共查询到20条相似文献,搜索用时 64 毫秒
1.
The 14-3-3 proteins are a family of highly conserved proteins found in all eukaryotes - from the yeasts to mammals. They regulate several cellular processes recognizing unique conservative, mostly phosphorylated motif of partner proteins. Binding of the 14-3-3 proteins regulates their partners through a variety of mechanisms, such as altering their catalytic activity, subcellular localization, stability or altering their interactions with other protein molecules. The native 14-3-3 proteins are present in form of homo- and hetero-dimers. The most structurally variable N-and C-termini are responsible for isoform specific protein-protein interactions, and cellular localization. In plant cell, 14-3-3 proteins appear to play an important role in regulation of key enzymes of carbon and nitrogen metabolism, modulation ion pumps and channels. They are also involved in signal transduction pathways and even in gene expression. 相似文献
2.
3.
4.
Jiaqi Liu Shengliang Cao Guofei Ding Bin Wang Yingchao Li Yuzhong Zhao Qingyuan Shao Jian Feng Sidang Liu Liting Qin Yihong Xiao 《Journal of cellular and molecular medicine》2021,25(9):4173-4182
14-3-3 proteins are highly conserved in species ranging from yeast to mammals and regulate numerous signalling pathways via direct interactions with proteins carrying phosphorylated 14-3-3–binding motifs. Recent studies have shown that 14-3-3 proteins can also play a role in viral infections. This review summarizes the biological functions of 14-3-3 proteins in protein trafficking, cell-cycle control, apoptosis, autophagy and other cell signal transduction pathways, as well as the associated mechanisms. Recent findings regarding the role of 14-3-3 proteins in viral infection and innate immunity are also reviewed. 相似文献
5.
14-3-3 proteins and plant development 总被引:5,自引:0,他引:5
Fulgosi H Soll J de Faria Maraschin S Korthout HA Wang M Testerink C 《Plant molecular biology》2002,50(6):1019-1029
6.
14-3-3 proteins in plant brassinosteroid signaling 总被引:1,自引:0,他引:1
de Vries SC 《Developmental cell》2007,13(2):162-164
7.
van Hemert MJ Steensma HY van Heusden GP 《BioEssays : news and reviews in molecular, cellular and developmental biology》2001,23(10):936-946
The 14-3-3 proteins constitute a family of conserved proteins present in all eukaryotic organisms so far investigated. These proteins have attracted interest because they are involved in important cellular processes such as signal transduction, cell-cycle control, apoptosis, stress response and malignant transformation and because at least 100 different binding partners for the 14-3-3 proteins have been reported. Although the exact function of 14-3-3 proteins is still unknown, they are known to (1) act as adaptor molecules stimulating protein-protein interactions, (2) regulate the subcellular localisation of proteins and (3) activate or inhibit enzymes. In this review, we discuss the role of the 14-3-3 proteins in three cellular processes: cell cycle control, signal transduction and apoptosis. These processes are regulated by the 14-3-3 proteins at multiple steps. The 14-3-3 proteins have an overall inhibitory effect on cell cycle progression and apoptosis, whereas in signal transduction they may act as stimulatory or inhibitory factors. This article contains supplementary material which may be viewed at the BioEssays website at http://www.interscience.wiley.com/jpages/0265-9247/Suppmat/23/v23_10.936. 相似文献
8.
14-3-3 Proteins regulate many cellular processes by binding to phosphorylated proteins. Previous findings suggest a connection between three 14-3-3 isoforms and plant nutrient signaling. To better understand how these 14-3-3s regulate metabolism in response to changes in plant nutrient status, putative new targets involved in nitrogen (N) and sulfur (S) metabolisms have been identified. The interactions between these 14-3-3s and multiple proteins involved in N and S metabolism and altered activity of the target proteins were confirmed in planta. Using a combination of methods, this work elucidates how 14-3-3s function as modulators of plant N and S metabolic pathways. 相似文献
9.
Milne FC Moorhead G Pozuelo Rubio M Wong B Kulma A Harthill JE Villadsen D Cotelle V MacKintosh C 《Biochemical Society transactions》2002,30(4):379-381
Many proteins that bind to a 14-3-3 column in competition with a 14-3-3-binding phosphopeptide have been purified from plant and mammalian cells and tissues. New 14-3-3 targets include enzymes of biosynthetic metabolism, vesicle trafficking, cell signalling and chromatin function. These findings indicate central regulatory roles for 14-3-3s in partitioning carbon among the pathways of sugar, amino acid, nucleotide and protein biosynthesis in plants. Our results also suggest that the current perception that 14-3-3s bind predominantly to signalling proteins in mammalian cells is incorrect, and has probably arisen because of the intensity of research on mammalian signalling and for technical reasons. 相似文献
10.
11.
Xanthurenic acid is an endogenous molecule leading to caspase-9 and -3 activation. Here we report that xanthurenic acid targets signalling proteins 14-3-3 into lysosomes leading to interruption protein/protein interaction. Xanthurenic acid changed the localisation of 14-3-3 in the cells. At a concentration of 10 and 20 microM the 14-3-3 was translocated into lysosomes. At these concentrations Bad and cofilin were dephosphorylated. Translocation of dephosphorylated Bad into mitochondria and cytochrome c release were observed. Cofilin dephosphorylation in the presence of xanthurenic acid was associated with lack of the apoptotic actin cytoskeleton disintegration. In conclusion xanthurenic acid accumulation in cells abolished the regulatory function of the proteins 14-3-3 in the cell physiology and caused misfolding of the proteins leading to cell pathology. 相似文献
12.
About thirty years after the initial identification of 14-3-3 proteins in mammalian brain, they are now thought to be ubiquitous
among eukaryotes. We identified five cDNAs encoding 14-3-3 proteins of Nicotiana tabacum L. using a polymerase chain reaction (PCR)-based screening strategy. A phylogenetic analysis was carried out with 14-3-3
amino-acid sequences from twelve plant species. The results showed that 14-3-3 proteins of plants can be divided into at least
five different subgroups. Four of these subgroups resulted from early gene duplication events that happened prior to the speciation
of most of the plant species considered. Interestingly, 14-3-3 epsilon isoforms from mammals and insects form one subgroup
together with epsilon-like isoforms from plants. The 14-3-3 genes known from monocots descend from the same ancestor, forming
the fifth subgroup.
Received: 30 June 1997 / Accepted: 29 August 1997 相似文献
13.
Evolution and isoform specificity of plant 14-3-3 proteins 总被引:1,自引:0,他引:1
Sehnke PC Rosenquist M Alsterfjord M DeLille J Sommarin M Larsson C Ferl RJ 《Plant molecular biology》2002,50(6):1011-1018
The 14-3-3 proteins, once thought of as obscure mammalian brain proteins, are fast becoming recognized as major regulators of plant primary metabolism and of other cellular processes. Their presence as large gene families in plants underscores their essential role in plant physiology. We have examined the Arabidopsis thaliana 14-3-3 gene family, which currently is the largest and most complete 14-3-3 family with at least 12 expressed members and 15 genes from the now completed Arabidopsis thaliana genome project. The phylogenetic branching of this family serves as the prototypical model for comparison with other large plant 14-3-3 families and as such may serve to rationalize clustering in a biological context. Equally important for ascribing common functions for the various 14-3-3 isoforms is determining an isoform-specific correlation with localization and target partnering. A summary of localization information available in the literature is presented. In an effort to identify specific 14-3-3 isoform location and participation in cellular processes, we have produced a panel of isoform-specific antibodies to Arabidopsis thaliana 14-3-3s and present initial immunolocalization studies that suggest biologically relevant, discriminative partnering of 14-3-3 isoforms. 相似文献
14.
15.
Weifeng Xu Liguo Jia Weiming Shi Jiansheng Liang Jianhua Zhang 《Plant signaling & behavior》2012,7(8):1047-1048
Higher plants adapt to phosphorus deficiency through a complex of biological processes. Among of them, two adaptive processes are very important for the response of higher plants to phosphorus deficiency. One is the enhancement of root growth by regulating carbohydrate metabolism and allocation, and the other is rhizosphere acidification to acquire phosphorus efficiently from soil. TFT6 and TFT7, two different members of tomato 14-3-3 gene family, play the distinct roles in the adaption of plants to phosphorus deficiency by taking part in the two processes respectively. TFT6 which acts mainly in leaves is involved in the systemic response to phosphorus deficiency by regulating leaf carbon allocation and increasing phloem sucrose transport to promote root growth, while TFT7 directly functions in root by activating root plasma membrane H+-ATPase to release more protons under phosphorus deficiency. Based on these results, we propose that 14-3-3 proteins play the smart role in response to phosphorus deficiency in higher plants. 相似文献
16.
14-3-3蛋白研究进展 总被引:8,自引:1,他引:7
14-3-3蛋白是高度保守的、所有真核生物细胞中都普遍存在的、在大多数生物物种中由一个基因家族编码的一类蛋白调控家族。它几乎参与生命体所有的生理反应过程,人们在各种组织细胞中发现了各种不同的14-3-3蛋白。作为与磷酸丝氨酸/苏氨酸结合的第一信号分子,14-3-3蛋白在细胞的信号转导中起着至关重要的作用,尤其是它直接参与调节蛋白激酶和蛋白磷酸化酶的活性,被称为蛋白质与蛋白质相互作用的”桥梁蛋白”;它可以与转录因子结合形成复合体,调节相关基因的表达。一些研究表明,14-3-3蛋白调控机制的紊乱可以直接导致疾病的发生,在临床上14-3-3蛋白常常可以作为诊断的标志物。 相似文献
17.
Phosphorylation-dependent interactions between enzymes of plant metabolism and 14-3-3 proteins 总被引:20,自引:4,他引:16
Greg Moorhead Pauline Douglas Valérie Cotelle Jean Harthill Nick Morrice Sarah Meek Uta Deiting Mark Stitt Marie Scarabel Alastair Aitken Carol MacKintosh 《The Plant journal : for cell and molecular biology》1999,18(1):1-12
Far-Western overlays of soluble extracts of cauliflower revealed many proteins that bound to digoxygenin (DIG)-labelled 14-3-3 proteins. Binding to DIG-14-3-3s was prevented by prior dephosphorylation of the extract proteins or by competition with 14-3-3-binding phosphopeptides, indicating that the 14-3-3 proteins bind to phosphorylated sites. The proteins that bound to the DIG-14-3-3s were also immunoprecipitated from extracts with anti-14-3-3 antibodies, demonstrating that they were bound to endogenous plant 14-3-3 proteins. 14-3-3-binding proteins were purified from cauliflower extracts, in sufficient quantity for amino acid sequence analysis, by affinity chromatography on immobilised 14-3-3 proteins and specific elution with a 14-3-3-binding phosphopeptide. Purified 14-3-3-binding proteins included sucrose–phosphate synthase, trehalose-6-phosphate synthase, glutamine synthetases, a protein (LIM17) that has been implicated in early floral development, an approximately 20 kDa protein whose mRNA is induced by NaCl, and a calcium-dependent protein kinase that was capable of phosphorylating and rendering nitrate reductase (NR) sensitive to inhibition by 14-3-3 proteins. In contrast to the phosphorylated NR-14-3-3 complex which is activated by dissociation with 14-3-3-binding phosphopeptides, the total sugar–phosphate synthase activity in plant extracts was inhibited by up to 40% by a 14-3-3-binding phosphopeptide and the phosphopeptide-inhibited activity was reactivated by adding excess 14-3-3 proteins. Thus, 14-3-3 proteins are implicated in regulating several aspects of primary N and C metabolism. The procedures described here will be valuable for determining how the phosphorylation and 14-3-3-binding status of defined target proteins change in response to extracellular stimuli. 相似文献
18.
Among the first reported functions of 14-3-3 proteins was the regulation of tyrosine hydroxylase (TH) activity suggesting a possible involvement of 14-3-3 proteins in Parkinson's disease. Since then the relevance of 14-3-3 proteins in the pathogenesis of chronic as well as acute neurodegenerative diseases, including Alzheimer's disease, polyglutamine diseases, amyotrophic lateral sclerosis and stroke has been recognized. The reported function of 14-3-3 proteins in this context are as diverse as the mechanism involved in neurodegeneration, reaching from basal cellular processes like apoptosis, over involvement in features common to many neurodegenerative diseases, like protein stabilization and aggregation, to very specific processes responsible for the selective vulnerability of cellular populations in single neurodegenerative diseases.Here, we review what is currently known of the function of 14-3-3 proteins in nervous tissue focussing on the properties of 14-3-3 proteins important in neurodegenerative disease pathogenesis. 相似文献
19.
Angrand PO Segura I Völkel P Ghidelli S Terry R Brajenovic M Vintersten K Klein R Superti-Furga G Drewes G Kuster B Bouwmeester T Acker-Palmer A 《Molecular & cellular proteomics : MCP》2006,5(12):2211-2227
Identification of protein-protein interactions is crucial for unraveling cellular processes and biochemical mechanisms of signal transduction. Here we describe, for the first time, the application of the tandem affinity purification (TAP) and LC-MS method to the characterization of protein complexes from transgenic mice. The TAP strategy developed in transgenic mice allows the emplacement of complexes in their physiological environment in contact with proteins that might only be specifically expressed in certain tissues while simultaneously ensuring the right stoichiometry of the TAP protein versus their binding partners and represents a novelty in proteomics approaches used so far. Mouse lines expressing TAP-tagged 14-3-3zeta protein were generated, and protein interactions were determined. 14-3-3 proteins are general regulators of cell signaling and represent up to 1% of the total brain protein. This study allowed the identification of almost 40 novel 14-3-3zeta-binding proteins. Biochemical and functional characterization of some of these interactions revealed new mechanisms of action of 14-3-3zeta in several signaling pathways, such as glutamate receptor signaling via binding to homer homolog 3 (Homer 3) and in cytoskeletal rearrangements and spine morphogenesis by binding and regulating the activity of the signaling complex formed by G protein-coupled receptor kinase-interactor 1 (GIT1) and p21-activated kinase-interacting exchange factor beta (betaPIX). 相似文献
20.