首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Squalene-hopene cyclase, which catalyzes the complex cyclization of squalene to the pentacyclic triterpene, hopene, is a key enzyme in the biosynthesis of hopanoids. The deduced amino acid sequence of the Streptomyces peucetius gene (spterp25) had significant similarity to other prokaryotic squalene-hopene cyclases. Like other triterpene cyclases, the S. peucetius squalene-hopene cyclase contains eight so-called QW-motifs with an aspartate-rich domain. The 2,025-bp squalene-hopene cyclase-encoding gene was expressed in Escherichia coli BL21(DE3)pLySs, and the in vitro activity of the recombinant cyclase was demonstrated using purified membrane protein. The cyclization product hopene was identified by gas chromatography/mass spectrometry (GC/MS).  相似文献   

2.
C Füll 《FEBS letters》2001,509(3):361-364
The catalytic cavity of the Alicyclobacillus acidocaldarius squalene-hopene cyclase is predominantly lined by aromatic amino acids. In mutant cyclases, the four tyrosine residues in the catalytic cavity were replaced by different amino acids. The mutants showed significant differences in catalytic behavior compared to the wild-type and to each other. Mutants Y609L, Y609C and Y609S produced the bicyclic main product gamma-polypodatetraene, while Y495L and Y612L showed a wild-type product pattern and produced hopene as the main product. Altered product patterns were also found with Y420 mutations.  相似文献   

3.
Properties of purified squalene-hopene cyclase from Bacillus acidocaldarius   总被引:1,自引:0,他引:1  
The squalene-hopene cyclase from Bacillus acidocaldarius cytoplasmic membrane, was purified to homogeneity by solubilization with Triton X-100, chromatography on DEAE-cellulose, phenyl Sepharose and two gel-filtration columns. The enzyme monomer had a molecular mass of 75 kDa. The sequence of the first 23 amino acids was determined by Edman degradation. The enzyme activity was efficiently inhibited by n-alkyldimethylammonium halides with alkyl chain lengths between 12 and 18 C atoms. Inhibition was also observed with (5-hydroxycarvacryl)trimethylammonium chloride 1-piperidine carboxylate, dodecyldimethylamine N-oxide, azasqualene and farnesol. Competitive inhibition with dodecyltrimethylammonium bromide, (5-hydroxycarvacryl)trimethylammonium chloride 1-piperidine carboxylate and dodecyldimethylamine N-oxide was demonstrated by Lineweaver-Burk plots.  相似文献   

4.
The catalytic cavity of Alicyclobacillus acidocaldarius squalene-hopene cyclase is mainly lined by aromatic amino acids. In recombinant cyclases, three out of four tyrosine residues (Y) have been mutated to phenylalanine residues (F). The mutant cyclases Y495F and Y612F had less activity than the wild-type cyclase, but a wild-type product pattern. Mutant Y609F had wild-type activity but a drastically altered product pattern with hopene and significant amounts of bicyclic alpha-polypodatetraene and different tetracyclic triterpenes (dammaradienes and eupha-7,24-diene). The experiments demonstrated that Y495 and Y612 may be involved in the initiation of the cyclization reaction and Y609 in the stabilization and/or positioning of the intermediate carbocations.  相似文献   

5.
The Escherichia coli cya gene has been fused in the same register with the lacZ gene. The corresponding hybrid cya-lacZ gene is expressed as a bifunctional protein that exhibits both adenylate cyclase and beta-galactosidase activities, thus proving that cya is the structural gene for adenylate cyclase. The hybrid protein was purified to homogeneity and has been used to raise antibodies that recognize wild-type adenylate cyclase. Finally, the protein has been submitted to amino acid sequence analysis. It has been found that the first ten amino acids fit the predicted sequence obtained from DNA sequence analysis, thus substantiating the prediction that the cya translation initiation codon is UUG .  相似文献   

6.
Kwon  Hyuk Jun  Oh  Chang Jae  Kim  Ho Bang  An  Chung Sun 《Plant and Soil》2003,254(1):89-96
The nucleotide sequences of adrenodoxin reductase (adr) gene and isovaleryl-CoA dehydrogenase (ivd) gene and the expression pattern of adr from Frankia EuIK1 strain, symbiont of Elaeagnus umbellata, were determined. 5.5-kb NotI, 5.5-kb SacI, 1.3-kb SacI restriction fragments of pEuAR1, a cosmid clone hybridized with a squalene-hopene cyclase (shc) DNA probe, were subcloned and partially sequenced. Sequence analysis showed three fragments to overlap and harbor adr and ivd genes but not the targeted shc gene. The deduced amino acid sequence of AdR, consisting of 487 amino acids, showed sequence similarity of about 55% with other AdRs, and that of ivd, consisting of 384 amino acids, showed about 60% similarity with others. RT-PCR experiments revealed that the expression of adr was in low level at 6 weeks after inoculation (WAI), reached peak at 8 WAI, and decreased to some extent at 10 WAI. AdR is a probable redox partner of [2Fe–2S] ferredoxin involved in the biosynthesis of Fe/S cluster for cellular Fe/S proteins and also could be involved in nitrogen-fixation. It is the first report about adr and ivd in Frankia.  相似文献   

7.
A few naturally occurring prenyl- and prenyloxycoumarins and several new related synthetic derivatives were evaluated as inhibitors of squalene-hopene cyclase (SHC), a useful model enzyme, to predict their interactions with oxidosqualene cyclase (OSC). Umbelliprenin-10',11'-monoepoxide (IC(50) 2.5 microM) and the corresponding 6',7'-10',11' diepoxide (IC(50) 1.5 microM) were the most active enzyme inhibitors.  相似文献   

8.
A gene encoding the enzyme lycopene cyclase in the cyanobacterium Synechococcus sp strain PCC7942 was mapped by genetic complementation, cloned, and sequenced. This gene, which we have named crtL, was expressed in strains of Escherichia coli that were genetically engineered to accumulate the carotenoid precursors lycopene, neurosporene, and zeta-carotene. The crtL gene product converts the acyclic hydrocarbon lycopene into the bicyclic beta-carotene, an essential component of the photosynthetic apparatus in oxygen-evolving organisms and a source of vitamin A in human and animal nutrition. The enzyme also converts neurosporene to the monocyclic beta-zeacarotene but does not cyclize zeta-carotene, indicating that desaturation of the 7-8 or 7'-8' carbon-carbon bond is required for cyclization. The bleaching herbicide 2-(4-methylphenoxy)triethylamine hydrochloride (MPTA) effectively inhibits both cyclization reactions. A mutation that confers resistance to MPTA in Synechococcus sp PCC7942 was identified as a point mutation in the promoter region of crtL. The deduced amino acid sequence of lycopene cyclase specifies a polypeptide of 411 amino acids with a molecular weight of 46,125 and a pI of 6.0. An amino acid sequence motif indicative of FAD utilization is located at the N terminus of the polypeptide. DNA gel blot hybridization analysis indicated a single copy of crtL in Synechococcus sp PCC7942. Other than the FAD binding motif, the predicted amino acid sequence of the cyanobacterial lycopene cyclase bears little resemblance to the two known lycopene cyclase enzymes from nonphotosynthetic bacteria. Preliminary results from DNA gel blot hybridization experiments suggest that, like two earlier genes in the pathway, the Synechococcus gene encoding lycopene cyclase is homologous to plant and algal genes encoding this enzyme.  相似文献   

9.
Racolta S  Juhl PB  Sirim D  Pleiss J 《Proteins》2012,80(8):2009-2019
Triterpene cyclases catalyze a broad range of cyclization reactions to form polycyclic triterpenes. Triterpene cyclases that convert squalene to hopene are named squalene-hopene cyclases (SHC) and triterpene cyclases that convert oxidosqualene are named oxidosqualene cyclases (OSC). Many sequences have been published, but there is only one structure available for each of SHCs and OSCs. Although they catalyze a similar reaction, the sequence similarity between SHCs and OSCs is low. A family classification based on phylogenetic analysis revealed 20 homologous families which are grouped into two superfamilies, SHCs and OSCs. Based on this family assignment, the Triterpene Cyclase Engineering Database (TTCED) was established. It integrates available information on sequence and structure of 639 triterpene cyclases as well as on structurally and functionally relevant amino acids. Family specific multiple sequence alignments were generated to identify the functionally relevant residues. Based on sequence alignments, conserved residues in SHCs and OSCs were analyzed and compared to experimentally confirmed mutational data. Functional schematic models of the central cavities of OSCs and SHCs were derived from structure comparison and sequence conservation analysis. These models demonstrate the high similarity of the substrate binding cavity of SHCs and OSCs and the equivalences of the respective residues. The TTCED is a novel source for comprehensive information on the triterpene cyclase family, including a compilation of previously described mutational data. The schematic models present the conservation analysis in a readily available fashion and facilitate the correlation of residues to a specific function or substrate interaction.  相似文献   

10.
11.
Hopanoid lipids have been discovered recently in a number of nitrogen-fixing soil bacteria and in Bradyrhizobium bacteria which fix nitrogen in association with legume plants. We report here an investigation of the hopanoid content in an additional number of soil bacteria capable of living in close association with plants. Of the strains investigated, hopanoids were discovered in phototrophic, nitrogen-fixing bacteria and in an extended number of Bradyrhizobium strains. Strains in which hopanoids so far have not been found belong to the following genera: Rhizobium, Sinorhizobium, Phyllobacterium, Agrobacterium, and Azoarcus. To address the function of hopanoids in Bradyrhizobium, we cloned the gene coding for a key enzyme of hopanoid biosynthesis, the squalene-hopene cyclase, and expressed the gene in E. coli. The recombinant enzyme catalyzed in vitro the cyclization of squalene to hopanoid derivatives.Abbreviations SHC squalene-hopene cyclase - shc squalene-hopene cyclase gene  相似文献   

12.
A complementary DNA clone corresponding to the 70 kDa subunit of soluble guanylate cyclase (EC 4.6.1.2) of rat lung has been isolated. The primary structure of the cDNA consisted of 3063 nucleotides including a 1857-nucleotide coding region for 619 amino acids, and the calculated molecular weight was 70476. Blot hybridization of total poly(A)+RNAs from rat tissues detected a mRNA of about 3.4 kilobases. The amount of mRNA was abundant in lung, cerebrum and cerebellum, moderate in heart and kidney, and low in liver and muscle. Southern blot analysis of high molecular weight genomic DNA from rat liver indicated the presence of one gene in the rat haploid genome. The amino acid sequence of the 70 kDa subunit has partial homology with particulate guanylate cyclase from sea-urchin sperm, and protein phosphatase inhibitor I.  相似文献   

13.
Two DNA molecules complementary to human liver mRNA coding for the alpha-subunit of the stimulatory regulatory component Gs of adenylyl cyclase were cloned. One of the two forms is a full-length cDNA of 1614 nucleotides plus a poly(A) tail of 59 nucleotides. The deduced sequence of 394 amino acids encoded by its open reading frame is essentially identical to that of the alpha-subunits of Gs identified by molecular cloning from bovine adrenals, bovine brain and rat brain. Two independent clones of the other type of cDNA were isolated. Both were incomplete, beginning within the open reading frame coding for the alpha s polypeptide. One codes for amino acids 5 through 394 and the other for amino acids 48 through 394 of the above described cDNA of 1614 nucleotides, and both have the identical 3'-untranslated sequence. They differ from the first cDNA, however, in that they lack a stretch of 42 nucleotides (numbers 214 through 255) and have nucleotides 213 (G) and 256 (G) replaced with C and A, respectively. This results in a predicted amino acid composition of another alpha-subunit of Gs that is shorter by 14 amino acids and contains two substitutions (Asp for Glu and Ser for Gly) at the interface between the deletion and the unchanged sequence. We call the smaller subunit alpha s1 and the larger alpha s2. This is the first demonstration of a structural heterogeneity in alpha s subunits that is due to a difference in amino acid sequence.  相似文献   

14.
15.
16.
A cDNA clone for the membrane form of guanylate cyclase has been isolated from the testis of the sea urchin Strongylocentrotus purpuratus. An open reading frame predicts a protein of 1125 amino acids including an apparent signal peptide of 21 residues; a single transmembrane domain of 25 amino acids divided the mature protein into an amino-terminal, extracellular domain of 485 amino acids and a carboxyl domain of 594 intracellular amino acids. Three potential Asn-linked glycosylation sites were present in the proposed extracellular domain. The deduced protein sequence was homologous to the protein kinase family and contained limited but significant regions of identity with a low molecular weight atrial natriuretic peptide receptor. The carboxyl region (202 amino acids) was 42% identical with a subunit of the cytoplasmic form of guanylate cyclase recently cloned from bovine lung (Koesling, D., Herz, J., Gausepohl, H., Niroomand, F., Hinsch, K.-D., Mulsch, A., Bohme, E., Schultz, G., and Frank, R. (1988) FEBS Lett. 239, 29-34). Therefore, the membrane form of guanylate cyclase is a member of an apparently large family of proteins that includes the low molecular weight atrial natriuretic peptide receptor, the soluble form of guanylate cyclase and protein kinases.  相似文献   

17.
The squalene-hopene cyclase of the hopanoid- and tetrahymanol-producing Rhodopseudomonas palustris was released from the isolated membranes by CHAPS and purified to homogeneity by succesive chromatography on DEAE Sephacel, Octyl Sepharose, and Blue Sepharose. The enzyme has a molecular weight of 70 kDa as determined by SDS-PAGE and an isoelectric point at about pH 5.O. The enzyme activity has a maximum at 30°C and at pH 6.5. No production of tetrahymanol could be demonstrated by using either crude or purified cyclase preparations.  相似文献   

18.
Hopanoids and sterols are members of a large group of cyclic triterpenoic compounds that have important functions in many prokaryotic and eukaryotic organisms. They are biochemically synthesized from linear precursors (squalene, 2,3-oxidosqualene) in only one enzymatic step that is catalyzed by squalene-hopene cyclase (SHC) or oxidosqualene cyclase (OSC). SHCs and OSCs are related in amino acid sequences and probably are derived from a common ancestor. The SHC reaction requires the formation of five ring structures, 13 covalent bonds, and nine stereo centers and therefore is one of the most complex one-step enzymatic reactions. We summarize the knowledge of the properties of triterpene cyclases and details of the reaction mechanism of Alicyclobacillus acidocaldarius SHC. Properties of other SHCs are included.  相似文献   

19.
The potent diuretic and natriuretic peptide hormone atrial natriuretic factor (ANF), with vasodilatory activity also stimulates steroidogenic responsiveness in Leydig cells. The actions of ANF are mediated by its interaction with specific cell surface receptors and the membrane-bound form of guanylate cyclase represents an atrial natriuretic factor receptor (ANF-R). To understand the mechanism of ANF action in testicular steroidogenesis and to identify guanylate cyclase/ANF-R that is expressed in the Leydig cells, the primary structure of murine guanylate cyclase/ANF-R has been deduced from its cDNA sequence. A cDNA library constructed from poly(A+) RNA of murine Leydig tumor (MA-10) cell line was screened for the membrane-bound form of ANF-R/guanylate cyclase sequences by hybridization with a rat brain guanylate cyclase/ANF-R cDNA probe. The amino acid sequence deduced from the cDNA shows that murine guanylate cyclase/ANF-R cDNA consists of 1057 amino acids with 21 amino acids comprising the transmembrane domain which separates an extracellular ligand-binding domain (469 amino acid residues) and an intracellular guanylate cyclase domain (567 amino acid residues). Upon transfection of the murine guanylate cyclase/ANF-R cDNA in COS-7 cells, the expressed protein showed specific binding to 125I-ANF, stimulation of guanylate cyclase activity and production of intracellular cGMP in response to ANF. The expression of guanylate cyclase/ANF-R cDNA transfected in rat Leydig tumor cells stimulated the production of testosterone and intracellular cGMP after treatment with ANF. The results presented herein directly show that ANF can regulate the testicular steroidogenic responsiveness in addition to its known regulatory role in the control of cardiovascular homeostasis.  相似文献   

20.
A Roy  C Haziza    A Danchin 《The EMBO journal》1983,2(5):791-797
The regulatory region of the cya gene from Escherichia coli has been characterized by nucleotide sequence analysis and genetic approaches. Two promoters, P1 and P2, organized in that order with respect to the beginning of the cya open reading frame, were identified. Using cya-lac operon and protein fusions, it was possible to show that both promoters are active in vivo. P1 activity seemed sensitive to catabolite repression whereas activity of the stronger promoter, P2, did not respond to inhibition by glucose. No effect of cAMP or its receptor, catabolite activator protein (CAP), could be found although the DNA sequence reveals a consensus CAP site downstream of P2. The 548 nucleotides situated at the 3' end of the sequence carry an open reading frame which can tentatively be assigned to the beginning of adenylate cyclase. Among noteworthy features of the corresponding sequence are an UUG codon as the putative start site of cyclase, and a long hydrophobic stretch of amino acids resembling leader peptides in secreted or membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号