首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Different activation states of B and T lymphocytes, as manifested by differences in cell density, were obtained by Percoll density centrifugation of unstimulated human lymphocytes. Four different density fractions were defined: B cells with low (1.043 g/ml) and high (1.056) density, and T cells with low (1.067) and high (1.077) density, respectively. Sister chromatid exchange (SCE) conditions and proliferation rates were determined. Total B cells, stimulated by the bacterial mitogen Branhamella, had 4.6 SCE per cell, the lowest mean baseline SCE level recorded among lymphocytes. The growth rate was intermediate between that of low and high density T cells. The two T cell fractions stimulated by phytohemagglutinin (PHA) had different baseline SCE frequencies and different growth characteristics: the low density cells had 5.7 SCEs per cell and a short cell cycle, whereas high density cells had 12.5 SCEs per cell and a longer cell cycle. The differences in baseline SCE frequency and growth characteristics between the two T cell fractions seem to be correlated with the differences in the activation state as reflected by the cell density. Both high and low density T cell are G0 populations which supposedly differ with respect to previous history in vivo such as age and contact with antigens. The reason why these cells react differently to bromodeoxyuridine (BrdU) is unknown, but differences in intracellular DNA precursor pools and enzyme activities might play a role.  相似文献   

2.
Summary There is wide variation in the length of the Y chromosome. In the same individual the length varies continuously and is normally distributed. We describe a boy with borderline mental retardation, gross and fine motor coordination difficulty, muscle rigidity, ptosis, clinodactyly, and a Y chromosome of different lengths in two separate cell populations. The most probable explanation of the cytogenetic finding is a mitotic unequal sister chromatid exchange of the Y chromosome.  相似文献   

3.
Iu S Lazutka  V V Dedonite 《Tsitologiia》1990,32(12):1193-1197
Sister chromatid exchange (SCE) frequency at different times of fixation was studied in human lymphocyte cultures obtained from 6 donors. No differences were found in the SCE frequency between human lymphocyte cultures fixed at 72 and 96 hours of incubation (10.61 +/- 0.85 and 10.15 +/- 0.81 SCE per cell, respectively). However, a decreased SCE frequency (8.11 +/- 0.36 SCE per cell) was observed in cultures fixed at 120 hours of incubation. For a more detailed studies, one lymphocyte culture was fixed at different times of incubation (from 56 to 128 hours, at each a 8 hours). A slight increase in SCE frequencies was found at the interval between 56 and 88 hours of incubation, while starting from 104 hours of incubation a marked decrease in the SCE frequency was observed. Time-dependent changes in the SCE frequency may be described by the equation y = -1.8614 + 0.3922x - (2.5183 x 10(-3))x2, where y is the number of SCEs per cell, and x--the duration of culture incubation in hours. The observed phenomenon may be associated with changes in proportion of T and B lymphocytes, or with heterochromatization of chromosomes during a prolonged cultivation, or with an early in vitro stimulation of the in vivo long-lived lymphocytes that may be more damaged than the in vivo short-lived and the in vitro late-stimulating ones.  相似文献   

4.
We have used nonessential circular minichromosomes to monitor sister chromatid exchange during yeast meiosis. Genetic analysis shows that a 64-kb circular minichromosome undergoes sister chromatid exchange during 40% of meioses. This frequency is not reduced by the presence of a homologous linear minichromosome. Furthermore, sister chromatid exchange can be stimulated by the presence of a 12-kb ARG4 DNA fragment, which contains initiation sites for meiotic gene conversion. Using physical analysis, we have directly identified a product of sister chromatid exchange: a head-to-tail dimer form of a circular minichromosome. This dimer form is absent in a rad50S mutant strain, which is deficient in processing of the ends of meiosis-specific double-stranded breaks into single-stranded DNA tails. Our studies suggest that meiotic sister chromatid exchange is stimulated by the same mechanism as meiotic homolog exchange.  相似文献   

5.
To test whether sister chromatid exchange (SCE) scores on human chromosomes have a uniform distribution, simulated SCE scores were generated and compared with observed scores using log-linear models. The analysis was performed at the level of the chromosome groups. Using this method we first tested whether the number of SCEs was distributed uniformly, i.e. proportional to the relative length of the chromosomes. Refinements of this hypothesis were made by considering a variable region around a first SCE to be inert for other SCEs and by making the occurrence of an SCE on a chromosome dependent on the occurrence of another SCE on the same chromosome. In further analyses it was tested whether the number of SCEs was proportional to the number of G bands on a chromosome, or to the DNA content of the chromosomes. None of the tested hypotheses fitted the observed data, establishing the non-uniform distribution of these events.  相似文献   

6.
Summary We analyzed sister chromatid exchange (SCE) frequencies as an indicator of DNA damage induced in human lymphocytes by real-time ultrasound. A range of exposure times and intensities was tested in a series of blind, randomized, in vitro experiments under spatial and sonographic conditions simulating exposure of a gravid abdomen and uterus. Our studies showed small but consistent effects of ultrasound on SCE frequencies, for each experiment. Differences between matched control and exposed means were significantly different from zero. X 2 tests for homogeneity indicated no significant differences among either the means or the total distributions of the controls, nor among each of the separate dose levels. Consequently, experiments were pooled, and X 2 analysis indicated significant differences both among distributions and among means of SCE frequencies for controls versus exposed cells (P(0.001). The pooled control mean was also significantly different from each of the pooled dose means. Correcting for multiple comparisons gave identical results for the paired comparisons of means except for the 20-min level which was borderline (0.025P(0.01). We conclude that the well-established value of clinical ultrasonography warrants its continued use; however, minimizing the numbers and lengths of exposure per patient would seem prudent, pending further information on clinical implications of our results.Supported in part by NIH-HD82855 and HD 11021 and a National Foundation Summer Science Research Grant for Medical Students, 8-80-22  相似文献   

7.
Summary An elevated sister chromatid exchange (SCE) rate was found in the lymphocytes of six patients treated with arsenic. All had stigmata of arsenic use as well as biopsy-proven skin cancers. The arsenic exposed patients had a mean of 14.00 SCE/mitosis while 44 normal controls had a mean of 5.8 SCE/mitosis. Chromosome breakage analysis revealed no difference between the two groups.SCE rate has been shown to be elevated in a variety of systems where cell cultures or experimental animals were exposed to known mutagens and carcinogens. We suggest that the relationship carcinogen exposure-elevated SCE rate-cancer may also be valid in humans treated with arsenic.This paper is supported in part by USPHS Grants No. T01 AM 05 560 (WB) and 5T01 GM 01 156 (KK).  相似文献   

8.
Escherichia coli has provided an important model system for understanding the molecular basis for genetic instabilities associated with repeated DNA. Changes in triplet repeat length during growth following transformation in E. coli have been used as a measure of repeat instability. However, very little is known about the molecular and biological changes that may occur on transformation. Since only a small proportion of viable cells become competent, uncertainty exists regarding the nature of these transformed cells. To establish whether the process of transformation can be inherently mutagenic for certain DNA sequences, we used a genetic assay in E. coli to compare the frequency of genetic instabilities associated with transformation with those occurring in plasmid maintained in E. coli. Our results indicate that, for certain DNA sequences, bacterial transformation can be highly mutagenic. The deletion frequency of a 106 bp perfect inverted repeat is increased by as much as a factor of 2 x 10(5) following transformation. The high frequency of instability was not observed when cells stably harboring plasmid were rendered competent. Thus, the process of transformation was required to observe the instability. Instabilities of (CAG).(CTG) repeats are also dramatically elevated upon transformation. The magnitude of the instability is dependent on the nature and length of the repeat. Differences in the methylation status of plasmid used for transformation and the methylation and restriction/modification systems present in the bacterial strain used must also be considered in repeat instability measurements. Moreover, different E. coli genetic backgrounds show different levels of instability during transformation.  相似文献   

9.
We conducted the recombination and sister chromatid exchange (SCE) assays with five chemicals (hydroxyurea (HU), resveratrol, 4-hydroxy-trans-stilbene, 3-hydroxy-trans-stilbene, and mitomycin C) in Chinese hamster cell line SPD8/V79 to confirm directly that SCE is a result of homologous recombination (HR). SPD8 has a partial duplication in exon 7 of the endogenous hprt gene and can revert to wild type by homologous recombination. All chemicals were positive in both assays except for 3-hydroxy-trans-stilbene, which was negative in both. HU, resveratrol, and 4-hydroxy-trans-stilbene were scavengers of the tyrosyl free radical of the R2 subunit of mammalian ribonucleotide reductase. Tyrosyl free radical scavengers disturb normal DNA replication, causing replication fork arrest. Mitomycin C is a DNA cross-linking agent that also causes replication fork arrest. The present study suggests that replication fork arrest, which is similar to the early phases of HR, leads to a high frequency of recombination, resulting in SCEs. The findings show that SCE may be mediated by HR.  相似文献   

10.
11.
Ptaquiloside, a norsesquiterpene glycoside from bracken (Pteridium aquilinum), is a known carcinogen towards animals. Its genotoxicity is mainly attributed to its DNA-alkylating and clastogenic properties. This study analyses various modes of genotoxic action of ptaquiloside in human mononuclear blood cells. The alkaline comet assay was performed on cells exposed to 5μg/ml ptaquiloside for 5, 10, 20, 30, 40 or 50min. Tail length was used as a DNA-damage parameter. Assays to determine structural and numerical chromosomal aberrations and sister-chromatid exchange were conducted on cells exposed to 5, 10 or 20μg/ml ptaquiloside for 48h. The tail length showed maximum DNA damage at 20-30min, diminishing onwards. Highly significant (p<0.001) dose-dependent increases in structural and numerical chromosomal aberrations and SCE were observed in response to ptaquiloside. These results indicate that ptaquiloside is not only a DNA-alkylating agent, but expresses its genotoxicity through multiple mechanisms including clastogenesis, aneugenesis and the mechanism underlying SCE induction, which is not entirely understood. Recent studies support the role played by aneuploidy in oncogenesis, highlighting the importance of this endpoint for mutagenicity screening. SCE are thought to represent the long-term effects of mutagens and are an important genotoxicity biomarker. The present results also agree with data from epidemiological studies and from animal in vivo studies, further supporting the hypothesis that ptaquiloside may represent a significant threat to human health.  相似文献   

12.
To study the role of Rad50 in the DNA damage response, we cloned and deleted the Schizosaccharomyces pombe RAD50 homologue. The deletion is sensitive to a range of DNA-damaging agents and shows dynamic epistatic interactions with other recombination-repair genes. We show that Rad50 is necessary for recombinational repair of the DNA lesion at the mating-type locus and that rad50Delta shows slow DNA replication. We also find that Rad50 is not required for slowing down S phase in response to hydroxy urea or methyl methanesulfonate (MMS) treatment. Interestingly, in rad50Delta cells, the recombination frequency between two homologous chromosomes is increased at the expense of sister chromatid recombination. We propose that Rad50, an SMC-like protein, promotes the use of the sister chromatid as the template for homologous recombinational repair. In support of this, we found that Rad50 functions in the same pathway for the repair of MMS-induced damage as Rad21, the homologue of the Saccharomyces cerevisiae Scc1 cohesin protein. We speculate that Rad50 interacts with the cohesin complex during S phase to assist repair and possibly re-initiation of replication after replication fork collapse.  相似文献   

13.
The in vitro cytomolecular technique, sister chromatid exchange (SCE), was applied to test the clastogenic potentiality of extremely low frequency (ELF) electromagnetic fields (EMFs) on human peripheral blood lymphocytes (HPBLs). SCE frequencies were scored in dividing peripheral blood lymphocytes (PBLs) from six healthy male blood donors in two rounds of experiments, R1 and R2, to determine reproducibility. Lymphocyte cultures in the eight experiments conducted in each round were exposed to 50 Hz sinusoidal (continuous or pulsed) or square (continuous or pulsed) MFs at field strengths of 1 microT or 1 mT for 72 h. A significant increase in the number of SCEs/cell in the grouped experimental conditions compared to the controls was observed in both rounds. The highest SCE frequency in R1 was 10.03 for a square continuous field, and 10.39 for a square continuous field was the second highest frequency in R2. DNA crosslinking at the replication fork is proposed as a model which could explain the mechanistic link between ELF EMF exposure and increased SCE frequency.  相似文献   

14.
Summary The reciprocal interchange between the chromatids of a chromosome, termed sister chromatid exchange (SCE), is considered to be one of the most sensitive and accurate cytogenetic parameters and respond to toxic chemicals at very low doses. But the response of SCE to ionizing radiation is very poor. Human lymphocytes fail to give SCE response when irradiated at G0. Probably the primary lesions induced at G0 do not remain available long enough to find expression as SCEs. Based on this assumption a schedule was developed using caffeine to demonstrate radiation induced SCEs. Following this schedule a dose-dependent increase in the frequency of radiation induced SCEs has been observed.  相似文献   

15.
Summary Human female blood cultures were labeled with BrdU for detecting sister chromatid exchanges (SCEs) by the Hoechst 33258 fluorescence technique. Late labeling with 3H-thymidine and autoradiography allowed the identification of the late replicating X. The mean number of SCEs in the cells was 13. The isopycnotic X showed an exchange frequency according to its relative length in the karyotype; in the late replicating X a doubled number of SCE events was observed.  相似文献   

16.
The effects of fermenting, poorly arginine-utilizing Mycoplasma fermentans and arginine-utilizing Mycoplasma salivarium on the frequency of sister chromatid exchange (SCE) in cultured human lymphocytes were examined. M. fermentans caused no apparent mitosis inhibition of lymphocytes and the increase in SCE frequency was dependent on the inoculum size of the mycoplasma. An evident increase in SCE frequency was observed in lymphocytes infected with smaller inoculum sizes of M. salivarium whereas there was mitosis inhibition of lymphocytes infected with larger inoculum sizes of the mycoplasma. In lymphocyte cultures infected with M. salivarium, the addition of arginine to the culture medium reduced mitosis inhibition but did not diminish the increase in SCE frequency, indicating that arginine depletion was not involved in causing the induction of SCEs in mycoplasma-infected lymphocytes. With regard to the genetic effectiveness of SCE, these results suggested that mycoplasmas are capable of inducing cytogenetic changes in infected host cells.  相似文献   

17.
Summary When [3H]dC was added with a high dose (4x10-1 mM) of dT to human blood lymphocyte cultures, much heavier labeling of interphase nuclei and metaphase chromosomes was observed compared with that in cultures treated with [3H]dC alone. This observation indicates that in the presence of excess dT, exogenous dC is included into cytosine bases of DNA, releasing the cells from the thymidine block.BrdC 5x10-2 mM added with a high dose of dT (4x10-1 to 1.0 mM) to the cultures did not relieve the thymidine block as determined from the percentage of metaphases of the first to third divisions. It is concluded that BrdC, in contrast to dC, is not utilized as a cytosine DNA precursor even in the presence of high concentrations of dT.The frequency of SCEs per cell was the same when studied with the aid of BrdC and BrdU used under similar conditions. The distribution of SCEs among chromosomes was also identical for both analogues: The number of SCEs was significantly higher than expected in chromosomes of group B and lower than expected in chromosomes of groups E, F, and G.  相似文献   

18.
Equal sister chromatid exchange (SCE) has been thought to be an important mechanism of double-strand break (DSB) repair in eukaryotes, but this has never been proven due to the difficulty of distinguishing SCE products from parental molecules. To evaluate the biological relevance of equal SCE in DSB repair and to understand the underlying molecular mechanism, we developed recombination substrates for the analysis of DSB repair by SCE in yeast. In these substrates, most breaks are limited to one chromatid, allowing the intact sister chromatid to serve as the repair template; both equal and unequal SCE can be detected. We show that equal SCE is a major mechanism of DSB repair, is Rad51 dependent, and is stimulated by Rad59 and Mre11. Our work provides a physical analysis of mitotically occurring SCE in vivo and opens new perspectives for the study and understanding of DSB repair in eukaryotes.  相似文献   

19.
Puget N  Knowlton M  Scully R 《DNA Repair》2005,4(2):149-161
Sister chromatid recombination (SCR) is a potentially error-free pathway for the repair of double-strand breaks arising during replication and is thought to be important for the prevention of genomic instability and cancer. Analysis of sister chromatid recombination at a molecular level has been limited by the difficulty of selecting specifically for these events. To overcome this, we have developed a novel "nested intron" reporter that allows the positive selection in mammalian cells of "long tract" gene conversion events arising between sister chromatids. We show that these events arise spontaneously in cycling cells and are strongly induced by a site-specific double-strand break (DSB) caused by the restriction endonuclease, I-SceI. Notably, some I-SceI-induced sister chromatid recombination events entailed multiple rounds of gene amplification within the reporter, with the generation of a concatemer of amplified gene segments. Thus, there is an intimate relationship between sister chromatid recombination control and certain types of gene amplification. Dysregulated sister chromatid recombination may contribute to cancer progression, in part, by promoting gene amplification.  相似文献   

20.
Summary A ring chromosome 22 is described in a 6-year-old mentally retarded boy, who presented a dysmorphic syndrome. The ring chromosome 22 was inherited from the mother, in whom a 46,XX/46,XX,r(22)/45,XY,-15,-22,+t(15;22)(p11;q11) mosaic karyotype was found, indicating a high degree of instability of the chromosome(s) 22 in this woman.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号