首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutant p53 alleles that have a recessive phenotype in human tumors can, in cooperation with an activated H-ras gene, transform rat embryo fibroblasts (REFs). Mutant p53 proteins differ from wild type, and from each other in conformation, localization and transforming potential. Missense mutations in codons 143, 175 and 275 confer strong transforming potential. A serine 135 p53 mutant has an intermediate transforming potential, while the histidine codon 273 allele transforms weakly, if at all. In contrast to the wild type p53 gene, mutant p53 alleles with strong transforming ability cannot suppress the transformation of REFs by other oncogenes. The His273 allele retains partial suppressor function in this assay. The relevance of p53 oligomerization, phosphorylation and nuclear translocation to the transforming potential of mutant p53 and to wild type p53 suppressor function were examined. The inability of mutant p53 polypeptides to form homodimers correlates with loss of transforming function. Monomeric variants of wild type p53 protein, however, retain the ability to suppress focus formation. Phosphorylation of serine residues 315 and 392 is not required for the transforming function of mutant p53, nor is serine 315 required for suppressor function when these alleles are constitutively expressed in REF assays. Nuclear translocation-defective mutant and wild type p53 proteins retain transforming and suppressor function in REF assays.  相似文献   

2.
J V Gannon  R Greaves  R Iggo    D P Lane 《The EMBO journal》1990,9(5):1595-1602
Point mutations in the p53 gene are the most frequently identified genetic change in human cancer. They convert murine p53 from a tumour suppressor gene into a dominant transforming oncogene able to immortalize primary cells and bring about full transformation in combination with an activated ras gene. In both the human and murine systems the mutations lie in regions of p53 conserved from man to Xenopus. We have developed a monoclonal antibody to p53 designated PAb240 which does not immunoprecipitate wild type p53. A series of different p53 mutants all react more strongly with PAb240 than with PAb246. The PAb240 reactive form of p53 cannot bind to SV40 large T antigen but does bind to HSP70. In contrast, the PAb246 form binds to T antigen but not to HSP70. PAb240 recognizes all forms of p53 when they are denatured. It reacts with all mammalian p53 and chicken p53 in immunoblots. We propose that immunoprecipitation of p53 by PAb240 is diagnostic of mutation in both murine and human systems and suggest that the different point mutations which convert p53 from a recessive to a dominant oncogene exert a common conformational effect on the protein. This conformational change abolishes T antigen binding and promotes self-oligomerization. These results are consistent with a dominant negative model where mutant p53 protein binds to and neutralizes the activity of p53 in the wild type conformation.  相似文献   

3.
Several lines of evidence suggest that the presence of the wild-type tumor suppressor gene p53 in human cancers correlates well with successful anti-cancer therapy. Restoration of wild-type p53 function to cancer cells that have lost it might therefore improve treatment outcomes. Using a systematic yeast genetic approach, we selected second-site suppressor mutations that can overcome the deleterious effects of common p53 cancer mutations in human cells. We identified several suppressor mutations for the V143A, G245S and R249S cancer mutations. The beneficial effects of these suppressor mutations were demonstrated using mammalian reporter gene and apoptosis assays. Further experiments showed that these suppressor mutations could override additional p53 cancer mutations. The mechanisms of such suppressor mutations can be elucidated by structural studies, ultimately leading to a framework for the discovery of small molecules able to stabilize p53 mutants.  相似文献   

4.
Two mutations were introduced into the wild-type mouse p53 gene by oligonucleotide-directed mutagenesis. These mutations substituted alanine or aspartic acid for serine at position 312, which is constitutively phosphorylated. Phosphopeptide mapping of the mutant proteins, expressed in COS cells, confirmed the loss of phosphorylation at position 312. There were no changes in the ability of the mutant p53s to express the conformation-dependent epitope for monoclonal antibody PAb246 or to participate in complexes with the simian virus 40 (SV40) large T antigen. Replication of a plasmid containing the SV40 origin of replication was inhibited in COS cells by wild-type p53 and both of the phosphorylation site mutants with equal efficiency. A transforming mutant of p53, encoding valine at position 135, did not inhibit SV40 DNA replication in COS cells.  相似文献   

5.
T Crook  K H Vousden 《The EMBO journal》1992,11(11):3935-3940
Primary human papillomavirus (HPV) positive anogenital cancers normally develop without somatic mutation within the p53 gene. In this study, however, we have identified p53 point mutations in metastases arising from HPV positive cervical carcinomas, suggesting that acquisition of p53 mutation may play a role in the progression of some HPV associated primary cancers. p53 mutants identified in anogenital cancers exhibit a dominant transforming phenotype and increased resistance to HPV16 E6 directed degradation. The association of p53 mutation with metastases may explain the poor prognosis reported for HPV negative primary cancers, many of which already contain mutant p53. A high proportion of p53 mutations detected in both primary and metastatic cancers are GC-->TA transversions, strongly suggesting a role for external carcinogens in the development of these cancers.  相似文献   

6.
Mutations in the TP53 tumor suppressor gene are the most common alteration in cancer, and human primary liver cancers related to previous dietary exposure to the mycotoxin aflatoxin B1 (AFB1) exhibit a specific hot spot mutation at TP53 codon 249. We have asked whether the 249 hot spot is related to a particular susceptibility to AFB1 of this TP53 region or whether it is related to a phenotype of the 249S p53 mutant protein. This was addressed by constructing a metabolically competent variant of Saccharomyces cerevisiae strain yIG397 expressing human cytochrome P450 1A2 and P450-reductase and isolating AFB1-induced mutants that failed to express the genomic ADE2 reporter gene. Molecular analysis revealed that only 8/40 mutants had a mutation in the TP53 target gene, whereas 32/40 mutants were due to a recombination event eliminating the ADE2 reporter gene. None of 19 mutations identified in the eight mutant TP53 plasmids altered codon 249, thus this codon was no hot spot if the TP53 gene was in the heterologous background yeast. The genotoxic action of AFB1 was completely different from that of the alkylating agent ethyl-methane-sulfonate, where 28/30 induced mutations were linked to the TP53 target gene.  相似文献   

7.
Biological and biochemical properties of human rasH genes mutated at codon 61   总被引:67,自引:0,他引:67  
C J Der  T Finkel  G M Cooper 《Cell》1986,44(1):167-176
Using site-directed mutagenesis, we have introduced mutations encoding 17 different amino acids at codon 61 of the human rasH gene. Fifteen of these substitutions increased rasH transforming activity. The remaining two mutants, encoding proline and glutamic acid, displayed transforming activities similar to the normal gene. Overall, these mutants vary over 1000-fold in transforming potency. Increased levels of p21 expression were required for transformation by weakly transforming mutants. The mutant proteins were unaltered in guanine nucleotide binding properties. However, all 17 different mutant proteins displayed equivalently reduced rates of GTP hydrolysis, 8- to 10-fold lower than the normal protein. There was no quantitative correlation between reduction in GTPase activity and transformation, indicating that reduced GTP hydrolysis is not sufficient to activate ras transforming potential.  相似文献   

8.
9.
10.
Inactivation of both alleles of the p53 gene is commonly found in human cancers. In contrast to mutations of the retinoblastoma gene, certain altered forms of p53 gain growth-promoting functions. To explore the mechanisms underlying this gain of function, we have identified two nuclear proteins, with molecular masses of 42 and 38 kDa, respectively, that are specifically associated with p53 mutated within the simian virus 40 T-antigen-binding domain, "hot spots" found in many human tumors. These mutants transactivate the multiple-drug resistance gene promoter and cause cells to grow to higher density. Both the mutated p53 complex with p42 and p38 increase when cells enter S phase of the cell cycle but decrease in G1 and M phases, suggesting that they may have a role in promoting cell growth.  相似文献   

11.
K Ory  Y Legros  C Auguin    T Soussi 《The EMBO journal》1994,13(15):3496-3504
In an effort to correlate the biological activity of the p53 protein with its conformation, we analysed 14 p53 mutants representative of the most frequently observed protein alterations in human cancers, at codons 175, 248 and 273 (22% of all mutations thus far reported), all three of which contained a CpG dinucleotide. Strikingly, most of the mutants at codons 248 and 273 did not display any change in their conformation, as probed by monoclonal antibodies PAb240 and PAb1620 or by binding to hsp70 protein. For all 14 mutants tested, we found a strict correlation between the transactivation properties of p53, tested either on RGC sequences or using the WAF-1 promoter, and inhibition of cell proliferation. All these mutants showed nuclear localization. Several mutants, present at a low incidence in human tumours, displayed wild-type activity in all our assays, suggesting that the presence of a mutation is not strictly correlated with p53 protein inactivation in tumours. Further analysis of nine thus far undescribed p53 mutants at codon 175 revealed a wild-type or mutant behaviour. All these results suggest that the occurrence of a mutation is dependent on two criteria: (i) the mutability of a given codon, such as those containing a CpG dinucleotide; (ii) the resulting amino acids, eventually leading to synthesis of a p53 conferring a growth advantage on the cell.  相似文献   

12.
The tumor suppressor ARF plays an essential role in the cellular response to oncogenic stress mainly through activation of p53. Nucleophosmin (NPM), a multifunctional protein, forms a stable protein complex with ARF in the nucleolus and protects ARF from the proteasome-mediated degradation. Notably, NPM is mutated in about one third of acute myeloid leukaemia (AML) patients and these mutations lead to aberrant cytoplasmic dislocation of nucleophosmin (NPM-c). Cytoplasmic NPM mutants lose their abilities to retain ARF in the nucleolus and fail to stabilize ARF. Thus, activation of the ARF-p53 axis is significantly compromised in these AML cells. We have recently identified the ubiquitin ligase of ARF (ULF) as a key factor that controls ARF turnover in human cells. Here, we found that the steady levels of both ARF and p53 are very low in human acute myeloid leukaemia OCI-AML3 cells expressing cytoplamsic dislocated nucleophosmin (NPM-c). As expected, ARF is very unstable and rapidly degraded by proteasome. Nevertheless, ULF knockdown stabilizes ARF and reactivates p53 responses in these AML cells. These results further demonstrate that ULF is a bona fide E3 ligase for ARF and also suggest that ULF is an important target for activating the ARF-p53 axis in human AML cells.  相似文献   

13.
The tumor suppressor ARF plays an essential role in the cellular response to oncogenic stress mainly through activation of p53. Nucleophosmin (NPM), a multifunctional protein, forms a stable protein complex with ARF in the nucleolus and protects ARF from the proteasome-mediated degradation. Notably, NPM is mutated in about one third of acute myeloid leukaemia (AML) patients and these mutations lead to aberrant cytoplasmic dislocation of nucleophosmin (NPM-c). Cytoplasmic NPM mutants lose their abilities to retain ARF in the nucleolus and fail to stabilize ARF. Thus, activation of the ARF-p53 axis is significantly compromised in these AML cells. We have recently identified the ubiquitin ligase of ARF (ULF) as a key factor that controls ARF turnover in human cells. Here, we found that the steady levels of both ARF and p53 are very low in human acute myeloid leukaemia OCI-AML3 cells expressing cytoplamsic dislocated nucleophosmin (NPM-c). As expected, ARF is very unstable and rapidly degraded by proteasome. Nevertheless, ULF knockdown stabilizes ARF and reactivates p53 responses in these AML cells. These results further demonstrate that ULF is a bona fide E3 ligase for ARF and also suggest that ULF is an important target for activating the ARF-p53 axis in human AML cells.Key words: ARF, ubiquitination, ULF, p53, NPM, B23, NPM-c  相似文献   

14.
The p53 protein plays an important role in cancer prevention. In response to stress signals, p53 controls essential cell functions by regulating expression of its target genes. Full or partial loss of the p53 function in cancer cells usually results from mutations of the p53 gene. Some of them are temperature-dependent, allowing reactivation of the p53 function in certain temperature. These mutations can alter general transactivation ability of the p53 protein or they modify its transactivation only towards specific genes. We analyzed transactivation of several target genes by 23 temperature-dependent p53 mutants and stratified them into four functional groups. Seventeen p53 mutants exhibited temperature-dependency and discriminative character in human and yeast cells. Despite the differences of yeast and human cells, they allowed similar transactivation rates to the p53 mutants, thus providing evidence that functional analysis of separated alleles in yeast is valuable tool for assessment of the human p53 status.  相似文献   

15.
The p53 tumor suppressor gene acquires missense mutations in over 50% of human cancers, and most of these mutations occur within the central core DNA binding domain. One structurally defined region of the core, the L1 loop (residues 112-124), is a mutational "cold spot" in which relatively few tumor-derived mutations have been identified. To further understand the L1 loop, we subjected this region to both alanine- and arginine-scanning mutagenesis and tested mutants for DNA binding in vitro. Select mutants were then analyzed for transactivation and cell cycle analysis in either transiently transfected cells or cells stably expressing wild-type and mutant proteins at regulatable physiological levels. We focused most extensively on two p53 L1 loop mutants, T123A and K120A. The T123A mutant p53 displayed significantly better DNA binding in vitro as well as stronger transactivation and apoptotic activity in vivo than wild-type p53, particularly toward its pro-apoptotic target AIP1. By contrast, K120A mutant p53, although capable of strong binding in vitro and wild-type levels of transactivation and apoptosis when transfected into cells, showed impaired activity when expressed at normal cellular levels. Our experiments indicate a weaker affinity for DNA in vivo by K120A p53 as the main reason for its defects in transactivation and apoptosis. Overall, our findings demonstrate an important, yet highly modular role for the L1 loop in the recognition of specific DNA sequences, target transactivation, and apoptotic signaling by p53.  相似文献   

16.
Previous experiments have brought into question which amino acid sequence of the p53 oncogene product should be considered wild type and whether the normal protein is capable of cooperating with the ras oncogene to transform cells in culture. To address these questions, a series of p53 cDNA-genomic hybrid clones have been compared for the ability to cooperate with the ras oncogene in transformation assays. From these experiments, it has become clear that the amino acid alanine at position 135, in either the genomic clone or the cDNA clone, failed to produce a p53 protein that cooperated with the ras oncogene and transformed cells. Replacing alanine with valine at this position in either the genomic or the cDNA clone activated for transformation in this assay. Using restriction enzyme polymorphisms in the p53 gene, it was shown that normal mouse DNA encodes alanine at position 135 in the p53 protein. Thus, mutation is required to activate the p53 protein for cooperation with the ras oncogene. After cotransfection with the activated ras gene, the genomic p53 DNA clone always produced more transformed cell foci (1.7-fold) than similar cDNA clones and these foci were more readily cloned (3.6-fold) into permanent cell lines. A series of deletion mutants of the genomic p53 clone were employed to show that the presence of intron 4 in the p53 gene was sufficient to provide much enhanced clonability of transformed foci from culture dishes. The presence of introns in the p53 gene constructions also resulted in elevated levels of p53 protein in the p53-plus-ras-transformed cell lines. Thus, qualitative changes in the p53 protein are required to activate p53 for transformation with the oncogene ras. Quantitative improvements of transformation frequencies are associated with the higher expression levels of altered p53 protein that are provided by having one of the p53 introns in the transforming plasmid.  相似文献   

17.
The Friend erythroleukemia virus complex contains no cell-derived oncogene. Transformation by this virus may therefore involve mutations affecting cellular gene expression. We provide evidence that inactivating mutations of the cellular p53 gene are a common feature in Friend virus-induced malignancy, consistent with an antioncogene role for p53 in this disease. We have shown that frequent rearrangements of the p53 gene cause loss of expression or synthesis of truncated proteins, whereas overexpression of p53 protein is seen in other Friend cell lines. We now demonstrate that p53 expression in the latter cells is also abnormal, as a result of missense mutations in regions encoding highly conserved amino acids. Three of these aberrant alleles obtained from cells from different mice were cloned and found to function as dominant oncogenes in gene transfer assays, supporting the view that certain naturally occurring missense mutations in p53 confer a dominant negative phenotype on the encoded protein.  相似文献   

18.
Mutation of the TP53 tumor suppressor gene is the most common genetic alteration in cancer, and almost 1000 alleles have been identified in human tumors. While virtually all TP53 mutations are thought to compromise wild type p53 activity, the prevalence and recurrence of missense TP53 alleles has motivated countless research studies aimed at understanding the function of the resulting mutant p53 protein. The data from these studies support three distinct, but perhaps not necessarily mutually exclusive, mechanisms for how different p53 mutants impact cancer: first, they lose the ability to execute wild type p53 functions to varying degrees; second, they act as a dominant negative (DN) inhibitor of wild type p53 tumor-suppressive programs; and third, they may gain oncogenic functions that go beyond mere p53 inactivation. Of these possibilities, the gain of function (GOF) hypothesis is the most controversial, in part due to the dizzying array of biological functions that have been attributed to different mutant p53 proteins. Herein we discuss the current state of understanding of TP53 allele variation in cancer and recent reports that both support and challenge the p53 GOF model. In these studies and others, researchers are turning to more systematic approaches to profile TP53 mutations, which may ultimately determine once and for all how different TP53 mutations act as cancer drivers and whether tumors harboring distinct mutations are phenotypically unique. From a clinical perspective, such information could lead to new therapeutic approaches targeting the effects of different TP53 alleles and/or better sub-stratification of patients harboring TP53 mutant cancers.Subject terms: Cancer genetics, Tumour-suppressor proteins  相似文献   

19.
20.
Loss of the tumor suppression activity of p53 is required for the progression of most human cancers. In this context, p53 gene is somatically mutated in about half of all human cancers; in the rest human cancers, p53 is mostly inactivated due to the disruption of pathways important for its activation. Most p53 cancer mutations are missense mutations within the core domain, leading to the expression of full-length mutant p53 protein. The expression of p53 mutants is usually correlated with the poor prognosis of the cancer patients. Accumulating evidence has indicated that p53 cancer mutants not only lose the tumor suppression activity of WT p53, but also gain novel oncogenic activities to promote tumorigenesis and drug resistance. Therefore, to improve current cancer therapy, it is critical to elucidate the gain-of-functions of p53 cancer mutants. By analyzing the humanized p53 mutant knock-in mouse models, we have identified a new gain of function of the common p53 cancer mutants in inducing genetic instability by disrupting ATM-mediated cellular responses to DNA double-stranded break (DSB) damage. Considering that some current cancer therapies such as radiotherapy kills the cancer cells by inducing DSBs in their genome DNA, our findings will have important implications on the treatment of human cancers that express common p53 mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号