首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of NO3? reduction between roots and shoots was studied in hydro-ponically-grown peach-tree seedlings (Prunus persica L.) during recovery from N starvation. Uptake, translocation and reduction of NO3?, together with transport through xylem and phloem of the newly reduced N were estimated, using 15N labellings, in intact plants supplied for 90 h with 0.5 mM NH4+ and 0.5, 1.5 or 10 mM NO3?. Xylem transport of NO3? was further investigated by xylem sap analysis in a similar experiment. The roots were the main site of NO3? reduction at all 3 levels of NO3? nutrition. However, the contribution of the shoots to the whole plant NO3? reduction increased with increasing external NO3? availability. This contribution was estimated to be 20, 23 and 42% of the total assimilation at 0.5, 1.5 and 10 mM NO3?, respectively. Both 15N results and xylem sap analysis confirmed that this trend was due to an enhancement of NO3? translocation from roots to shoots. It is proposed that the lack of NO3? export to the shoots at low NO3? uptake rate resulted from a competition between NO3? reduction in the root epidermis/cortex and NO3? diffusion to the stele. On the other hand, net xylem transport of newly reduced N was very efficient since ca 70% of the amino acids synthesized in the roots were translocated to the shoots, regardless of the level of NO3? nutrition. This net xylem transport by far exceeded the net downward phloem transport of the reduced N assimilated in shoots. As a consequence, the reduced N resulting from NO3? assimilation, principally occurring in the roots, was mainly incorporated in the shoots.  相似文献   

2.
Three years old seedlings of Douglas fir (Pseudotsuga menziesii) were exposed lo filtered air, O3 (day and night concentrations of 78 and 30 μgm?3: respectively). NH3 (54 μg m?3) and to a mixture of NH3+O3 (day and night concentrations of 49 + 83 and 49 + 44 μg m?3 respectively), for 5 months in fumigation chambers. Both gas exchange and chlorophyll fluorescence were measured on shoots which had sprouted at the beginning of the exposure period. After 4. 8, 10 and 20 weeks of exposure, light response curves of electron transport rate (J) were determined, in which J was deduced from chlorophyll fluorescence. Net CO2 assimiialion was measured at maximum light intensity of 560) μmol m?2 S?1 (Pn.560). After 8 and 10 weeks of exposure also light response curves of CO2 assimilation were assessed. Shoots exposed to O3 showed a reduction in net CO2 assimilation as compared to the control shoots during the entire exposure period. The reduction was related lo a lower chlorophyll content and a lower electron transport rate, whereas no effect on quantum yield efficiency (qy) was observed. In contrast, shoots exposed to NH3 showed a positive effect on photosynthesis. Shoots exposed to NH3. + O3 showed a rapid increase in Pn.560, in the period between 4 and 8 weeks to a level equal of that of the NH3-treatment. After this period a decline in Pn.560 was observed. After 10 weeks of exposure shoots exposed to O3 showed an increased transpiration rate in the dark as compared to the control shoots. In addition, water use efficiency (WUE) declined as a result of an increase in leaf conductance. Both observations indicate that the stomatal apparatus was affected by O3. A high transpiration rate in the dark was also found for shoots esposed to NHX. However, shoots exposed to NH3+ O3 showed neither an effect on WUE, nor an effect on transpiration rate in the dark. The possibility that NH3 delayed the O3 induced effects on photosynthesis and stomatal conductance is discussed.  相似文献   

3.
Our previous work indicated that salinity caused a shift in the predominant site of nitrate reduction and assimilation from the shoot to the root in tomato plants. In the present work we tested whether an enhanced supply of dissolved inorganic carbon (DIC, CO2+ HCO3) to the root solution could increase anaplerotic provision of carbon compounds for the increased nitrogen assimilation in the root of salinity-stressed Lycopersicon esculentum (L.) Mill. cv. F144. The seedlings were grown in hydroponic culture with 0 or 100mM NaCl and aeration of the root solution with either ambient or CO2-enriched air (5000 μmol mol?1). The salinity-treated plants accumulated more dry weight and higher total N when the roots were supplied with CO2-enriched aeration than when aerated with ambient air. Plants grown with salinity and enriched DIC also had higher rates of NO?3 uptake and translocated more NO?3 and reduced N in the xylem sap than did equivalent plants grown with ambient DIC. Incorporation of DIC was measured by supplying a 1 -h pulse of H14CO?3 to the roots followed by extraction with 80% ethanol. Enriched DIC increased root incorporation of DIC 10-fold in both salinized and non-salinized plants. In salinity-stressed plants, the products of dissolved inorganic 14C were preferentially diverted into amino acid synthesis to a greater extent than in non-salinized plants in which label was accumulated in organic acids. It was concluded that enriched DIC can increase the supply of N and anaplerotic carbon for amino acid synthesis in roots of salinized plants. Thus enriched DIC could relieve the limitation of carbon supply for ammonium assimilation and thus ameliorate the influence of salinity on NO?3 uptake and assimilation as well as on plant growth.  相似文献   

4.
High-light effects on CO2 fixation gradients across leaves   总被引:2,自引:1,他引:1  
Chlorophyll fluorescence and internal patterns of 14CO2 fixation were measured in sun and shade leaves of spinach after treatment with various light intensities. When sun leaves were irradiated with 2000μmol m?2 s?1 for 2h, FV/FM decreased by about 15%, but 14CO2 fixation was unaffected, whereas shade leaves exhibited a 21% decrease in Fv/FM and a 25% decrease in 14CO2 fixation. Irradiation of sun and shade leaves with 4000μmol m?1 for 4 h decreased FV/FM by 30% in sun leaves and 40% in shade leaves, while total 14CO2 fixation decreased by 41% in sun leaves and 55% in shade leaves. After light treatment, gradients of CO2 fixation across leaves were determined by measuring 14CO2 fixed in paradermal leaf sections after a 10s pulse of 14CO2. Gradients of 14CO2 fixation in control sun and shade leaves were identified when expressed on a relative basis and normalized for leaf depth. Treatment of leaves with 2000 μmol PAR m?2 s?1 for 2h did not after patterns of carbon fixation across sun leaves, but slightly altered the pattern in shade leaves. In contrast, treatment of sun and shade leaves with 4000μmol m?2 s?1 for 4h decreased carbon fixation more in the palisade mesophyll cells than in the spongy mesophyll cells of sun and shade leaves, and fixation in medial tissue of shade leaves was dramatically decreased compared to the adaxial and abaxial tissue. The interaction between leaf anatomy and biochemical parameters involved in tolerance to photoinhibition in spinach is discussed.  相似文献   

5.
Kinetic parameters for NH4+ and NO3? uptake were measured in intact roots of Lolium perenne and actively N2-fixing Trifolium repens. Simultaneously, net H+ fluxes between the roots and the root medium were recorded, as were the net photosynthetic rate and transpiration of the leaves. A Michaelis–Menten-type high-affinity system operated in the concentration range up to about 500 mmol m?3 NO3? or NH4+. In L. perenne, the Vmax of this system was 9–11 and 13–14 μmol g?1 root FW h?1 for NO3? and NH4+, respectively. The corresponding values in T. repens were 5–7 and 2 μmol g?1 root FW h?1. The Km for NH4+ uptake was much lower in L. perenne than in T. repens (c. 40 compared with 170 mmol m?3), while Km values for NO3? absorption were roughly similar (around 130 mmol m?3) in the two species. There were no indications of a significant efflux component in the net uptake of the two ions. The translocation rate to the shoots of nitrogen derived from absorbed NO3?-N was higher in T. repens than in L. perenne, while the opposite was the case for nitrogen absorbed as NH4+. Trifolium repens had higher rates of transpiration and net photosynthesis than L. perenne. Measurements of net H+ fluxes between roots and nutrient solution showed that L. perenne absorbing NO3? had a net uptake of H+, while L. perenne with access to NH4+ and T. repens, with access to NO3? or NH4+, in all cases acidified the nutrient solution. Within the individual combinations of plant species and inorganic N form, the net H+ fluxes varied only a little with external N concentration and, hence, with the absorption rate of inorganic N. Based on assessment of the net H+ fluxes in T. repens, nitrogen absorption rate via N2 fixation was similar to that of inorganic N and was not down-regulated by exposure to inorganic N for 2 h. It is concluded that L. perenne will have a competitive advantage over T. repens with respect to inorganic N acquisition.  相似文献   

6.
Abstract. Environment and plant measurements were made to determine what factors may limit growth of deepwater and floating rice plants during partial or complete submergence. Field surveys included measurements of temperature, pH, light, O2 and CO2 in floodwater in Thailand. In addition, measurements were made of O2 and CO2 concentrations inside internodal lacunae of deepwater and floating rice growing at 0.5–2.0 m water depths. The bulk of measurements were taken during periods when the changes in water level were less than 50 mm d?1. In the 0–0.02 m surface layer of floodwater at any location there were large changes in oxygen concentrations over diurnal cycles: there were decreases during the night down to 0.02–0.18 mol m?3 O2 at 0600 h and increases during the day to 0.13–0.28 mol m?3 O2 at 1500 h (0.28 mol m?3 being 120% of the O2 concentration of air saturated water at 30°C). During the day oxygen concentrations decreased with increasing water depth; concentrations just above the soil surface were occasionally zero. Most of this gradient disappeared during the night, and at dawn the 0.6 m surface layer of water had uniform low O2 concentrations. O2 concentrations were also measured during flash floods in Thailand. In contrast to the conditions with only small increases in water level, the O2 concentrations in the water during flash floods were more uniform with depth and changed little over a diurnal cycle, the O2 ranging between 0.14–0.19 mol m?3. In most locations floodwater contained 0.2–1.9 mol m?3 CO2 and 0.7–1.6 mol m?3 bicarbonate; however, in a location with acid sulphate soil CO2 was only 0.05–0.2 mol m?3, and bicarbonate concentrations were several fold lower. Concentrations of CO2 in floodwater increased with increasing water depth. O2 and CO2 concentrations inside internodal lacunae of rice were determined in the field when water depth were 1–2 m. Concentrations of O2 in internodes at the water surface were 16–20%, and decreased to 10% and 5% at 0.8 and 1.8 m water depth respectively. There was no diurnal cycle in O2 concentrations inside internodes. In contrast, CO2 concentrations in the lacunae increased with water depth and ranged from 1–3% in internodes at the water surface to 5–10% in internodes at 1.8 m water depth. There was evidence for a diurnal cycle in CO2 concentrations in the basal internode near the soil surface, CO2 increased during the day and decreased during the night. The above data are used to show that there is little or no relationship between gas concentrations in floodwater and internodal lacunae of rice plants. Results are discussed in relation to O2 supply to submerged portions of rice and metabolism of these tissues at low O2 concentrations.  相似文献   

7.
In the atmosphere, ammonia (NH3) is the third most abundant N species which, due to various natural and anthropogenic sources, can locally reach high concentrations. The acquisition of atmospheric NH3 by plant shoots will lead to two opposing effects on acid-base balance. Absorption and dissolution of NH3 will cause an alkalinisation, while the assimilation of NH3 results in an acidification. Different rates of these processes would lead to an acid-base imbalance with consequences for the ionic balance of the plant. As there is only a limited capacity for biochemical disposal of excess H+ in shoots, pH regulation may involve a pattern of (in)organic ion flow between shoots and roots followed by H+/OH? extrusion into the media via roots. The acquisition of NH3 as additional N source should lead to a reduction in the ratio of mol H+/OH? gained per mol N assimilated. We have recently investigated the NH3 acquisition by Lolium perenne L. cv. Centurion and studied the effects of gas phase NH3 on growth, acid-base balance and water-use efficiency. The experiments, therefore, included the application of a range of 14NH3 to the shoots and of 15N as NO3?, NH4+ or NH4NO3 to the roots. After a summary of the main conclusions from those experiments, we discuss the implications of the use of atmospheric NH3 for the mineral composition of the plants. Over the range of NH3 supplied, plants from all treatments could utilize gas-phase NH3. Plants receiving NO3? via their roots had a higher capacity to use gaseous NH3 than those growing with NH4+. NH3 assimilation in shoots reduced both the acid load with NH4+ nutrition and the alkaline load with NO3? supply to the roots. The most significant effect of fumigation on the ion balance was an increase in K+ within all treatments, and this effect was highest in the NH4+-fed plants. The results of the experiments support predictions of a combination of neutralizing biochemical reactions as well as transport of organic anion salts between shoots and roots as possible acid-base regulation mechanisms of the whole plant.  相似文献   

8.
The culture vessels with multiplying shoots of Achras zapota L. on Schenk and Hildebrandt (SH) medium containing 8.88 M 6-benzylaminopurine (BAP) with or without sucrose were kept under varied CO2 concentrations ranging from 0.6 to 40.0 g m–3 using different concentrations of sodium bicarbonate (NaHCO3), sodium carbonate (Na2CO3), potassium bicarbonate (KHCO3), and potassium carbonate (K2CO3) in small acrylic chambers. Complete absence of carbon source caused death of shoots within 20 d. Under elevated concentrations of CO2 (10.0 and 40.0 g m–3) the shoots grew photoautotrophically on sucrose-free medium. The growth of cultures was better at 40.0 g (CO2) m–3 than on 3.0 % sucrose under ambient air of growth room. However, the best response was obtained at 10.0 g (CO2) m–3 and 3.0 % sucrose where maximum number of shoots, shoot length, fresh and dry mass, total number of leaves and leaf area was observed.  相似文献   

9.
Right-side-out plasma membrane vesicles were isolated from wheat roots using an aqueous polymer two-phase system. The purity and orientation of the vesicles were confirmed by marker enzyme analysis. Membrane potential (Ψ)-dependent 22Na+ influx and sodium/proton (Na+/ H+) antiport-mediated efflux across the plasma membrane were studied using these vesicles. Membrane potentials were imposed on the vesicles using either K+ gradients in the presence of valinomycin or H+ gradients. The ΔΨ was quantified by the uptake of the lipophilic cation tetraphenylphosphonium. Uptake of Na+ into the vesicles was stimulated by a negative ΔΨ and had a Km for extrav-esicular Na+ of 34.8 ± 5.9 mol m3. The ΔΨ-dependent uptake of Na+ was similar in vesicles from roots of hexaploid (cv. Troy) and tetraploid (cv. Langdon) wheat differing in a K+/Na+ discrimination trait, and was also unaffected by growth in 50 mol m?3 NaCl. Inhibition of ΔΨ-dependent Na+ uptake by Ca2+ was greater in the hexaploid than in the tetraploid. Sodium/proton antiport was measured as Na+-dependent, amiloride-inhibited pH gradient formation in the vesicles. Acidification of the vesicle interior was measured by the uptake of 14C-methylamine. The Na+/H+ antiport had a Km, for intravesicular Na+ of between 13 and 19 mol m?3. In the hexaploid, Na+/H+ antiport activity was greater when roots were grown in the presence of 50 mol m?3NaCl, and was also greater than the activity in salt-grown tetraploid wheat roots. Antiport activity was not increased in a Langdon 4D chromosome substitution line which carries a trait for K+/Na+ discrimination. It is concluded that neither of the transport processes measured is responsible for the Na+/K+ discrimination trait located on the 4D chromosome of wheat.  相似文献   

10.
In order to identify physiological components that contribute to salinity tolerance, we compared the effects of Na+, Mg2+ and K+ salts (NaCl, Na2SO4, MgCl2, MgSO4, KCl and K2SO4), Ca2+ (CaSO4), mannitol and melibiose on the wild type and the single-gene NaCl-tolerant mutants stl1 and stl2 of Ceratopteris richardii. Compared with gametophytic growth of the wild type, stl2 showed a low level of tolerance that was restricted to Na+ salts and osmotic stress. stl2 exhibited high tolerance to both Na+ and Mg2+ salts, as well as to osmotic stress. In response to short-term exposure (3 d) to NaCl, accumulation of K+ and Na+ was similar in the wild type and stl1. In contrast, stl2 accumulated higher levels of K+ and lower levels of Na+. Ca2+ supplementation (1.0 mol m?3) ameliorated growth inhibition by Na+ and Mg2+ stress in wild type and stll, but not in stl2. In addition, under Na+ stress (175 mol m?3) wild-type, stll and stl2 gametopbytes maintained higher tissue levels of K+ and lower levels of Na+ when supplemented with Ca2+ (1.0 mol m?3). stl2 gametophytes were extremely sensitive to K+ supplementation. Growth of stl2 was greater than or equal to that of the wild type at trace concentrations of K+ but decreased substantially with increasing K+ concentration. Supplementation with K+ from 0 to 1.85 mol m?3 alleviated some of the inhibition by 75 mol m?3 NaCl in the wild type and in stl1. In stl2, growth at 75 mol m?3 NaCl was similar at 0 and 1.85 mol m?3 K+ supplementation. Although K+ supplementation above 1.85 mol m?3 did not alleviate inhibition of growth by Na+ in any genotype, stl2 maintained greater relative tolerance to NaCl at all K+ concentrations tested.  相似文献   

11.
We assessed the effects of doubling atmospheric CO2 concentration, [CO2], on C and N allocation within pedunculate oak plants (Quercus robur L.) grown in containers under optimal water supply. A short-term dual 13CO2 and 15NO3? labelling experiment was carried out when the plants had formed their third growing flush. The 22-week exposure to 700 μl l?1 [CO2] stimulated plant growth and biomass accumulation (+53% as compared with the 350 μl l?1 [CO2] treatment) but decreased the root/shoot biomass ratio (-23%) and specific leaf area (-18%). Moreover, there was an increase in net CO2 assimilation rate (+37% on a leaf dry weight basis; +71% on a leaf area basis), and a decrease in both above- and below-ground CO2 respiration rates (-32 and -26%, respectively, on a dry mass basis) under elevated [CO2]. 13C acquisition, expressed on a plant mass basis or on a plant leaf area basis, was also markedly stimulated under elevated [CO2] both after the 12-h 13CO2 pulse phase and after the 60-h chase phase. Plant N content was increased under elevated CO2 (+36%), but not enough to compensate for the increase in plant C content (+53%). Thus, the plant C/N ratio was increased (+13%) and plant N concentration was decreased (-11%). There was no effect of elevated [CO2] on fine root-specific 15N uptake (amount of recently assimilated 15N per unit fine root dry mass), suggesting that modifications of plant N pools were merely linked to root size and not to root function. N concentration was decreased in the leaves of the first and second growing flushes and in the coarse roots, whereas it was unaffected by [CO2] in the stem and in the actively growing organs (fine roots and leaves of the third growth flush). Furthermore, leaf N content per unit area was unaffected by [CO2]. These results are consistent with the short-term optimization of N distribution within the plants with respect to growth and photosynthesis. Such an optimization might be achieved at the expense of the N pools in storage compartments (coarse roots, leaves of the first and second growth flushes). After the 60-h 13C chase phase, leaves of the first and second growth flushes were almost completely depleted in recent 13C under ambient [CO2], whereas these leaves retained important amounts of recently assimilated 13C (carbohydrate reserves?) under elevated [CO2].  相似文献   

12.
Abstract Lolium perenne L. cv. S23 was grown in flowing culture solution, pH 5, in which the concentrations of NH4+, NO3? and K+ were frequently monitored and adjusted to set values. In a pre-experimental period, plants were acclimatized to a regime in which roots were treated at 5°C with shoots at 25°C. The root temperature was then changed to one of the following, 3, 7, 9, 11, 13, 17 or 25°C, while air temperature remained at 25°C. When root temperature was increased from 5X, the relative growth rate of roots increased immediately while that of shoots changed much less for a period of approximately 9 d (phase 1). Thus, the root: shoot ratio increased, but eventually approached a new, temperature-dependent, steady value (phase 2). The fresh: freeze-dried weight ratio (i.e. water content) in shoots (and roots) increased during the first phase of morphological adjustment (phase 1). In both growth phases and at all temperatures, plants absorbed more NH4+ than NO4+, the tendency being extreme at temperatures below 9° where more than 85% of the N absorbed was NH4+. Plants at different root temperatures, growing at markedly different rates, had very similar concentrations of total N in their tissues (cells) on a fresh weight basis, despite the fact that they derived their N with differing preference for NH4+. Specific absorption rates for NH4+, NOx?, K+ and H2PO4? showed very marked dependence on root temperature in phase 1, but ceased to show this dependence once a steady state root: shoot ratio had been established in phase 2. The results indicate the importance of relative root size in determining ion fluxes at the root surface. At higher temperatures where the root system was relatively large, ‘demand’ per unit root was low, whereas at low temperatures roots were small relative to shoots and ‘demand’ was high enough to offset the inhibitory effects of low temperature on transport processes.  相似文献   

13.
The above-ground parts of two years old seedlings of Douglas fir (Pseudotsuga menziesii) were exposed to filtered air, NH3, NO2+, SO2 (66, 96 and 95 μg m?3, respectively), to a mixture of NO2+NH3 (55 + 82 μg m?3) or SO2+NO2 (128 + 129 μg m?3), for 8 months in fumigation chambers. Both chlorophyll fluorescence and gas exchange measurements were carried out on shoots which had sprouted at the beginning of the exposure period. The chlorophyll fluorescence measurements were performed after 3 and 5 months of exposure (average shoot age 70 and 140 days, respectively). Light response curves of electron transport rate (J) were determined, in which J was deduced from chlorophyll fluorescence. In addition, light response curves of net CO2 assimilation were determined after 5 months of exposure. After 3 months of exposure (average shoot age 70 days) all exposure treatments showed a lower maximum electron transport rate (Jmax) as compared to the control shoots (filtered air). A large reduction (45%) was observed for shoots exposed to SO2+NO2. During the exposure period between 3 and 5 months (average shoot age 70 and 140 days, respectively) a decrease of Jmax was observed for all treatments. Jmax had further declined some time after termination of the exposure, when average shoot age was 310 days. Shoots exposed to SO2 and SO2+NO2 also showed a reduction in maximum net CO2 assimilation (Pmax) as compared to the control shoots. However, shoots exposed to NO2 showed no reduction and even a higher Pmax was observed for shoots exposed to NH3 or NO2+NH3. Needles of these treatments also showed a higher chlorophyll content which might explain the contradictory results obtained for these treatments: the increased amount of photosynthetic units counteracts the reduction in Jmax and consequently no reduction in Pmax is measured. Shoots exposed to SO2 and SO2+NO2 also showed a reduction in maximum stomatal conductance (gs). However, the stomatal opening was larger than could be expected on basis of their (maximum) CO2 assimilation rate. Consequently, water use efficiency of these shoots was lower than that of the control shoots. Also shoots exposed to NO2 had a lower water use efficiency due to a significantly higher maximum gs. Shoots exposed to NH3 showed a high transpiration rate in the dark, indicating imperfect stomatal closure.  相似文献   

14.
In isolated Elodea densa leaves, the relationships between H+ extrusion (-ΔH+), K+ fluxes and membrane potential (Em) were investigated for two different conditions of activation of the ATP-dependent H+ pump. The ‘basal condition’ (darkness, no pump activator present) was characterized by low values of-ΔH+ and K+ uptake (ΔK+), wide variability of the ?ΔH+/ΔK+ ratio, relatively low membrane polarization and Em values more positive than EK for external K+ concentrations (|K+]o of up to 2mol m?3. A net K+ uptake was seen already at [K+]o below 1 mol m?3, suggesting that K+ influx in this condition was a thermodynamically uphill process involving an active mechanism. When the H+ pump was stimulated by fusicoccin (FC), by cytosol acidification, or by light (the ‘high polarization condition’), K+ influx largely dominated K+ and C? efflux, and the ?ΔH+/ΔK+ ratio approached unity. In the range 50 mmol m?3?5 mol m?3 [K+]0, Em was consistently more negative than EK. The curve of K+ influx at [K+]0 ranging from 50 to 5000mmol m?3 fitted a monophasic, hyperbolic curve, with an apparent half saturation value = 0–2 mol m?3. Increasing |K+]0 progressively depolarized Em, counteracting the strong hyperpolarizing effect of FC. The effects of K+ in depolarizing Em were well correlated with the effects on both K+ influx and ?ΔH+, suggesting a cause-effect chain: K+0 influx → depolarization → activation of H+ extrusion. Cs+ competitively inhibited K+ influx much more strongly in the ‘high polarization’ than in the ‘basal’ condition (50% inhibition at [Cs+]/[K+]0 ratios of 1:14 and 1:2, respectively) thus confirming the involvement of different K+ uptake systems in the two conditions. These results suggest that in E. densa leaves two distinct modes of interactions rule the relationships between H+ pump, membrane polarization and K+ transport. At low membrane polarization, corresponding to a low state of activation of the PM H+-ATPase and to Em values more positive than EK, K+ influx would mainly  相似文献   

15.
Abstract. Wild radish plants deprived of, and continuously supplied with solution NO?3 for 7 d following 3 weeks growth at high NO?3 supply were compared in terms of changes in dry weight, leaf area, photosynthesis and the partitioning of carbon and nitrogen (NH2-N and NO?3-N) among individual organs. Initial levels of NO?3-N accounted for 25% of total plant N. Following termination of NO?3 supply, whole plant dry weight growth was not significantly reduced for 3 d, during which time plant NH2-N concentration declined by about 25% relative to NO?3-supplied plants, and endogenous NO?3-N content was reduced to nearly zero. Older leaves lost NO?3 and NH2-N, and roots and young leaves gained NH2-N in response to N stress. Relative growth rate declined due both to decreased net assimilation rate and a decrease in leaf area ratio. A rapid increase in specific leaf weight was indicative of a greater sensitivity to N stress of leaf expansion compared to carbon gain. In response to N stress, photosynthesis per unit leaf area was more severely inhibited in older leaves, whereas weight-based rates were equally inhibited among all leaf ages. Net photosynthesis was strongly correlated with leaf NH2-N concentration, and the relationship was not significantly different for leaves of NO3?-supplied compared to NO?3-deprived plants. Simulations of the time course of NO?3 depletion for plants of various NH2-N and NO?3 compositions and relative growth rates indicated that environmental conditions may influence the importance of NO?3 accumulation as a buffer against fluctuations in the N supply to demand ratio.  相似文献   

16.
Refixation of xylem sap CO2 in Populus deltoides   总被引:1,自引:0,他引:1  
Vascular plants have respiring tissues which are perfused by the transpiration stream, allowing solubilization of respiratory CO2 in the xylem sap. The transpiration stream could provide a conduit for the internal delivery of respiratory CO2 to leaves. Trees have large amounts of respiring tissues in the root systems and stems, and may have elevated levels of CO2 in the xylem sap which could be delivered to and refixed by the leaves. Xylem sap from the shoots of three Populus deltoides trees had mean dissolved inorganic carbon concentrations (CO2+H2CO3+HCO?3) ranging from 0. 5 to 0. 9 mM. When excised leaves were allowed to transpire 1 mM[14C]NaHCO3, 99. 6% of the label was fixed in the light. Seventy-seven percent of the label was fixed in major veins and the remainder was fixed in the minor veins. Autoradiography confirmed that label was confined to the vasculature. In the dark, approximately 80% of the transpired label escaped the leaf, the remainder was fixed in the major veins, slightly elevating dark respiration measurements. This indicates that the vascular tissue in P. deltoides leaves is supplied with a carbon source distinct from the atmospheric source fixed by interveinal lamina. However, the contribution of CO2 delivered to the leaves in the transpiration stream and fixed in the veins was only 0. 5% of atmospheric CO2 uptake. In the light 90% of the label was found in sugar, starch and protein, a pattern similar to that found for atmospheric uptake of[14C]CO2. Compared with leaves labelled in the light, leaves labelled in the dark had more label in organic acid, amino acid and protein and less label in sugar and starch. After a 5-s pulse the majority of the label fed to petioles in both the light and the dark was found in malate. The majority of the label was found in malate at 120 s in the dark; only 2% of the label was found in phosphorylated compounds at 120 s. The proportion of label found in phosphorylated compounds increased from 17% at 5 s to 80% at 120 s in the light. This suggests that CO2 delivered to leaves in the light via the transpiration stream is fixed in the veins, a small portion through dark fixation into malate, the remainder by C-3 photosynthesis.  相似文献   

17.
Tomato growth was examined in solution culture under constant pH and low levels of NH4+ or NO3?. There were five nitrogen treatments: 20 mmoles m?3 NH4+, 50 mmoles m?3 NO3?, 100 mmoles m?3 NH4+ 200 mmoles m?3 NO3?, and 20 mmoles m?3 NH4++ 50 mmoles m?3 NO3?. The lower concentrations (20 mmoles m?3 NH4+ and 50 mmoles m?3 NO3?) were near the apparent Km for net NH4+ and NO3? uptake; the higher concentrations (100 mmoles m?3 NH4+ and 200 mmoles m?3 NO3?) were near levels at which the net uptake of NH4+ or NO3? saturate. Although organic nitrogen contents for the higher NO3? and the NH4++ NO3? treatments were 22.2–30.3% greater than those for the lower NO3? treatment, relative growth rates were initially only 10–15% faster. After 24 d, relative growth rates were similar among those treatments. These results indicate that growth may be only slightly nitrogen limited when NH4+ or NO3? concentrations are held constant over the root surface at near the apparent Km concentration. Relative growth rates for the two NH4+ treatments were much higher than have been previously reported for tomatoes growing with NH4+ as the sole nitrogen source. Initial growth rates under NH4+ nutrition did not differ significantly (P≥ 0.05) from those under NO3? or under combined NH4++ NO3?. Growth rates slowed after 10–15 d for the NH4+ treatments, whereas they remained more constant for the NO3? and mixed NH4++ NO3? treatments over the entire observation period of 24–33 d. The decline in growth rate under NH4+ nutrition may have resulted from a reduction in Ca2+, K+, and/or Mg2+ absorption.  相似文献   

18.
Salix alba L. and Populus×euroamericana cv. Robusta cuttings were grown in 10 μM Cd(NO3)2 (direct treatment) or in Knop solution and afterwards in Cd(NO3)2 (indirect treatment). Cd impact on rooting of directly treated plants and its impact on normally formed roots and shoots of indirectly treated plants were studied. The cumulative length, number and biomass of willow roots, pigment and starch contents, leaf net photosynthetic rate and dry mass/leaf area ratio of willow leaves were positively influenced by indirect treatment. However, indirectly treated poplars were more sensitive to Cd than directly treated ones. Indirect treatment lowered root Cd uptake in willow, Cd accumulation in cuttings of both species and Cd accumulation in poplar shoots. Cd-caused structural changes were similar in both species and in both treatments. Root apices, rhizodermis and cortex were the most seriously damaged root parts. In directly treated willow, the structure of central cylinder (0.5 – 1 cm from apex) remained unchanged in contrast to indirectly treated plants. Formation of cambium close to the apex indicated shortening of root elongation zone of indirectly treated plants. Directly Cd-treated poplar roots exhibited unusual defence activity of root apical meristem and accumulation of darkly stained material around central cylinder. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Water deficit is a very serious constraint on N2 fixation rates and grain yield of soybean (Glycine max Merr.). Ureides are transported from the nodules and they accumulate in the leaves during soil drying. This accumulation appears responsible for a feedback mechanism on nitrogen fixation, and it is hypothesized to result from a decreased ureide degradation in the leaf. One enzyme involved in the ureide degradation, allantoate amidohydrolase, is manganese (Mn) dependent. As Mn deficiency can occur in soils where soybean is grown, this deficiency may aggravate soybean sensitivity to water deficit. In situ ureide breakdown was measured by incubating soybean leaves in a 5 mol m ? 3 allantoic acid solution for 9 h before sampling leaf discs in which remnant ureide was measured over time. In situ ureide breakdown was dramatically decreased in leaves from plants grown without Mn. At the plant level, allantoic acid application in the nutrient solution of hydroponically grown soybean resulted in a higher accumulation of ureide in leaves and lower acetylene reduction activity (ARA) by plants grown with 0 mol m ? 3 Mn than those grown with 6·6 mol m ? 3 Mn. Those plants grown with 6·6 mol m ? 3 Mn in comparison with those grown with 52·8 mol m ? 3 Mn had, in turn, higher accumulated ureide and lower ARA. To determine if Mn level also influenced N2 fixation sensitivity to water deficit, a dry‐down experiment was carried out by slowly dehydrating plants that were grown in soil under four different Mn nutritions. Plants receiving no Mn had the lowest leaf Mn concentration, 11·9 mg kg ? 1, and had N2 fixation more sensitive to water deficit than plants treated with Mn in which leaf Mn concentration was in the range of 21–33 mg kg ? 1. The highest Mn treatments increased leaf Mn concentration to 37·5 mg kg ? 1 and above but did not delay the decline of ARA with soil drying, although these plants showed a significant increase in ARA under well‐watered conditions.  相似文献   

20.
Arid ecosystems, which occupy about 35% of the Earth's terrestrial surface area, are believed to be among the most responsive to elevated [CO2]. Net ecosystem CO2 exchange (NEE) was measured in the eighth year of CO2 enrichment at the Nevada Desert Free‐Air CO2 Enrichment (FACE) Facility between the months of December 2003–December 2004. On most dates mean daily NEE (24 h) (μmol CO2 m?2 s?1) of ecosystems exposed to elevated atmospheric CO2 were similar to those maintained at current ambient CO2 levels. However, on sampling dates following rains, mean daily NEEs of ecosystems exposed to elevated [CO2] averaged 23 to 56% lower than mean daily NEEs of ecosystems maintained at ambient [CO2]. Mean daily NEE varied seasonally across both CO2 treatments, increasing from about 0.1 μmol CO2 m?2 s?1 in December to a maximum of 0.5–0.6 μmol CO2 m?2 s?1 in early spring. Maximum NEE in ecosystems exposed to elevated CO2 occurred 1 month earlier than it did in ecosystems exposed to ambient CO2, with declines in both treatments to lowest seasonal levels by early October (0.09±0.03 μmol CO2 m?2 s?1), but then increasing to near peak levels in late October (0.36±0.08 μmol CO2 m?2 s?1), November (0.28±0.03 μmol CO2 m?2 s?1), and December (0.54±0.06 μmol CO2 m?2 s?1). Seasonal patterns of mean daily NEE primarily resulted from larger seasonal fluctuations in rates of daytime net ecosystem CO2 uptake which were closely tied to plant community phenology and precipitation. Photosynthesis in the autotrophic crust community (lichens, mosses, and free‐living cyanobacteria) following rains were probably responsible for the high NEEs observed in January, February, and late October 2004 when vascular plant photosynthesis was low. Both CO2 treatments were net CO2 sinks in 2004, but exposure to elevated CO2 reduced CO2 sink strength by 30% (positive net ecosystem productivity=127±17 g C m?2 yr?1 ambient CO2 and 90±11 g C m?2 yr?1 elevated CO2, P=0.011). This level of net C uptake rivals or exceeds levels observed in some forested and grassland ecosystems. Thus, the decrease in C sequestration seen in our study under elevated CO2– along with the extensive coverage of arid and semi‐arid ecosystems globally – points to a significant drop in global C sequestration potential in the next several decades because of responses of heretofore overlooked dryland ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号