首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Plant diversity and the stability of foodwebs   总被引:1,自引:0,他引:1  
Insect outbreaks in forest and agriculture monocultures led Charles Elton to propose, a half-century ago, that higher plant diversity stabilized animal foodweb dynamics in natural ecosystems. We tested this hypothesis by studying arthropod community dynamics in a long-term experimental manipulation of grassland plant species diversity. Over the course of a decade, we found that higher plant diversity increased the stability (i.e. lowered year-to-year variability) of a diverse (>700 species) arthropod community across trophic levels. As the number of plant species increased, the stability of both herbivore and predator species richness and of total herbivore abundance increased. The underlying mechanisms driving these diversity-stability relationships were plant diversity, via effects on primary productivity and plant community stability, and portfolio effects. Taken together, our results show that higher plant diversity provides more temporally consistent food and habitat resources to arthropod foodwebs. Consequently, actively managing for high plant diversity may have stronger than expected benefits for increasing animal diversity and controlling pest outbreaks.  相似文献   

2.
Recent theoretical and experimental work suggests that species diversity enhances the temporal stability of communities. However, empirical support largely comes from experimental communities. The relationship between diversity and stability in natural communities, and the ones facing environmental changes in particular, has received less attention. We created a gradient of fertility in a natural alpine meadow community to test the effects of diversity and fertilization on the temporal variability of community cover and cover of component species and to determine the importance of asynchrony, portfolio effects, cover and dominance for diversity-stability relationships. Although fertilization strongly reduced species richness, the temporal stability in community cover increased with fertilization. Most species showed a decline of temporal stability in mean population cover with fertilization, but two grass species, which dominated fertilized communities after 10 years, showed an increase of stability. Detailed analysis revealed that the increased dominance of these two highly stable grass species was associated with increased community stability at high levels of fertilization. In contrast, we found little support for other mechanisms that have been proposed to contribute to community stability, such as changes in asynchrony and portfolio effects. We conclude that the presence of highly productive species that have stabilizing properties dominate fertilized assemblages and enhance ecosystem stability.  相似文献   

3.
Biodiversity generally promotes ecosystem stability. To assess whether the diversity–stability relationship observed under ambient nitrogen (N) conditions still holds under N enriched conditions, we designed a 6‐year field experiment to test whether the magnitude and frequency of N enrichment affects ecosystem stability and its relationship with species diversity in a temperate grassland. Results of this experiment showed that the frequency of N addition had no effect on either the temporal stability of ecosystem and population or the relationship between diversity and stability. Nitrogen addition decreased ecosystem stability significantly through decreases in species asynchrony and population stability. Species richness was positively associated with ecosystem stability, but no significant relationship between diversity and the residuals of ecosystem stability was detected after controlling for the effects of the magnitude of N addition, suggesting collinearity between the effects of N addition and species richness on ecosystem stability, with the former prevailing over the latter. Both population stability and the residuals of population stability after controlling for the effects of the magnitude of N addition were positively associated with ecosystem stability, indicating that the stabilizing effects of component populations were still present after N enrichment. Our study supports the theory predicting that the effects of environmental factors on ecosystem functioning are stronger than those of biodiversity. Understanding such mechanisms is important and urgent to protect biodiversity in mediating ecosystem functioning and services in the face of global changes.  相似文献   

4.
Knowledge of the connection between aquatic plant diversity and ecosystem processes is still limited. To examine how plant species diversity affects primary productivity, plant nutrient use, functional diversity of secondary producers and population/community stability, we manipulated submerged angiosperm species diversity in a field experiment lasting 15 weeks. Plant richness increased the shoot density for three of four species. Polyculture biomass production was enhanced by increasing richness, with positive complementarity and selection effects causing positive biodiversity effects. Species richness enhanced the community stability for biomass production and shoot density. Sediment ammonium availability decreased with plant diversity, suggesting improved nutrient usage with increasing plant richness. Interestingly, positive multitrophic effects of plant species richness on structural and functional diversity of macrobenthic secondary producers were recorded. The results suggest that mixed seagrass meadows play an important role for ecosystem functioning and thus contribute to the provision of goods and services in coastal areas.  相似文献   

5.
The influence of biodiversity on ecosystem functioning has been the focus of much recent research, but the role of environmental context and the mechanisms by which it may influence diversity effects on production and stability remain poorly understood. We assembled marine macroalgal communities in two mesocosm experiments that varied nutrient supply, and at four field sites that differed naturally in environmental conditions. Concordant with theory, nutrient addition promoted positive species richness effects on algal growth in the first mesocosm experiment; however, it tended to weaken the positive diversity relationship found under ambient conditions in a second experiment the next year. In the field experiments, species richness increased algal biomass production at two of four sites. Together, these experiments indicate that diversity effects on algal biomass production are strongly influenced by environmental conditions that vary over space and time. In decomposing the net biodiversity effect into its component mechanisms, seven of the eight experimental settings showed positive complementarity effects (suggesting facilitation or complementary resource use) countered by negative selection effects (i.e. enhanced growth in mixture of otherwise slow growing species) to varying degrees. Under no conditions, including nutrient enrichment, did we find evidence of positive selection effects commonly thought to drive positive diversity effects. Species richness enhanced stability of algal community biomass across a range of environmental settings in our field experiments. Hence, while species richness can increase production, enhanced stability is also an important functional outcome of maintaining diverse marine macroalgal communities.  相似文献   

6.
Aim At macroecological scales, exotic species richness is frequently positively correlated with human population density. Such patterns are typically thought to arise because high human densities are associated with increased introduction effort and/or habitat modification and disturbance. Exotic and native species richness are also frequently positively correlated, although the causal mechanisms remain unclear. Energy availability frequently explains much of the variation in species richness and we test whether such species–energy relationships may influence the relationships of exotic species richness with human population density and native species richness. Location Great Britain. Methods We first investigate how spatial variation in the distributions of the 10 exotic bird species is related to energy availability. We then model exotic species richness using native avian species richness, human population density and energy availability as predictors. Species richness is modelled using two sets of models: one assumes independent errors and the other takes spatial correlation into account. Results The probability of each exotic species occurring, in a 10‐km quadrat, increases with energy availability. Exotic species richness is positively correlated with energy availability, human population density and native species richness in univariate tests. When taking energy availability into account, exotic species richness is negligibly influenced by human population density, but remains positively associated with native species richness. Main conclusions We provide one of the few demonstrations that energy availability exerts a strong positive influence on exotic species richness. Within our data, the positive relationship between exotic species richness and human population density probably arises because both variables increase with energy availability, and may be independent of the influence of human density on the probability of establishment. Positive correlations between exotic and native species richness remain when controlling for the influence of energy on species richness. The relevance of such a finding to the debate on the relationship between diversity and invasibility is discussed.  相似文献   

7.
At large scales, the mechanisms underpinning stability in natural communities may vary in importance due to changes in species composition, mean abundance, and species richness. Here we link species characteristics (niche positions) and community characteristics (richness and abundance) to evaluate the importance of stability mechanisms in 156 butterfly communities monitored across three European countries and spanning five bioclimatic regions. We construct niche-based hierarchical structural Bayesian models to explain first differences in abundance, population stability, and species richness between the countries, and then explore how these factors impact community stability both directly and indirectly (via synchrony and population stability). Species richness was partially explained by the position of a site relative to the niches of the species pool, and species near the centre of their niche had higher average population stability. The differences in mean abundance, population stability, and species richness then influenced how much variation in community stability they explained across the countries. We found, using variance partitioning, that community stability in Finnish communities was most influenced by community abundance, whereas this aspect was unimportant in Spain with species synchrony explaining most variation; the UK was somewhat intermediate with both factors explaining variation. Across all countries, the diversity–stability relationship was indirect with species richness reducing synchrony which increased community stability, with no direct effects of species richness. Our results suggest that in natural communities, biogeographical variation observed in key drivers of stability, such as population abundance and species richness, leads to community stability being limited by different factors and that this can partially be explained due to the niche characteristics of the European butterfly assemblage.  相似文献   

8.
Wei Li  M. Henry. H. Stevens 《Oikos》2010,119(4):686-695
Nutrient enrichment, ecosystem size, and richness each may directly affect the stability of both populations and communities. Alternatively, nutrient enrichment and ecosystem size each may directly affect richness, which in turn may affect stability. No previous studies, however, have tested empirically how these three factors interact and co‐determine stability. We manipulated nutrient input and ecosystem size in replicate microcosms containing a diverse bacterial flora, and a range of green algae and heterotrophic protozoa, and used these manipulations and the resulting variation in species richness to measure their combined effects on temporal stability of both populations and communities. Results showed that nutrient enrichment and ecosystem size controlled protist richness, and their effects on stability could be mediated by richness. In addition, both community‐level and population‐level stability increased with protist richness. Furthermore, mean species evenness and mean species richness was negatively related. Effects of statistical averaging, overyielding, and component population stability were identified as possible mechanisms involved explaini ng the stabilizing effects of richness on community stability. Their relative strength in influencing stability, however, is likely to change as mean evenness decreased with increasing richness. This decrease in evenness would tend to weaken the strength of the statistic averaging effect, but increase the strength of the other two mechanisms due to relatively lower population variability (component population stability) and higher mean biovolumes of dominant protists (overyielding).  相似文献   

9.
There is increasing evidence that mixed‐species forests can provide multiple ecosystem services at a higher level than their monospecific counterparts. However, most studies concerning tree diversity and ecosystem functioning relationships use data from forest inventories (under noncontrolled conditions) or from very young plantation experiments. Here, we investigated temporal dynamics of diversity–productivity relationships and diversity–stability relationships in the oldest tropical tree diversity experiment. Sardinilla was established in Panama in 2001, with 22 plots that form a gradient in native tree species richness of one‐, two‐, three‐ and five‐species communities. Using annual data describing tree diameters and heights, we calculated basal area increment as the proxy of tree productivity. We combined tree neighbourhood‐ and community‐level analyses and tested the effects of both species diversity and structural diversity on productivity and its temporal stability. General patterns were consistent across both scales indicating that tree–tree interactions in neighbourhoods drive observed diversity effects. From 2006 to 2016, mean overyielding (higher productivity in mixtures than in monocultures) was 25%–30% in two‐ and three‐species mixtures and 50% in five‐species stands. Tree neighbourhood diversity enhanced community productivity but the effect of species diversity was stronger and increased over time, whereas the effect of structural diversity declined. Temporal stability of community productivity increased with species diversity via two principle mechanisms: asynchronous responses of species to environmental variability and overyielding. Overyielding in mixtures was highest during a strong El Niño‐related drought. Overall, positive diversity–productivity and diversity–stability relationships predominated, with the highest productivity and stability at the highest levels of diversity. These results provide new insights into mixing effects in diverse, tropical plantations and highlight the importance of analyses of temporal dynamics for our understanding of the complex relationships between diversity, productivity and stability. Under climate change, mixed‐species forests may provide both high levels and high stability of production.  相似文献   

10.
Primary production correlates with diversity in various ways. These patterns may result from the interaction of various mechanisms related to the environmental context and the spatial and temporal scale of analysis. However, empirical evidence on diversity‐productivity patterns typically considers single temporal and spatial scales, and does not include the effect of environmental variables. In a metacommunity of macrophytes in ephemeral ponds, we analysed the diversity‐productivity relationship patterns in the field, the importance of the environmental variables of pond size and heterogeneity on such relationship, and the variation of these patterns at local (community level) and landscape scales (metacommunity level) across 52 ponds on twelve occasions, over five years (2005–2009). Combining all sampling dates, there were 377 ponds and 1954 sample‐unit observations. Vegetation biomass was used as a proxy for productivity, and biodiversity was represented by species richness, evenness, and their interaction. Environmental variables comprised pond area, depth and internal heterogeneity. Productivity and species richness were not directly related at the metacommunity level, and were positively related at the community level. Taking environmental variables into account revealed positive species richness‐productivity relationships at the metacommunity level and positive quadratic relationships at the community level. Productivity showed both positive and negative linear and nonlinear relationships with the size and heterogeneity of ponds. We found a weak relationship between productivity and evenness. The identity of variables associated with productivity changed between spatial scales and through time. The pattern of relationships between productivity and diversity depends on spatial scale and environmental context, and changes idiosyncratically through time within the same ecosystem. Thus, the diversity‐productivity relationship is not only a property of the study system, but also a consequence of environmental variations and the temporal and spatial scale of analysis.  相似文献   

11.
Empirical knowledge of diversity–stability relationships is mostly based on the analysis of temporal variability. Variability, however, often depends on external factors that act as disturbances, which makes comparisons across systems difficult to interpret. Here, we show how variability can reveal inherent stability properties of ecological communities. This requires that we abandon one‐dimensional representations, in which a single variability measurement is taken as a proxy for how stable a system is, and instead consider the whole set of variability values generated by all possible stochastic perturbations. Despite this complexity, in species‐rich systems, a generic pattern emerges from community assembly, relating variability to the abundance of perturbed species. Strikingly, the contrasting contributions of different species abundance classes to variability, driven by different types of perturbations, can lead to opposite diversity–stability patterns. We conclude that a multidimensional perspective on variability helps reveal the dynamical richness of ecological systems and the underlying meaning of their stability patterns.  相似文献   

12.
Nutrient enrichment can reduce ecosystem stability, typically measured as temporal stability of a single function, e.g. plant productivity. Moreover, nutrient enrichment can alter plant–soil interactions (e.g. mycorrhizal symbiosis) that determine plant community composition and productivity. Thus, it is likely that nutrient enrichment and interactions between plants and their soil communities co-determine the stability in plant community composition and productivity. Yet our understanding as to how nutrient enrichment affects multiple facets of ecosystem stability, such as functional and compositional stability, and the role of above–belowground interactions are still lacking. We tested how mycorrhizal suppression and phosphorus (P) addition influenced multiple facets of ecosystem stability in a three-year field study in a temperate steppe. Here we focused on the functional and compositional stability of plant community; functional stability is the temporal community variance in primary productivity; compositional stability is represented by compositional resistance, turnover, species extinction and invasion. Community variance was partitioned into population variance defined as community productivity weighted average of the species temporal variance in performance, and species synchrony defined as the degree of temporal positive covariation among species. Compared to treatments with mycorrhizal suppression, the intact AM fungal communities reduced community variance in primary productivity by reducing species synchrony at high levels of P addition. Species synchrony and population variance were linearly associated with community variance with the intact AM fungal communities, while these relationships were decoupled or weakened by mycorrhizal suppression. The intact AM fungal communities promoted the compositional resistance of plant communities by reducing compositional turnover, but this effect was suppressed by P addition. P addition increased the number of species extinctions and thus promoted compositional turnover. Our study shows P addition and AM fungal communities can jointly and independently modify the various components of ecosystem stability in terms of plant community productivity and composition.  相似文献   

13.
为了探讨千岛湖岛屿景观参数对地表蚂蚁群落物种α和β多样性空间格局的影响, 作者分别于2017和2018年的5-8月, 采用陷阱法、凋落物分拣法和手捡法调查了千岛湖33个岛屿上的地表蚂蚁群落, 并依据食性将其划分为捕食性蚂蚁和杂食性蚂蚁。利用回归模型分析了全部蚂蚁、捕食性蚂蚁和杂食性蚂蚁群落α和β多样性与岛屿景观参数的关系。结果表明, 岛屿面积对全部蚂蚁、捕食性蚂蚁和杂食性蚂蚁的物种丰富度均有显著的正向影响, 而隔离度则无显著作用。蚂蚁群落的β多样性由空间周转组分主导。岛屿面积差对全部蚂蚁、捕食性蚂蚁和杂食性蚂蚁群落β多样性的嵌套组分有正向影响, 隔离度差只对杂食性蚂蚁的总体β多样性有正向影响。因此, 岛屿面积是影响千岛湖地表蚂蚁群落物种丰富度的主要因素, 并且岛屿面积通过嵌套组分来影响蚂蚁群落的β多样性, 表现出选择性灭绝过程。此外, 不同食性蚂蚁可能因为扩散能力的差异对岛屿景观参数产生不同的响应。  相似文献   

14.
施肥是当前草地生态系统最常见的人为干扰方式之一,可导致草地生物多样性和生态系统稳定性发生显著变化.该研究以黄土高原典型草原为研究对象,通过连续8年的氮肥(尿素)野外添加试验,分析不同氮肥处理(分别为0、5、10、20、40和80 g·m-2)对草地群落稳定性的影响,并分析检验可能影响群落稳定性的四个潜在机制(物种多样性...  相似文献   

15.
植物群落中不同“功能身份”物种的多样性与特定生态系统功能之间具有何种关系及其作用机制尚不明确。通过在高寒矮嵩草(Kobresia humilis)草甸为期5年的刈割(不刈割、留茬3 cm、留茬1 cm)、施肥(施肥、不施肥)和浇水(浇水、不浇水)控制实验, 研究了刈割与土壤资源获得性梯度上不同“功能身份”物种(群落中所有物种、响应物种、作用物种和共有物种)的多样性变化与群落地上净初级生产力和稳定性的关系以及稳定性机制。研究结果显示: 群落中响应物种、作用物种和共有物种数分别占全部物种数的36.6%、18.3%和64.8%, 物种多样性对生态系统功能具有不同的效应, 净初级生产力主要受响应物种和作用物种的多样性变化影响, 而稳定性则主要由共有物种的多样性变化决定; 群落稳定性的维持主要依赖于共有物种的多样性增加, 其作用机制是投资组合效应, 而超产效应和异步性效应对稳定性并无作用; 刈割和施肥对物种多样性、稳定性和净初级生产力具有相反的影响, 前者能增加物种多样性和稳定性, 并降低净初级生产力, 而后者的作用正相反。这与群落中全部物种的多样性变化受刈割影响较大, 而作用物种的多样性变化受资源获得性影响较大有关。上述结果表明高寒草甸生态系统地上净初级生产力主要由少数影响生产力的作用物种的多样性决定, 而稳定性则由大量共有物种的多样性所掌控。投资组合效应是物种多样性导致稳定性的机制。由于群落中不同物种的多样性效应具有分异性, 对于特定的生态系统功能而言, 物种的“功能身份”可能比物种多样性本身更重要, 不加区别地笼统定义物种多样性与生态系统功能的关系可能欠妥。  相似文献   

16.
Population stability is higher in more diverse annual plant communities   总被引:3,自引:0,他引:3  
Abstract Theoretical work suggests a paradoxical effect of diversity on the temporal stability of ecological systems: increasing diversity should result in decreased stability of populations while community stability is enhanced. While empirical work indicates that community stability tends to increase with diversity, investigations of the effect of diversity on populations have resulted in few clear patterns. Here, we examine relationships between community diversity and population stability in unmanipulated annual plant communities. We show that, counter to theory, the temporal stability of annual plant populations increases with diversity. In addition, and again counter to theoretical assumptions, mean population size tends to increase with diversity, a pattern most likely due to variation in local productivity. The fact that community diversity, population size and the temporal stability of populations covaried positively suggests that abiotic factors such as productivity may govern population stability to such an extent as to override potential effects of diversity.  相似文献   

17.
Despite potential interactive effects of plant species and genotypic diversity (SD and GD, respectively) on consumers, studies have usually examined these effects separately. We evaluated the individual and combined effects of tree SD and mahogany (Swietenia macrophylla) GD on the arthropod community associated with mahogany. We conducted this study within the context of a tree diversity experiment consisting of 74 plots with 64 saplings/plot. We sampled 24 of these plots, classified as monocultures of mahogany or polycultures of four species (including mahogany). Within each plot type, mahogany was represented by either one or four maternal families. We surveyed arthropods on mahogany and estimated total arthropod abundance and species richness, as well as abundance and richness separately for herbivorous and predatory arthropods. Overall tree SD and mahogany GD had positive effects on total arthropod species richness and abundance on mahogany, and also exerted interactive effects on total species richness (but not abundance). Analyses conducted by trophic level group showed contrasting patterns; SD positively influenced herbivore species richness but not abundance, and did not affect either predator richness or abundance. GD influenced predator species richness but not abundance, and did not influence herbivore abundance or richness. There were interactive effects of GD and SD only for predator species richness. These results provide evidence that intra‐ and inter‐specific plant diversity exert interactive controls on associated consumer communities, and that the relative importance of SD and GD may vary among higher trophic levels, presumably due to differences in the underlying mechanisms or consumer traits.  相似文献   

18.
Nutrient enrichment weakens the stabilizing effect of species richness   总被引:2,自引:0,他引:2  
With global freshwater biodiversity declining at an even faster rate than in the most disturbed terrestrial ecosystems, understanding the effects of changing environmental conditions on relationships between biodiversity and the variability of community and population processes in aquatic ecosystems is of significant interest. Evidence is accumulating that biodiversity loss results in more variable communities; however, the mechanisms underlying this effect have been the subject of considerable debate. We manipulated species richness and nutrients in outdoor aquatic microcosms composed of naturally occurring assemblages of zooplankton and benthic invertebrates to determine how the relationship between species richness and variability might change under different nutrient conditions. Temporal variability of populations and communities decreased with increasing species richness in low nutrient microcosms. In contrast, we found no relationship between species richness and either population or community variability in nutrient enriched microcosms. Of the different mechanisms we investigated (e.g. overyielding, statistical averaging, insurance effects, and the stabilizing effect of species richness on populations) the only one that was consistent with our results was that increases in species richness led to more stable community abundances through the stabilizing effect of species richness on the component populations. While we cannot conclusively determine the mechanism(s) by which species richness stabilized populations, our results suggest that more complete resource-use in the more species-rich low nutrient communities may have dampened population fluctuations.  相似文献   

19.
再论生物多样性与生态系统的稳定性   总被引:75,自引:1,他引:74  
王国宏 《生物多样性》2002,10(1):126-134
本文在简述生物多样性与生态系统稳定性研究动态的基础上,从生物多样性和稳定性的概念出发,指出忽视多样性和稳定性的生物组织层次可能是造成观点纷争的根源之一。特定生物组织层次的稳定性可能更多地与该层次的多样性特征相关,探讨多样性和稳定性的关系应从不同的生物组织层次上进行,抗动是生态系统多样性与稳定性关系悖论中的重要因子,如果根据扰动的性质,把生态系统(或其他组织层次)区分为受非正常外力干扰和受环境因子时间异质性波动干扰2类系统,稳定性的4个内涵可以理解为:对于受非正常外力干扰的系统而言,抵抗力和恢复力是稳定性适宜的测度指标;对于受环境因子时间异质性波动干扰和系统而言。利用持久性和变异性衡量系统的稳定性则更具实际意义。结合对群落和种群层次多样性与稳定性相关机制的初步讨论,本文认为;在特定的前提下,多样性可以导致稳定性。  相似文献   

20.
The diversity-stability hypothesis states that current losses of biodiversity can impair the ability of an ecosystem to dampen the effect of environmental perturbations on its functioning. Using data from a long-term and comprehensive biodiversity experiment, we quantified the temporal stability of 42 variables characterizing twelve ecological functions in managed grassland plots varying in plant species richness. We demonstrate that diversity increases stability i) across trophic levels (producer, consumer), ii) at both the system (community, ecosystem) and the component levels (population, functional group, phylogenetic clade), and iii) primarily for aboveground rather than belowground processes. Temporal synchronization across studied variables was mostly unaffected with increasing species richness. This study provides the strongest empirical support so far that diversity promotes stability across different ecological functions and levels of ecosystem organization in grasslands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号