activity-dependent balance between CME versus ADBE (Fig. 1). Namely, during mild stimulation CME is promoted by Mnb, while ADBE is inhibited. During intense stimulation, dephosphorylation of Synj-1 by calcineurin is required to activate ADBE (Fig. 1). An interesting novel aspect arises from examination of domain-specific Synj-1 mutants: its 4′-phosphatase SAC1 activity supports ADBE, while its 5′-phosphatase (5′-PPase) domain suppresses it. The Bin/Amphiphysin/Rvs domain protein endophilin-A has been implicated in ADBE (6); however, a Synj-1 mutant lacking the endophilin-A binding proline-rich domain (PRD) had no effect. Further studies may therefore be required to dissect synaptojanin-1–dependent and –independent roles of endophilin in ADBE.Open in a separate windowFigure 1.Control of CME and ADBE via Minibrain kinase and calcineurin phosphatase. Synj-1 is phosphorylated by Mnb kinase on Ser1029 on its PRD. This promotes the 5′-PPase activity of Synj-1 and inhibits association with the endocytosis protein endophilin-A. These events promote CME. During intense neuronal activity, calcineurin (CaN) is activated and dephosphorylates Synj-1. This reduces 5′-PPase activity and promotes association with endophilin. The dephosphorylation also promotes ADBE via inhibition of Synj-1 5′-PPase activity. This phospho-regulation of the endophilin interaction does not impact ADBE. The SAC activity of Synj-1 is essential for ADBE and is unaffected by phosphorylation.Collectively, the data by Chang and colleagues consolidate the key role played by calcineurin in ADBE and identify Mnb as a new ADBE protein kinase. Intriguingly, the number of synapses performing ADBE is increased in Mnb hypomorphs, suggesting there is additional endocytic capacity that can be recruited on demand. There also appears to be bidirectional control of ADBE via Mnb, since Mnb overexpression represses this pathway. Notably, the enzyme activities of Synj-1 are regulated by Mnb- and calcineurin-dependent turnover of phosphorylation of S1029 (Fig. 1; 7, 8). In mammals, cyclin-dependent kinase 5 is suggested to control Synj-1 activity (9); therefore, it important to confirm whether Synj-1 is also phosphorylated by the Mnb orthologue, dual specificity tyrosine-phosphorylation-regulated kinase (DYRK1A), in mammals. A key test of the causality of activity-dependent phosphorylation events is whether they occur to the same stimulation intensities as the biological event. In this study, activity-dependent dephosphorylation of S1029 on Synj-1 was not demonstrated; instead, an absence of activity-dependent Mnb phosphorylation was observed. In mitigation, the authors convincingly demonstrated that Synj-1 phosphorylation increased during prolonged stimulus in the absence of calcineurin function.This work also confirmed a key role for the phospholipid PI(4,5)P2 in ADBE (1). Interestingly, it further revealed a hitherto undiscovered role for the SAC domain, but not the 5′-PPase domain of Synj-1 in ADBE. This latter activity is essential for other forms of endocytosis, such as CME and ultrafast endocytosis, with SAC activity required for clathrin-dependent vesicle generation from endosomes (10, 11). In addition to potential roles for Synj-1 SAC activity discussed by Chang and colleagues, a more provocative (and simplistic) explanation is that the end product, phosphatidylinositol (PI) itself, is important for ADBE. In support, the neurons without diacylglycerol kinase (which generates the PI precursor phosphatidic acid) display SV endocytosis defects that are exacerbated during high activity (12).A lack of accurate assays that monitor ADBE in both time and space has limited research in small nerve terminals for decades. In this work, ADBE is evoked and monitored using multiple approaches. This is important, since there is no simple method to monitor ADBE; therefore, it requires cross corroboration wherever possible. This study was greatly assisted via the use of genetically tractable model organisms, allowing precise intervention to abate the function of key proteins and enzymes in vivo. Yet, the trade-off is the relative imprecision of stimulation to evoke SV turnover, with prolonged periods of stimulation (and parallel inhibition of CME) required to evoke and isolate ADBE.Since Peng et al. shed light on new aspects of ADBE regulation, further questions can now be envisioned. In particular, how localized production and degradation of membrane phospholipids coordinate the temporal and spatial triggering of specific endocytosis modes. The essential role for calcineurin in most forms of endocytosis suggests where and when dephosphorylation events occur at the presynapse may be critical in the recruitment of discrete SV reformation pathways. Furthermore, Mnb/DYRK1A is linked to brain pathologies, including Down’s syndrome and autism-spectrum disorders, which is yet to be explored. These and other questions will no doubt drive further studies of remarkable plasticity when it comes to formation of new SVs and synaptic transmission, and how they organize and govern our brain activity.  相似文献   

5.
Neurons use multiple modes of endocytosis, including clathrin-mediated endocytosis (CME) and activity-dependent bulk endocytosis (ADBE), during mild and intense neuronal activity, respectively, to maintain stable neurotransmission. While molecular players modulating CME are well characterized, factors regulating ADBE and mechanisms coordinating CME and ADBE activations remain poorly understood. Here we report that Minibrain/DYRK1A (Mnb), a kinase mutated in autism and up-regulated in Down’s syndrome, plays a novel role in suppressing ADBE. We demonstrate that Mnb, together with calcineurin, delicately coordinates CME and ADBE by controlling the phosphoinositol phosphatase activity of synaptojanin (Synj) during varying synaptic demands. Functional domain analyses reveal that Synj’s 5′-phosphoinositol phosphatase activity suppresses ADBE, while SAC1 activity is required for efficient ADBE. Consequently, Parkinson’s disease mutation in Synj’s SAC1 domain impairs ADBE. These data identify Mnb and Synj as novel regulators of ADBE and further indicate that CME and ADBE are differentially governed by Synj’s dual phosphatase domains.  相似文献   

6.
CXCR2 is a seven-transmembrane receptor that transduces intracellular signals in response to the chemokines interleukin-8, melanoma growth-stimulatory activity/growth-regulatory protein, and other ELR motif-containing CXC chemokines by coupling to heterotrimeric GTP-binding proteins. In this study, we explored the mechanism responsible for ligand-induced CXCR2 endocytosis. Here, we demonstrate that dynamin, a component of clathrin-mediated endocytosis, is essential for CXCR2 endocytosis and resensitization. In HEK293 cells, dynamin I K44A, a dominant-negative mutant of dynamin that inhibits the clathrin-mediated endocytosis, blocks the ligand-stimulated CXCR2 sequestration. Furthermore, co-expression of dynamin I K44A significantly delays dephosphorylation of CXCR2 after ligand stimulation, suggesting that clathrin-mediated endocytosis plays an important role in receptor dephosphorylation and resensitization. In addition, ligand-mediated receptor down-regulation is attenuated when receptor internalization is inhibited by dynamin I K44A. Interestingly, inhibition of receptor endocytosis by dynamin I K44A does not affect the CXCR2-mediated stimulation of mitogen-activated protein kinase. Most significantly, our data indicate that the ligand-stimulated receptor endocytosis is required for CXCR2-mediated chemotaxis in HEK293 cells. Taken together, our findings suggest that clathrin-mediated CXCR2 internalization is crucial for receptor endocytosis, resensitization, and chemotaxis.  相似文献   

7.
To maintain neurotransmission in central neurons, several mechanisms are employed to retrieve synaptically exocytosed membrane. The two major modes of synaptic vesicle (SV) retrieval are clathrin-mediated endocytosis and activity-dependent bulk endocytosis (ADBE). ADBE is the dominant SV retrieval mode during intense stimulation, however the precise physiological conditions that trigger this mode are not resolved. To determine these parameters we manipulated rat hippocampal neurons using a wide spectrum of stimuli by varying both the pattern and duration of stimulation. Using live-cell fluorescence imaging and electron microscopy approaches, we established that stimulation frequency, rather than the stimulation load, was critical in the triggering of ADBE. Thus two hundred action potentials, when delivered at high frequency, were sufficient to induce near maximal bulk formation. Furthermore we observed a strong correlation between SV pool size and ability to perform ADBE. We also identified that inhibitory nerve terminals were more likely to utilize ADBE and had a larger SV recycling pool. Thus ADBE in hippocampal synaptic terminals is tightly coupled to stimulation frequency and is more likely to occur in terminals with large SV pools. These results implicate ADBE as a key modulator of both hippocampal neurotransmission and plasticity.  相似文献   

8.
Depolarization of nerve terminals stimulates rapid dephosphorylation of two isoforms of dynamin I (dynI), mediated by the calcium-dependent phosphatase calcineurin (CaN). Dephosphorylation at the major phosphorylation sites Ser-774/778 promotes a dynI-syndapin I interaction for a specific mode of synaptic vesicle endocytosis called activity-dependent bulk endocytosis (ADBE). DynI has two main splice variants at its extreme C terminus, long or short (dynIxa and dynIxb) varying only by 20 (xa) or 7 (xb) residues. Recombinant GST fusion proteins of dynIxa and dynIxb proline-rich domains (PRDs) were used to pull down interacting proteins from rat brain nerve terminals. Both bound equally to syndapin, but dynIxb PRD exclusively bound to the catalytic subunit of CaNA, which recruited CaNB. Binding of CaN was increased in the presence of calcium and was accompanied by further recruitment of calmodulin. Point mutations showed that the entire C terminus of dynIxb is a CaN docking site related to a conserved CaN docking motif (PXIXI(T/S)). This sequence is unique to dynIxb among all other dynamin variants or genes. Peptide mimetics of the dynIxb tail blocked CaN binding in vitro and selectively inhibited depolarization-evoked dynI dephosphorylation in nerve terminals but not of other dephosphins. Therefore, docking to dynIxb is required for the regulation of both dynI splice variants, yet it does not regulate the phosphorylation cycle of other dephosphins. The peptide blocked ADBE, but not clathrin-mediated endocytosis of synaptic vesicles. Our results indicate that Ca(2+) influx regulates assembly of a fully active CaN-calmodulin complex selectively on the tail of dynIxb and that the complex is recruited to sites of ADBE in nerve terminals.  相似文献   

9.
Dynamin I and at least five other nerve terminal proteins, amphiphysins I and II, synaptojanin, epsin and eps15 (collectively called dephosphins), are coordinately dephosphorylated by calcineurin during endocytosis of synaptic vesicles. Here we have identified a new dephosphin, the essential endocytic protein AP180. Blocking dephosphorylation of the dephosphins is known to inhibit endocytosis, but the role of phosphorylation has not been determined. We show that the protein kinase C (PKC) antagonists Ro 31-8220 and Go 7874 block the rephosphorylation of dynamin I and synaptojanin that occurs during recovery from an initial depolarizing stimulus (S1). The rephosphorylation of AP180 and amphiphysins 1 and 2, however, were unaffected by Ro 31-8220. Although these dephosphins share a single phosphatase, different protein kinases phosphorylated them after nerve terminal stimulation. The inhibitors were used to selectively examine the role of dynamin I and/or synaptojanin phosphorylation in endocytosis. Ro 31-8220 and Go 7874 did not block the initial S1 cycle of endocytosis, but strongly inhibited endocytosis following a second stimulus (S2). Therefore, phosphorylation of a subset of dephosphins, which includes dynamin I and synaptojanin, is required for the next round of stimulated synaptic vesicle retrieval.  相似文献   

10.
Abstract: Synaptic vesicle recycling is a neuronal specialization of endocytosis that requires the GTPase activity of dynamin I and is triggered by membrane depolarization and Ca2+ entry. To establish the relationship between dynamin I GTPase activity and Ca2+, we used purified dynamin I and analyzed its interaction with Ca2+ in vitro. We report that Ca2+ bound to dynamin I and this was abolished by deletion of dynamin's C-terminal tail. Phosphorylation of dynamin I by protein kinase C promoted formation of a dynamin I tetramer and increased Ca2+ binding to the protein. Moreover, Ca2+ inhibited dynamin I GTPase activity after stimulation by phosphorylation or by phospholipids but not after stimulation with a GST-SH3 fusion protein containing the SH3 domain of phosphoinositide 3-kinase. These results suggest that in resting nerve terminals, phosphorylation of dynamin I by protein kinase C converts it to a tetramer that functions as a Ca2+-sensing protein. By binding to Ca2+, dynamin I GTPase activity is specifically decreased, possibly to regulate synaptic vesicle recycling.  相似文献   

11.
Synaptic vesicle endocytosis is stimulated by calcium influx in mature central nerve terminals via activation of the calcium-dependent protein phosphatase, calcineurin. However, in different neuronal preparations calcineurin activity is either inhibitory, stimulatory or irrelevant to the process. We addressed this inconsistency by investigating the requirement for calcineurin activity in synaptic vesicle endocytosis during development, using vesicle recycling assays in isolated nerve terminals. We show that endocytosis occurs independently of calcineurin activity in immature nerve terminals, and that a calcineurin requirement develops 2-4 weeks after birth. Calcineurin-independent endocytosis is not due to the absence of calcineurin activity, since calcineurin is present in immature nerve terminals and its substrate, dynamin I, is dephosphorylated on depolarization. Calcineurin-independent endocytosis is calcium-dependent, since substitution of the divalent cation, barium, inhibits the process. Finally, we demonstrated that in primary neuronal cultures derived from neonatal rats, endocytosis that was initially calcineurin-independent developed a calcineurin requirement on maturation in culture. Our data account for the apparent inconsistencies regarding the role of calcineurin in synaptic vesicle endocytosis, and we propose that an unidentified calcium sensor exists to couple calcium influx to endocytosis in immature nerve terminals.  相似文献   

12.
Cdk5 is essential for synaptic vesicle endocytosis   总被引:1,自引:0,他引:1  
Synaptic vesicle endocytosis (SVE) is triggered by calcineurin-mediated dephosphorylation of the dephosphin proteins. SVE is maintained by the subsequent rephosphorylation of the dephosphins by unidentified protein kinases. Here, we show that cyclin-dependent kinase 5 (Cdk5) phosphorylates dynamin I on Ser 774 and Ser 778 in vitro, which are identical to its endogenous phosphorylation sites in vivo. Cdk5 antagonists and expression of dominant-negative Cdk5 block phosphorylation of dynamin I, but not of amphiphysin or AP180, in nerve terminals and inhibit SVE. Thus Cdk5 has an essential role in SVE and is the first dephosphin kinase identified in nerve terminals.  相似文献   

13.
In chemical synapses undergoing high frequency stimulation, vesicle components can be retrieved from the plasma membrane via a clathrin-independent process called activity-dependent bulk endocytosis (ADBE). Alix (ALG-2-interacting protein X/PDCD6IP) is an adaptor protein binding to ESCRT and endophilin-A proteins which is required for clathrin-independent endocytosis in fibroblasts. Alix is expressed in neurons and concentrates at synapses during epileptic seizures. Here, we used cultured neurons to show that Alix is recruited to presynapses where it interacts with and concentrates endophilin-A during conditions triggering ADBE. Using Alix knockout (ko) neurons, we showed that this recruitment, which requires interaction with the calcium-binding protein ALG-2, is necessary for ADBE. We also found that presynaptic compartments of Alix ko hippocampi display subtle morphological defects compatible with flawed synaptic activity and plasticity detected electrophysiologically. Furthermore, mice lacking Alix in the forebrain undergo less seizures during kainate-induced status epilepticus and reduced propagation of the epileptiform activity. These results thus show that impairment of ADBE due to the lack of neuronal Alix leads to abnormal synaptic recovery during physiological or pathological repeated stimulations.

The adaptor protein Alix (PDCD6IP) is necessary for membrane shaping underlying various biological processes including endocytosis. This study shows that Alix mediates activity-dependent bulk endocytosis and is required for correct synaptic physiology under normal and pathological conditions.  相似文献   

14.
Synaptic transmission relies on effective and accurate compensatory endocytosis. F-BAR proteins may serve as membrane curvature sensors and/or inducers and thereby support membrane remodelling processes; yet, their in vivo functions urgently await disclosure. We demonstrate that the F-BAR protein syndapin I is crucial for proper brain function. Syndapin I knockout (KO) mice suffer from seizures, a phenotype consistent with excessive hippocampal network activity. Loss of syndapin I causes defects in presynaptic membrane trafficking processes, which are especially evident under high-capacity retrieval conditions, accumulation of endocytic intermediates, loss of synaptic vesicle (SV) size control, impaired activity-dependent SV retrieval and defective synaptic activity. Detailed molecular analyses demonstrate that syndapin I plays an important role in the recruitment of all dynamin isoforms, central players in vesicle fission reactions, to the membrane. Consistently, syndapin I KO mice share phenotypes with dynamin I KO mice, whereas their seizure phenotype is very reminiscent of fitful mice expressing a mutant dynamin. Thus, syndapin I acts as pivotal membrane anchoring factor for dynamins during regeneration of SVs.  相似文献   

15.
Akt/protein kinase B is a serine/threonine kinase that has emerged as a critical signaling component for mediating numerous cellular responses. Contractile activity has recently been demonstrated to stimulate Akt signaling in skeletal muscle. Whether physiological exercise in vivo activates Akt is controversial, and the initiating factors that result in the stimulation of Akt during contractile activity are unknown. In the current study, we demonstrate that treadmill running exercise of rats using two different protocols (intermediate high or high-intensity exhaustive exercise) significantly increases Akt activity and phosphorylation in skeletal muscle composed of various fiber types. To determine if Akt activation during contractile activity is triggered by mechanical forces applied to the skeletal muscle, isolated skeletal muscles were incubated and passively stretched. Passive stretch for 10 min significantly increased Akt activity (2-fold) in the fast-twitch extensor digitorum longus (EDL) muscle. However, stretch had no effect on Akt in the slow-twitch soleus muscle, although there was a robust phosphorylation of the stress-activated protein kinase p38. Similar to contraction, stretch-induced Akt activation in the EDL was fully inhibited in the presence of the phosphatidylinositol 3-kinase inhibitor wortmannin, whereas glycogen synthase kinase-3 (GSK3) phosphorylation was only partially inhibited. Stretch did not cause dephosphorylation of glycogen synthase on GSK3-targeted sites in the absence or presence of wortmannin. We conclude that physiological exercise in vivo activates Akt in multiple skeletal muscle fiber types and that mechanical tension may be a part of the mechanism by which contraction activates Akt in fast-twitch muscles.  相似文献   

16.
The ubiquitously expressed protein glycogen synthase kinase-3 (GSK3) is constitutively active, however its activity is markedly diminished following phosphorylation of Ser21 of GSK3alpha and Ser9 of GSK3beta. Although several kinases are known to phosphorylate Ser21/9 of GSK3, for example Akt, relatively much less is known about the mechanisms that cause the dephosphorylation of GSK3 at Ser21/9. In the present study KCl-induced plasma membrane depolarization of SH-SY5Y cells, which increases intracellular calcium concentrations caused a transient decrease in the phosphorylation of Akt at Thr308 and Ser473, and GSK3 at Ser21/9. Overexpression of the selective protein phosphatase-1 inhibitor protein, inhibitor-2, increased basal GSK3 phosphorylation at Ser21/9 and significantly blocked the KCl-induced dephosphorylation of GSK3beta, but not GSK3alpha. The phosphorylation of Akt was not affected by the overexpression of inhibitor-2. GSK3 activity is known to affect sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) levels. Overexpression of inhibitor-2 or treatment of cells with the GSK3 inhibitors lithium and SB216763 increased the levels of SERCA2. These results indicate that the protein phosphatase-1/inhibitor-2 complex differentially regulates GSK3 dephosphorylation induced by KCl and that GSK3 activity regulates SERCA2 levels.  相似文献   

17.
Plexins are receptors for the axonal guidance molecules known as semaphorins, and the semaphorin 4D (Sema4D) receptor plexin-B1 induces repulsive responses by functioning as an R-Ras GTPase-activating protein (GAP). Here we characterized the downstream signalling of plexin-B1-mediated R-Ras GAP activity, inducing growth cone collapse. Sema4D suppressed R-Ras activity in hippocampal neurons, in parallel with dephosphorylation of Akt and activation of glycogen synthase kinase (GSK)-3beta. Ectopic expression of the constitutively active mutant of Akt or treatment with GSK-3 inhibitors suppressed the Sema4D-induced growth cone collapse. Constitutive activation of phosphatidylinositol-3-OH kinase (PI(3)K), an upstream kinase of Akt and GSK-3beta, also blocked the growth cone collapse. The R-Ras GAP activity was necessary for plexin-B1-induced dephosphorylation of Akt and activation of GSK-3beta and was also required for phosphorylation of a downstream kinase of GSK-3beta, collapsin response mediator protein-2. Plexin-A1 also induced dephosphorylation of Akt and GSK-3beta through its R-Ras GAP activity. We conclude that plexin-B1 inactivates PI(3)K and dephosphorylates Akt and GSK-3beta through R-Ras GAP activity, inducing growth cone collapse.  相似文献   

18.
Clathrin-mediated endocytosis (CME) regulates signaling from the plasma membrane. Analysis of clathrin-coated pit (CCP) dynamics led us to propose the existence of a rate-limiting, regulatory step(s) that monitor the fidelity of early stages in CCP maturation. Here we show that nascent endocytic vesicles formed in mutant cells displaying rapid, dysregulated CME are defective in early endosomal trafficking, maturation and acidification, confirming the importance of this “checkpoint.” Dysregulated CME also alters EGF receptor signaling and leads to constitutive activation of the protein kinase Akt. Dynamin-1, which was thought to be neuron specific, is activated by the Akt/GSK3β signaling cascade in non-neuronal cells to trigger rapid, dysregulated CME. Acute activation of dynamin-1 in RPE cells by inhibition of GSK3β accelerates CME, alters CCP dynamics and, unexpectedly, increases the rate of CCP initiation. CRISPR-Cas9n-mediated knockout and reconstitution studies establish that dynamin-1 is activated by Akt/GSK3β signaling in H1299 non-small lung cancer cells. These findings provide direct evidence for an isoform-specific role for dynamin in regulating CME and reveal a feed-forward pathway that could link signaling from cell surface receptors to the regulation of CME.  相似文献   

19.
Reelin is an extracellular matrix protein with various functions during development and in the mature brain. It activates different signaling cascades in target cells, one of which is the phosphatidylinositol 3-kinase (PI3K) pathway, which we investigated further using pathway inhibitors and in vitro brain slice and neuronal cultures. We show that the mTor (mammalian target of rapamycin)-S6K1 (S6 kinase 1) pathway is activated by Reelin and that this depends on Dab1 (Disabled-1) phosphorylation and activation of PI3K and Akt (protein kinase B). PI3K and Akt are required for the effects of Reelin on the organization of the cortical plate, but their downstream partners mTor and glycogen synthase kinase 3beta (GSK3beta) are not. On the other hand, mTor, but not GSK3beta, mediates the effects of Reelin on the growth and branching of dendrites of hippocampal neurons. In addition, PI3K fosters radial migration of cortical neurons through the intermediate zone, an effect that is independent of Reelin and Akt.  相似文献   

20.
PDK1 (3-phosphoinositide-dependent protein kinase 1) activates a group of protein kinases belonging to the AGC [PKA (protein kinase A)/PKG (protein kinase G)/PKC (protein kinase C)]-kinase family that play important roles in mediating diverse biological processes. Many cancer-driving mutations induce activation of PDK1 targets including Akt, S6K (p70 ribosomal S6 kinase) and SGK (serum- and glucocorticoid-induced protein kinase). In the present paper, we describe the small molecule GSK2334470, which inhibits PDK1 with an IC?? of ~10 nM, but does not suppress the activity of 93 other protein kinases including 13 AGC-kinases most related to PDK1 at 500-fold higher concentrations. Addition of GSK2334470 to HEK (human embryonic kidney)-293, U87 or MEF (mouse embryonic fibroblast) cells ablated T-loop residue phosphorylation and activation of SGK isoforms and S6K1 induced by serum or IGF1 (insulin-like growth factor 1). GSK2334470 also inhibited T-loop phosphorylation and activation of Akt, but was more efficient at inhibiting Akt in response to stimuli such as serum that activated the PI3K (phosphoinositide 3-kinase) pathway weakly. GSK2334470 inhibited activation of an Akt1 mutant lacking the PH domain (pleckstrin homology domain) more potently than full-length Akt1, suggesting that GSK2334470 is more effective at inhibiting PDK1 substrates that are activated in the cytosol rather than at the plasma membrane. Consistent with this, GSK2334470 inhibited Akt activation in knock-in embryonic stem cells expressing a mutant of PDK1 that is unable to interact with phosphoinositides more potently than in wild-type cells. GSK2334470 also suppressed T-loop phosphorylation and activation of RSK2 (p90 ribosomal S6 kinase 2), another PDK1 target activated by the ERK (extracellular-signal-regulated kinase) pathway. However, prolonged treatment of cells with inhibitor was required to observe inhibition of RSK2, indicating that PDK1 substrates possess distinct T-loop dephosphorylation kinetics. Our data define how PDK1 inhibitors affect AGC signalling pathways and suggest that GSK2334470 will be a useful tool for delineating the roles of PDK1 in biological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号