共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of larval barnacle attachment to bacterial films: An investigation of physical properties 总被引:1,自引:0,他引:1
The effects of films of two strains of a marine bacterium, Deleya marina (ATCC 25374 and 27129) on the attachment response of cypris larvae of the balanomorph barnacle, Balanus amphitrite, were examined in the laboratory. Tests showed that the cell-surface hydrophobicities of the two bacteria in suspension were different. In contrast, films derived from these cells were both highly wettable (i.e., displayed high surface free energy). Assays (22 hours) compared permanent attachment of larval barnacles to films derived from exponential and stationary phase cells for both bacteria. These films either had no effect or inhibited attachment of both 0-day- and 4-day-old cypris larvae when compared with unfilmed controls. Our data indicate that inhibition of larval barnacle attachment by films of the two bacteria is the result of factors other than surface free energy. Production of chemical barnacle settlement inhibitors by the bacteria is hypothesized.Offprint requests to: J. S. Maki. 相似文献
2.
This investigation examined the effects of common aqueous biocides and disinfectant foams derived from them on Pseudomonas aeruginosa biofilms. Biofilms were grown on stainless steel coupons under standardised conditions in a reactor supplemented with low concentrations of organic matter to simulate conditions prevalent in industrial systems. Five-day-old biofilms formed under ambient conditions with continuous agitation demonstrated a low coefficient of variation (5.809%) amongst viable biofilm bacteria from independent trials. Scanning electron microscopy revealed biofilms on coupons with viable biofilm bacteria observed by confocal microscopy. An aqueous solution of a common foaming agent amine oxide (AO) produced negligible effects on bacterial viability in biofilms (p>0.05). However, significant biofilm inactivation was noted with aqueous solutions of common biocides (peracetic acid, sodium hypochlorite, sodium ethylenediaminetetraacetic acid) with or without AO (p<0.05). Aereation of a mixture of AO with each of these common biocides resulted in significant reductions in the viability of biofilm bacteria (p<0.05). In contrast, limited effects were noted by foam devoid of biocides. A relationship between microbial inactivation and the concentration of biocide in foam (ranging from 0.1-0.5%) and exposure period were noted (p<0.05). Although, lower numbers of viable biofilm bacteria were recovered after treatment with the disinfectant foam than by the cognate aqueous biocide, significant differences between these treatments were not evident (p>0.05). In summary, the studies revealed significant biofilm inactivation by biocidal foam prepared with common biocides. Validation of foam disinfectants in controlled trials at manufacturing sites may facilitate developments for clean in place applications. Advantages of foam disinfectants include reductions in the volumes of biocides for industrial disinfection and in their disposal after use. 相似文献
3.
This investigation examined the effects of common aqueous biocides and disinfectant foams derived from them on Pseudomonas aeruginosa biofilms. Biofilms were grown on stainless steel coupons under standardised conditions in a reactor supplemented with low concentrations of organic matter to simulate conditions prevalent in industrial systems. Five-day-old biofilms formed under ambient conditions with continuous agitation demonstrated a low coefficient of variation (5.809%) amongst viable biofilm bacteria from independent trials. Scanning electron microscopy revealed biofilms on coupons with viable biofilm bacteria observed by confocal microscopy. An aqueous solution of a common foaming agent amine oxide (AO) produced negligible effects on bacterial viability in biofilms (p?>?0.05). However, significant biofilm inactivation was noted with aqueous solutions of common biocides (peracetic acid, sodium hypochlorite, sodium ethylenediaminetetraacetic acid) with or without AO (p?<?0.05). Aereation of a mixture of AO with each of these common biocides resulted in significant reductions in the viability of biofilm bacteria (p?<?0.05). In contrast, limited effects were noted by foam devoid of biocides. A relationship between microbial inactivation and the concentration of biocide in foam (ranging from 0.1?–?0.5%) and exposure period were noted (p?<?0.05). Although, lower numbers of viable biofilm bacteria were recovered after treatment with the disinfectant foam than by the cognate aqueous biocide, significant differences between these treatments were not evident (p?>?0.05). In summary, the studies revealed significant biofilm inactivation by biocidal foam prepared with common biocides. Validation of foam disinfectants in controlled trials at manufacturing sites may facilitate developments for clean in place applications. Advantages of foam disinfectants include reductions in the volumes of biocides for industrial disinfection and in their disposal after use. 相似文献
4.
Abstract Marine microorganisms are capable of successfully colonizing toxic surfaces through the formation of biofilm structures. In this article, most of the literature reporting the presence of marine biofilms on chemically-active antifouling paints is briefly reviewed. Of special concern is the influence of the dense extracellular polymeric substances (EPS) matrix on the release rate of the compounds involved in antifouling paint performance (i.e. active compounds and controlled-release binder molecules). A deeper understanding of these phenomena is of interest for both environmental legislators and paint formulators. 相似文献
5.
Marine microorganisms are capable of successfully colonizing toxic surfaces through the formation of biofilm structures. In this article, most of the literature reporting the presence of marine biofilms on chemically-active antifouling paints is briefly reviewed. Of special concern is the influence of the dense extracellular polymeric substances (EPS) matrix on the release rate of the compounds involved in antifouling paint performance (i.e. active compounds and controlled-release binder molecules). A deeper understanding of these phenomena is of interest for both environmental legislators and paint formulators. 相似文献
6.
藤壶属节肢动物门(Arthropoda)甲壳亚门(Crustacea)蔓足下纲(Cirripedia)围胸总目(Thoracica), 具备特殊的形态结构、生活史和种群生态特征,是最主要的海洋污损生物。其幼虫阶段通常经历6期无节幼体和1期不摄食的金星幼虫,从浮游的金星幼虫附着变态成固着的稚体是藤壶生活史中的一个关键环节。外界化学和生物因子中成体提取物、水溶性信息素、足迹、神经递质、激素、生物膜等均影响藤壶金星幼虫的附着变态;内在因子即金星幼虫的生理状态(能量储量和年龄)决定了其对外界因子的反应程度。概括了近年来藤壶附着变态生理机制和分子机制研究的进展,可为深入了解藤壶金星幼虫附着变态机制提供参考,也为开发新型、高效、环保的防污剂提供理论指导。 相似文献
7.
Coral populations have precipitously declined on Caribbean reefs while algal abundance has increased, leading to enhanced
competitive damage to corals, which likely is mediated by the potent allelochemicals produced by both macroalgae and benthic
cyanobacteria. Allelochemicals may affect the composition and abundance of coral-associated microorganisms that control host
responses and adaptations to environmental change, including susceptibility to bacterial diseases. Here, we demonstrate that
extracts of six Caribbean macroalgae and two benthic cyanobacteria have both inhibitory and stimulatory effects on bacterial
taxa cultured from the surfaces of Caribbean corals, macroalgae, and corals exposed to macroalgal extracts. The growth of
54 bacterial isolates was monitored in the presence of lipophilic and hydrophilic crude extracts derived from Caribbean macroalgae
and cyanobacteria using 96-well plate bioassays. All 54 bacterial cultures were identified by ribotyping. Lipophilic extracts
from two species of Dictyota brown algae inhibited >50% of the reef coral bacteria assayed, and hydrophilic compounds from Dictyota menstrualis particularly inhibited Vibrio bacteria, a genus associated with several coral diseases. In contrast, both lipo- and hydrophilic extracts from 2 species
of Lyngbya cyanobacteria strongly stimulated bacterial growth. The brown alga Lobophora variegata produced hydrophilic compounds with broad-spectrum antibacterial effects, which inhibited 93% of the bacterial cultures.
Furthermore, bacteria cultured from different locations (corals vs. macroalgae vs. coral surfaces exposed to macroalgal extracts)
responded differently to algal extracts. These results reveal that extracts from macroalgae and cyanobacteria have species-specific
effects on the composition of coral-microbial assemblages, which in turn may increase coral host susceptibility to disease
and result in coral mortality. 相似文献
8.
土壤微生物膜是由土壤细菌及其分泌物积聚形成的生物群落,是生物土壤结皮的初始形态和重要组成部分。作为土壤细菌生命过程中最典型的生存形式,土壤微生物膜不仅能保护基质内细胞生存,还可黏附于土壤颗粒和植物根系表面,发挥重要的生态功能。本文在解析土壤微生物膜结构与组成的基础上,从土壤质量与植物健康两个方面总结分析了土壤微生物膜生理生态功能:土壤微生物膜代谢活性高于游离细胞,可高效分泌胞外聚合物并且具有更强的有机物质转化速率,在提升土壤肥力,吸附、固持和降解土壤污染物和促进土壤团聚体形成方面具有重要意义;土壤微生物膜可通过多种微生物间协同作用、促进分泌多种促生物质与胞外聚合物以发挥固持作用等改善植物养分利用状况,增强植物抗逆性。揭示土壤微生物膜生态功能的微观机制、筛选和应用功能性土壤微生物膜是未来重要的发展方向。 相似文献
9.
10.
Z Pasternak M Njagi Y Shani R Chanyi O Rotem M N Lurie-Weinberger S Koval S Pietrokovski U Gophna E Jurkevitch 《The ISME journal》2014,8(3):625-635
Bdellovibrio and like organisms (BALO) are obligate predators of Gram-negative bacteria, belonging to the α- and δ-proteobacteria. BALO prey using either a periplasmic or an epibiotic predatory strategy, but the genetic background underlying these phenotypes is not known. Here we compare the epibiotic Bdellovibrio exovorus and Micavibrio aeruginosavorus to the periplasmic B. bacteriovorus and Bacteriovorax marinus. Electron microscopy showed that M. aeruginosavorus, but not B. exovorus, can attach to prey cells in a non-polar manner through its longitudinal side. Both these predators were resistant to a surprisingly high number of antibiotic compounds, possibly via 26 and 19 antibiotic-resistance genes, respectively, most of them encoding efflux pumps. Comparative genomic analysis of all the BALOs revealed that epibiotic predators have a much smaller genome (ca. 2.5 Mbp) than the periplasmic predators (ca. 3.5 Mbp). Additionally, periplasmic predators have, on average, 888 more proteins, at least 60% more peptidases, and one more rRNA operon. Fifteen and 219 protein families were specific to the epibiotic and the periplasmic predators, respectively, the latter clearly forming the core of the periplasmic ‘predatome'', which is upregulated during the growth phase. Metabolic deficiencies of epibiotic genomes include the synthesis of inosine, riboflavin, vitamin B6 and the siderophore aerobactin. The phylogeny of the epibiotic predators suggests that they evolved by convergent evolution, with M. aeruginosavorus originating from a non-predatory ancestor while B. exovorus evolved from periplasmic predators by gene loss. 相似文献
11.
12.
Saviuc C Dascălu L Chifiriuc MC Rădulescu V Oprea E Popa M Hristu R Stanciu G Lazăr V 《Roumanian archives of microbiology and immunology》2010,69(3):145-152
The aim of present study was to investigate the microbial colonization of worn contact lenses (CLs) and to evaluate the inhibitory effect of pomelo (Citrus maxima) peels essential oil on the biofilm development on unworn CLs. The essential oil was isolated by steam distillation and analyzed by gas chromatography coupled with mass spectrometry, twenty compounds being isolated. The antimicrobial activity of pomelo oil was tested against S. epidermidis and P. aeruginosa strains, known for their ability to develop biofilms on prosthetic devices, by qualitative screening methods and quantitative assay of the minimal inhibitory concentrations (MIC) in order to evaluate the antibiofilm activity. Our study revealed that all worn CLs where 100% colonized by staphylococci and Enterobacteriaceae strains. The pomelo essential oil inhibited the development of bacterial biofilms formed by Gram-positive and Gram-negative microorganisms on soft CLs, its antibiofilm activity being specific and dependent on different physical parameters (contact time and temperature). The architecture of bacterial biofilms developed on soft contact lenses was analyzed using confocal scanning laser microscopy (CSLM). 相似文献
13.
Zheng LY Farnam DS Homentcovschi D Sammakia BG 《Journal of biomechanical engineering》2012,134(5):051003
The presence of bacterial biofilms is detrimental in a wide range of healthcare situations especially wound healing. Physical debridement of biofilms is a method widely used to remove them. This study evaluates the use of microfluidic jet impingement to debride biofilms. In this case, a biofilm is treated as a saturated porous medium also having linear elastic properties. A numerical modeling approach is used to calculate the von Mises stress distribution within a porous medium under fluid-structure interaction (FSI) loading to determine the initial rupture of the biofilm structure. The segregated model first simulates the flow field to obtain the FSI interface loading along the fluid-solid interface and body force loading within the porous medium. A stress-strain model is consequently used to calculate the von Mises stress distribution to obtain the biofilm deformation. Under a vertical jet, 60% of the deformation of the porous medium can be accounted for by treating the medium as if it was an impermeable solid. However, the maximum deformation in the porous medium corresponds to the point of maximum shear stress which is a different position in the porous medium than that of the maximum normal stress in an impermeable solid. The study shows that a jet nozzle of 500 μm internal diameter (ID) with flow of Reynolds number (Re) of 200 can remove the majority of biofilm species. 相似文献
14.
D E Nivens R J Palmer Jr D C White 《Journal of industrial microbiology & biotechnology》1995,15(4):263-276
A fundamental requirement for the understanding and control of biofilms is the continuous nondestructive monitoring of biofilm processes. This paper reviews research analytical techniques that monitor biofilm processes in a continuous nondestructive manner and that could also be modified for industrial applications. To be considered continuous and nondestructive for the purpose of this review a technique must: (a) function in an aqueous system; (b) not require sample removal; (c) minimize signal from organisms or contaminants in the bulk phase; and (d) provide real-time data. Various microscopic, spectrochemical, electrochemical, and piezoelectrical analysis methods fulfill these criteria. These techniques monitor the formation of biofilms, the physiology of the microorganisms within biofilms, and/or the interaction of the biofilms with their environment. It is hoped that this review will stimulate development and use of biofilm monitoring techniques in industrial and environmental settings. 相似文献
15.
16.
Importance of canopy structure on photosynthesis in single- and multi-species assemblages of marine macroalgae 总被引:4,自引:0,他引:4
Plant communities utilize available irradiance with different efficiency depending not only on their photosynthetic characteristics but also on the canopy structure and density. The importance of canopy structure are well studied in terrestrial plant communities but poorly studied in aquatic plant communities. The objective of this study was to evaluate macroalgal community photosynthesis in artificial constructed communities of one to four species with different morphologies along a range of leaf (i.e.=thallus) area densities. In a laboratory set-up we measured net photosynthesis and dark respiration in constructed assemblages of macroalgae, excluding effects other than photosynthesis of individual tissue and distribution of photons in the canopy from influencing metabolism. We hypothezised that 1) canopy structure determines the actual rates of photosynthesis relative to the optimal rates and 2) multi-species communities attain higher maximum photosynthetic rates than single species communities. We found that differences in canopy structure outweighed large differences in tissue photosynthesis resulting in relatively similar maximum community photosynthetic rates among the different single and multi-species assemblages (20.1–40.5 μmol O2 m−2 s−1). Canopy structure influenced community photosynthesis both at low and high leaf area densities because it determines the ability of macroalgae to use the photosynthetic potential of their individual tissues. Due to an averaging effect the photosynthetic rate at high leaf area density was more similar among multi-species community than among single-species communities. Multi-species communities had, on average, a slightly higher photosynthetic production than expected from photosynthesis of single species communities. Moreover multi-species communities were capable of exposing new tissue to irradiance up to high densities thereby avoiding a decrease in net photosynthesis. This finding suggests that multi-species communities may be able to maintain higher biomass per unit ground area than single-species communities. 相似文献
17.
Vengatesen Thiyagarajan 《Journal of experimental marine biology and ecology》2003,287(2):223-236
The combined effects of temperature and salinity on larval development and attachment of Balanus trigonus Darwin (Cirripedia, Balanidae) was examined under controlled laboratory conditions. Whilst larval survivorship was not affected (>70%), the duration of larval development was significantly affected by temperature and salinity. The effect of temperature was comparatively stronger than that of salinity. The majority of nauplius II larvae metamorphosed into cypris stage after 4-5 and 10-11 days at 28 °C (22-34‰) and 18 °C (22-34‰), respectively. Temperature, salinity and the duration of assay had a significant effect on cypris attachment with significant interaction among these main effects. Maximum (>80% in 6 days) and minimum percent attachment (0% in 6 days) on polystyrene surfaces were observed at 24 °C (34‰) and 18 °C (22‰), respectively. At high temperature (28 °C) and low salinity (22-26‰), larvae rapidly (4 days) developed into cyprids, but less than 33% attached. These results suggest that low larval attachment rates may lead to the low recruitment of B. trigonus in Hong Kong waters during summer when the water temperature is high (about 28 °C) and salinity is low (<26‰). 相似文献
18.
Controlling the formation and reconstruction of microbial biofilms is of ever increasing importance for the ecological, medical, and biotechnological aspects of biofilm studies. The goal of this review was to provide systematization and analysis of the results obtained in recent years on the modes and mechanisms of the stimulatory or inhibitory effect of extreme factors and biocidal agents on biofilm formation. Special attention is paid to controlling the formation of medically (infective diseases, implant biofouling) and technologically or biotechnologically important biofilms (bioremediation, biocorrosion, and biosynthesis of biologically active compounds). 相似文献
19.
20.
In order to assess the applicability of using microelectrodes as a tool for inhibition tests, temporal and spatial inhibitory effects of 2-chlorophenol (2-CP) on O(2) respiration and nitrification activities in municipal wastewater biofilms were investigated using microelectrodes for O(2) and NH(4)(+). The time-course microelectrode measurements demonstrated that 2-CP inhibited O(2) respiration and nitrification activities within 6-18 min. The microbial activities were inhibited only in the upper 400 microm of the biofilms by 2-CP, and the bacteria present in the deeper parts of the biofilms were still active, probably due to limited penetration of 2-CP. These results could reasonably explain the difference in inhibitory ratios of the O(2) respiration and nitrification activities in the biofilms. O(2) respiration activity was incompletely inhibited, which was attributed to the presence of O(2) respiration activities in the deeper parts of the biofilm. In contrast, nitrification activity was significantly inhibited because ammonia-oxidizing bacteria were present in the upper parts of the biofilm. These results indicate that the microelectrodes with a very quick response time and a high spatial resolution are useful tools to study temporal and spatial inhibitory effects of inhibitors on in situ microbial activities in biofilms. 相似文献