首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The progesterone receptors from various stages of estrogen induced oviduct development, estrogen withdrawal, and secondary stimulation with estrogen were examined. The progesterone receptors were characterized for their biological function (i.e. capacity for nuclear translocation, nuclear binding, and effects on RNA polymerase II activity) as well as certain physical properties. The progesterone receptors from the undeveloped or partially developed oviducts (0 to 8 days of estrogen treatment) displayed little or no nuclear translocation and binding in vivo or in vitro. Similarly, progesterone showed little or no effect in vivo on RNA polymerase II activity at the early stages of development. As development progressed from 8 to 12 days of estrogen treatment, the above parameters rapidly increased to maximal levels and plateaued through day 23 of estrogen treatment. A marked decrease in these parameters occurred within 1 day of estrogen withdrawal. The reverse series of events occurred during secondary estrogen stimulation of 10-day-old withdrawn chicks. While the receptor concentrations increased rapidly to maximum values by 2 days of restimulation, receptor function did not return until day 4. Similarly, the effects of progesterone on RNA polymerase II activity reached maximal values by day 4. The progesterone receptor isolated from oviducts during development, estrogen withdrawal, and restimulation, displayed similar patterns of cell-free binding to chromatin and nucleoacidic protein as that observed in vivo supporting the nativeness of the in vitro binding assay. In contrast, the cell-free binding of these same progesterone receptor to pure DNA were not similar to the in vivo binding, i.e. no patterns (differences) in progesterone receptor binding were observed. These data support that protein DNA complexes and not pure DNA represent the native acceptor sites for oviduct progesterone receptor. Comparison of the progesterone receptor between the functional and nonfunctional states revealed no differences in the steroid affinity for the receptor, in the apparent pI of the species, or in the sedimentation of the receptor under high salt conditions. However, the nonfunctional receptors consistently displayed a deficiency in one of the two monomer molecular species (the B species) as determined by isoelectric focusing. These results suggest that both monomer species of progesterone receptor are required for biological activity. Interestingly, the 7S "aggregate" species of the progesterone receptor was constantly detected even when only one of the monomer species was present.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Using high resolution isoelectric focusing we have been able to identify a low affinity/high capacity oestrogen binding protein, which exhibits an apparent pI of 7.0. Using this system it can be separated from the previously described high affinity oestrogen receptor (ER) isoforms which focus at pI 6.1, 6.3, 6.6 and 6.8. The pI 7.0 protein was detected in 30/30 breast tumours analysed and had the binding characteristics of the cytoplasmic Type II ER (Kd = 88 +/- 8 nM). The concentration of this protein was shown to be significantly correlated with the concentration of the pI 6.6 species, which represents the major 4S isoform. It is not related to any other isoform of ER, and is expressed independently of the progesterone receptor. The importance of this observed relationship with respect to ER function remains obscure, but it may provide new insights into the role of the Type II oestrogen binding site in breast cancer.  相似文献   

3.
Sphingomyelinase, purified to apparent homogeneity from human placenta, is an acidic protein, as judged from its amino acid composition and by isoelectric focusing of the carboxymethylated protein. The amino acid composition is characterized by an approximately equal content of hydrophobic and polar amino acid residues. The reduced-alkylated polypeptides were separated into two groups. Most of the polypeptides were heterogeneous with pI values of 4.4-5.0, but an additional more minor component was observed at pI 5.4. Liquid isoelectric focusing resolved the purified enzyme into a single major component (pI 4.7-4.8), a minor component (pI 5.0-5.4) and a plateau region of activity (pI 6-7). On thin-layer isoelectric focusing, the protein profile obtained from each of these regions was the same. In addition, the substrate specificity, Km values and effect of inhibitory substances were identical. We conclude that sphingomyelinase is an acidic, microheterogeneous protein that likely exists as a holopolymer of a single major polypeptide chain. the heterogeneity of the intact protein on isoelectric focusing appears to reflect this microheterogeneity, which is influenced by a tendency to associate with itself and with detergents such as Triton X-100.  相似文献   

4.
In order to understand the molecular basis for antiprogestin action, we have compared the interaction of the antiprogestin [3H]RU38, 486 (RU486) and the progestin [3H]R5020 with the progesterone receptor (PR). In both MCF-7 and T47D human breast cancer cells, we have observed marked differences in the sedimentation properties of the PR on high salt sucrose gradients: while the R5020-receptor complexes sediment at approximately 4 S (4.4 +/- 0.1 S), the RU486-receptor sediments as a prominent 6 S species as well as a 4 S species. This binding is abolished by excess unlabelled R5020, RU486 or progesterone, but is unaffected by excess unlabelled hydrocortisone or dexamethasone, indicating that both the 4 S and 6 S species represent the PR and not glucocorticoid receptor. Although the relative distribution of 4 S and 6 S forms is not altered by treatment with DNAse or RNAse, exposure to 10 mM thioglycerol or to 3 M urea results in conversion of the 6 S to the 4 S form, suggesting that disulfide bonds and hydrophobic interactions are important in maintaining the integrity of the 6 S form. These findings suggest that the 6 S antiprogestin complex is formed as a result of the interaction of PR units with each other or with a different protein. This change in receptor association state may be an important aspect of the antiprogestin activity of RU486.  相似文献   

5.
A high resolution and quantitative method for isoelectric focusing has been developed to separate the isoforms of estrogen and progesterone receptors in human mammary tumor cytosols stabilized by sodium molybdate. Agarose gels (0.5%) were used. Six samples can be analyzed on one gel in about 2 h, and 35-microliters samples are sufficient to determine the estrogen receptor isoform pattern. The constant yields and the reproducibility of data allow a quantitative analysis of these receptors. Four estrogen receptor isoforms have been observed (pI 4.7, 5.5, 6, and 6.5), isoforms with pI 4.7 and 6.5 being present in all tumors. After incubation at 28 degrees C in high ionic strength, the comparison of isoelectric focusing and high-performance size exclusion chromatography patterns of estrogen receptor confirms the oligomeric structure of the pI 4.7 isoform and suggests a monomeric structure for the pI 6.5 isoform. Under the same conditions of analysis, only one progesterone receptor isoform has been detected with pI 4.7.  相似文献   

6.
A C Smith  J M Harmon 《Biochemistry》1985,24(18):4946-4951
Potential charge heterogeneity within the glucocorticoid binding protein (GBP) of the glucocorticoid receptor was examined by a combination of affinity labeling, immunopurification, and high-resolution two-dimensional (2D) gel electrophoresis. One-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of [3H]dexamethasone 21-mesylate ([3H]DM) labeled cytosol identified a major, competable, component of Mr approximately equal to 92 000 (92K). This component was recognized by anti-human glucocorticoid receptor antibodies but not by nonimmune serum, indicating that the 92K component was the reduced denatured GBP. Examination of [3H]DM-labeled GBP by conventional 2D electrophoresis utilizing equilibrium isoelectric focusing in the first dimension failed to resolve the 92K GBP into discrete isoelectric components. This behavior was not representative of other, nonspecifically [3H]DM-labeled proteins or proteins in general. Nonequilibrium pH gradient electrophoresis (NEPHGE) was therefore employed to achieve separation in the first dimension. Immunopurified, [3H]DM-labeled GBP subjected to NEPHGE reached isoelectric equilibrium after 6 h of electrophoresis at 400 V. A single, broad peak of radioactivity was identified at pH approximately equal to 6.3. Second-dimension analysis of the NEPHGE-separated GBP by SDS-PAGE resolved this peak into two discrete, 92K, isoforms of apparent pI = 5.7 and 6.0-6.5. The GBP charge heterogeneity was confirmed by NEPHGE 2D analysis of [3H]DM-labeled GBP prepared directly from crude cytosol. Two isoforms indistinguishable from those observed in immunopurified samples were identified. An additional, more acidic, isoform (apparent pI approximately equal to 5.2) was also identified. Thus, there are at least two, and perhaps three, isoforms of the GBP. These data therefore suggest that there is significant charge heterogeneity in the GBP of the glucocorticoid receptor.  相似文献   

7.
B S Leung 《Hormone research》1984,19(4):243-252
The cytoplasmic estrogen receptor (ERc) and progesterone receptor (PRc) in mammary tumors have been recognized as useful biochemical markers for predicting the objective response of patients with advanced breast cancers to endocrine therapy. These proteins are also useful in the prognosis of gynecologic carcinoma. This report presents data showing the effect of sodium molybdate in the stabilization of estrogen and progesterone receptors. In rabbit uterine tissue, molybdate (20 mM) increased the binding of progesterone and estrogen to the receptors in several ways: (a) the apparent loss of detectable receptors during lengthy sucrose gradient analysis and at elevated temperature (30 degrees C) was reduced; (b) the instability of receptors due to storage at -70 degrees C was lessened, and (c) the conversion of the 7S PRc to the 3.5S form was minimized. Similarly, molybdate caused a qualitative and/or a statistically significant quantitative difference in receptor values for some human gynecologic tumors presented herein; the molybdate-associated changes vary with tumor specimen. Of the 8 tumors for which receptor values in the presence of molybdate (M+) and its absence (M-) can be compared, detectable ERc of 6 and PRc of 7 tumors increased with molybdate, and ERc of 2 and PRc of 1 tumor showed no change. In addition to the increase in receptor values, a concomitant shift of the 3-4S molecules to the 7-8S moieties was noted for some tumors (1 of 6 for ERc and 3 of 7 for PRc). In 2 receptor-poor tumor samples, ERc was only detected in M+ cytosols. These results show that molybdate is effective in reducing receptor degradation and stabilizes the 7-8S molecules from converting to 4S moieties. The addition of molybdate may be helpful for better quantitation of steroid receptors in clinical specimens.  相似文献   

8.
Recombinant-derived human interleukin-1 alpha (IL-1 alpha), purified from Escherichia coli, was resolved by isoelectric focusing on polyacrylamide gels into two species of isoelectric points (pI) 5.45 and 5.20, which constituted approximately 75% and approximately 25% of the total IL-1 alpha protein respectively. The pI 5.45 and pI 5.20 species were separated by chromatofocusing and subjected to N-terminal sequence analysis. The pI 5.45 species contained the expected Asn residue at position 36 of the mature protein sequence whereas the pI 5.20 species contained an Asp residue at the same position. A mutant protein in which Asn-36 was substituted for a Ser residue was isolated from E. coli and shown to be homogeneous on isoelectric focusing analysis with a pI = 5.45. 1H-n.m.r. and circular dichroism analyses of wild-type and the mutant IL-1 alpha indicated a similar conformation which was also indicated by the identical receptor binding affinities of IL-1 alpha with Asn, Asp or Ser in position 36. The mutant protein was stabilized against specific base-catalysed and temperature-induced deamidation, and may be more suitable than the wild-type position for physical and structural studies.  相似文献   

9.
2-[125I]iodo-7,8-dibromo-p-dioxin ([125I]Br2DpD) and 2-[125I]iodo-3-azido-7,8-dibromo-p-dioxin ([125I]N3Br2-DpD) are both capable of binding to the Ah receptor (AhR) with a high degree of specificity in cultured Hepa 1c1c7 cells. After incubation with either [125I]N3Br2DpD or [125I]Br2DpD Hepa 1c1c7 cytosolic and high salt nuclear extracts were analyzed by sucrose density gradient analysis with the following results: (i) With both radioligands an approximately 9 S form of the AhR was observed in cytosolic extracts. (ii) Nuclear extracts labeled with [125I]N3Br2DpD revealed both approximately 6 S and approximately 9 S forms of the AhR. (iii) In contrast, analysis of nuclear extracts labeled with [125I]Br2DpD revealed only an approximately 6 S form of the AhR. The approximately 9 S [125I]N3Br2DpD-labeled AhR was preferentially extracted with 100 mM KCl from a nuclear fraction and mixed with monoclonal antibody 8D3, an anti-90-kDa heat shock protein antibody. Monoclonal antibody 8D3 was able to bind to the approximately 9 S nuclear form of the AhR and caused the receptor to sediment as a heavier complex on sucrose density gradients. This would indicate that the AhR can reside in the nucleus bound to 90-kDa heat shock protein. The [125I]N3Br2DpD-labeled approximately 6 S peak fractions were collected and subjected to denaturing two-dimensional gel electrophoresis. A comparison of [125I]N3Br2DpD-labeled cytosolic (9 S) AhR preparations with the nuclear (6 S) AhR by 2-D gel electrophoresis was performed. The cytosolic form of the AhR was present in the apparent pI range of 5.2-5.7; the nuclear form focused between 5.5 and 6.2. The [125I]N3Br2DpD-labeled nuclear extracts were incubated with ATP-agarose and 43% of the photoaffinity-labeled AhR bound to the affinity gel. In contrast, approximately threefold lower binding of [125I]N3Br2DpD-labeled receptor was obtained when GTP-, AMP-, or ADP-agarose was used. Only 2% of the [125I]N3Br2DpD-labeled cytosolic AhR was able to bind to ATP-agarose. These results suggest that after the AhR translocates into the nucleus the following biochemical changes occur: (i) The sedimentation value for the AhR changes from an approximately 9 S to an approximately 6 S species. (ii) The AhR attains the ability to bind with specificity to ATP. (iii) The AhR undergoes a shift to a more basic pI.  相似文献   

10.
The glucocorticoid receptor from rat liver cytosol prepared in 2 ml buffer/g tissue sedimented at approximately 10 S in low salt density gradient centrifugation without molybdate. When the receptor was heated at 25 degrees C, both approximately 10 S and approximately 7 S forms were seen in low salt gradient. The approximately 10 S form was not capable of binding to DNA-cellulose and was stabilized by sodium molybdate, namely it corresponded to untransformed receptor. The approximately 7 S form was capable of binding to DNA-cellulose and regarded as transformed receptor. On the other hand, partially-purified transformed receptor labeled with [3H]dexamethasone-21-mesylate sedimented at approximately 5 S, which migrated as a approximately 94 kDa species in SDS-polyacrylamide gel electrophoresis. The reconstitution analysis of this partially-purified approximately 5 S receptor and liver cytosol, showed the shift to approximately 7 S form. RNase A or T1 converted approximately 7 S transformed form into approximately 5 S but it did not affect approximately 10 S untransformed form. 5-20 mM sodium molybdate also shifted approximately 7 S to approximately 5 S. These results indicate that the approximately 7 S transformed form of the glucocorticoid receptor observed in low salt conditions might be an oligomer, probably including both approximately 5 S steroid-binding component and RNA/ribonucleoprotein, and that molybdate dissociates these interactions in a specific manner.  相似文献   

11.
In the absence of hormonal ligand, inactive, heterooligomeric, 8-10S steroid receptor complexes include a p59 protein (apparent M(r) approximately 59 kDa) bound to th heat shock protein hsp90 (apparent M(r) approximately 90 kDa), which itself binds to the ligand binding domain LBD of the receptor molecule, p59 is thus an hsp binding immunophilin HBI, which, through its interaction with a chaperone, may intervene in several cellular functions. We report that, in cell-free experiments at 0 degrees C, FK506 and rapamycin do not release p59 nor hsp90 from the 9.5S rabbit uterus progesterone receptor, suggesting that the binding of p59 to hsp90 does not interfere with the rotamase site of HBI. There is no "transformation/activation" of the receptor, but an up to 2 fold increase in progesterone agonist and antagonist binding to the receptor is observed. It is suggested that a functional interaction between HBI and receptor activity may be mediated by hsp90.  相似文献   

12.
The synthetic progestin 16α-ethyl-21-hydroxy-19-norpregn-4-ene-3,20-dione (Org 2058) was used to characterize the progesterone receptor in the uterine cytosol of the rabbit. [3H] Org 2058 binds to a homogeneous population of protin binding sites with an apparent association equilibrium constant of 7.7· 108 M−1 at 0°C. The concentration of protein-bound steroid at saturation is 2.3 pmol per mg of cytosol protein. [3H] Progesterone binds to the same set of binding sites but exhibits a 4–5 fold lower apparent association constant. The difference in affinity is mainly due to a 13-fold slower rate of dissociation of the synthetic progestin compared with progesterone. Org 2058 competes very efficiently for the binding of [3H] progesterone to the uterine cytosol, and progesterone also competes, although less efficiently, for the binding of [3H]-Org 2058. There is a good correlation between the progestational activity of various steroids and their ability to compete with [3H] Org 2058 binding to the cytosol. At 0°C, there is no metabolic transformation of either Org 2058 or progesterone in the uterine cytosol.When filled with the steroid, the progesterone receptor is stable, but in the absence of the steroid the receptor binding sites are thermolabile and show a rapid decay at 20°C . Org 2058 is more effective than progesterone in protecting the receptor against thermal inactivation. The rate constant of association and dissociation of [3H] Org 2058 and the cytosol receptor are strongly dependent on temperature and the activation energy of the dissociation reaction is 17.8 kcal/mol. The equilibrium association constant is less dependent on temperature and exhibits ΔH° of −4.7 kcal/mol. The binding reaction shows a positive entropy change of 23 cal · K−1 · mol−1.At low ionic strength the complex of Org 2058 and the progesterone receptor tends ot aggregate. It sediments as a broad peak on sucrose gradients (4–6 S), and is excluded from columns of Sephadex G-100 and G-200. At concentrations of NaCl above 0.15 M, the receptor sediments in sucrose gradients as an homogeneous peak at 3.6 S, but upon gel filtration it aggregates and a complex elution pattern is observed, that prevents a precise estimation of the molecular weight.  相似文献   

13.
LMW kininogen was isolated from whole human plasma by gel filtration on Sephadex G-200 (Kav 0.34) followed by DEAE-chromatography according to earlier established methods. Further purification was performed with specific Sepharose-antibody columns to remove protein contaminants, avoiding procedures which may denature kininogen. The microheterogeneity was investigated by isoelectric focusing in column in the pH-gradients 3.5-10, 4-6 and 3.5-5. Kininogen components were determined by single radial immunodiffusion against monospecific anti-human kininogen serum, in comparison with focusing of whole plasma. 40% of isolated as well as whole plasma kininogen focused at pI 4.5; the respective focusing ranges were pI 4.4-4.7 (60--80%) and pI 4.3-4.6 (92%). The results were verified by crossed immunoelectrophoresis. The pI 4.5 component is apparently the main native form of human kininogen as shown by focusing of whole human blood bank plasma. Earlier described difficulty of separating kininogen and alpha2HS-glycoprotein was verified by crossed immunoelectrophoresis which showed approximately seven kininogen components after focusing in polyacrylamide gel electrophoresis at pI 4.5-5.0 and four alpha 2HS components at pI 4.2-4.6.  相似文献   

14.
15.
A protein kinase activity was copurified with the chick oviduct progesterone receptor. The enzyme is magnesium dependent and can use the B subunit of progesterone receptor or histones as substrates. The physiochemical parameters of the kinase were determined [pI approximately 5.3; Stokes radius approximately 7.2 nm; sedimentation coefficient (S 20,w) approximately 5.6] and compared to those of the purified B subunit. The results were consistent with the presence of an unique enzyme distinct from the receptor itself. The physiological significance of receptor phosphorylation was investigated in oviduct cells grown in primary culture. Cells were labeled with [32P]orthophosphate in presence or absence of progesterone and the receptor components were immunoprecipitated with a specific polyclonal antibody. Although progesterone treatment lead to the attachment of most of the receptor (approximately 80%) to nuclear structures, the 32P-labeled B subunit was only recovered in the cytosol fraction. Different procedures to extract the nuclear receptor did not allow detection of any 32P-labeled form in the nuclear-soluble fractions, suggesting that the B subunit was not further phosphorylated upon the exposure of cells to progesterone.  相似文献   

16.
A sialoglycoprotein was isolated by affinity chromatography on immobilized transcortin from plasma membranes of human decidual endometrium cells, whose components were labeled with 125I and solubilized with sodium cholate. The apparent molecular mass of the monomer is 20.0 +/- 1.5 kDa, pI is at pH 3.3. The sialoglycoprotein specifically binds transcortin complexed to progesterone with Kd approximately 10(-10) M.  相似文献   

17.
K B Horwitz  W L McGuire 《Steroids》1975,25(4):497-505
We have identified a specific progesterone receptor in 11 of 33 human breast cancer cytosols. Since progesterone itself binds to glucocorticoid receptor, to corticosteroid binding globulin (CBG), and to nonspecific components as well as to its own receptor, we have used a synthetic progestin, R5020 (17,21-dimethyl-19-nor-4,9-pregnadiene-3,20-dione), whose binding specificity is restricted to progesterone receptor. Bound R5020 sediments at 8 S in sucrose gradients; binding is competed by excess unlabeled R5020 or progesterone. The receptor is distinct from glucocorticoid receptor and CBG as determined by competition studies using dexamethasone and hydrocortisone. The dissociation constant for R5020 obtained by Scatchard analysis of dextran-coated charcoal assays is approximately 2 times 10- minus 9 M.  相似文献   

18.
A magnesium-dependent protein kinase activity was copurified with both the molybdate-stabilized 8S form of the chick oviduct progesterone receptor (PR) and its B subunit. In each case, purification was performed by hormonal affinity chromatography followed by ion-exchange chromatography. The Km(app) values of the phosphorylation reaction for [gamma-32P]ATP and calf thymus histones were approximately 1.3 X 10(-5) M and approximately 1.6 X 10(-5) M, respectively, and only phosphorylated serine residues were found in protein substrates, including PR B subunit. Physicochemical parameters of the enzyme [pI approximately 5.3, Stokes radius approximately 7.2 nm, sedimentation coefficient (S20,w) approximately 5.6 S, and Mr approximately 200,000] were compared to those of purified forms of PR (B subunit, pI approximately 5.3, Stokes radius approximately 6.1 nm, and Mr approximately 110,000; 8S form, Stokes radius approximately 7.7 nm and Mr approximately 240,000). The results suggest that most of the protein kinase activity copurified with both oligomeric and monomeric forms of PR belongs to an enzyme distinct from currently known receptor components. Its physiological significance remains unknown.  相似文献   

19.
RNA-core (RNAase-resistant fraction of yeast RNA) induced streptolysin S (SLS) was purified (40% recovery) to apparent electrophoretic homogeneity by hydroxylapatite chromatography followed by gel filtration on Sephadex G-100 in the presence of 6 M-guanidine. HCl. The specific activity of the purified toxin was 3 X 10(6) haemolytic units (mg protein)-1. The Mr of the toxin was below 4000 on the basis of SDS-PAGE and 20 000 by gel filtration in guanidine. HCl. High-voltage isoelectric focusing of the purified toxin allowed the isolation of the carrier-free SLS peptide for the first time. This peptide was basic (pI 9.2) as compared to native SLS (pI 3.6). The native toxin and the peptide had similar haemolytic properties except for the high lability of the peptide, which was stabilized by RNA-core. The Mr of the denatured peptide was about 1800, as estimated by gel filtration.  相似文献   

20.
It has recently been reported (Horwitz, K. B., Zava, D. T., Thilagar, A. K., Jensen, E. M., and McGuire, W. L. (1978) Cancer Res. 38, 2434-2437) than the human breast cancer-derived cell line MCF-7 from EG&G Mason Research Institute contains no 8 S and very little 4 S cytoplasmic estrogen receptor. Even so, we have found significant levels of cytoplasmic estrogen receptor in MCF-7 cells from this source. The receptor was found at a maximum level of 132 fmol/mg of cytoplasmic protein, and had an apparent dissociation constant at 30 degrees C of 7.3 X 10(-10) M and at 4 degrees C of 1.2 X 10(-10) M. In sucrose gradients without KCl, the receptor migrated at 6-7 S, and with 0.4 M KCl, at 3-4 S. The receptor was specific for estrogen, in that a 100-fold excess of diethylstilbestrol eliminated binding of radiolabeled estrogen, whereas hydrocortisone, aldosterone, progesterone, and testosterone had no effect. It was further demonstrated that at least part of the reason for the discrepancy between our data and those of Horwitz et al. is that the high insulin level (10 microgram/ml) used by Horwitz et al. dramatically lowers the assayable level of receptor. These results may have important implications for steroid receptor assays in other cell lines in tissue culture and in human breast cancer patients as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号