首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetic and pharmacological properties of low voltage-activated (LVA) Ca2+ channels were studied in neurons of the laterodorsal (LD) thalamic nucleus in brain slices from 12-day-old rats. A homogeneous population of LVA Ca2+ channels was found in the tested neurons. LVA Ca2+ current evoked by a step depolarization from a holding potential more negative than −70 mV was found to be sensitive to nifedipine (K d=2.6 (M). This current gained its maximum at −55 mV and demonstrated fast monoexponential decay with the time constant of 32.3±4.0 msec (n=15). Lanthanum (1 μM) effectively blocked LVA Ca2+ current, while nickel (25 μM) did not affect this current. It is concluded that the channels that, according to their pharmacological properties, provide the studied LVA Ca2+ current cannot be regarded as T-type Ca2+ channels and belong to some other type of LVA Ca2+ channels.  相似文献   

2.
The participation of intrinsic inhibitory networks in providing the velocity selectivity of neurons of the superior colliculus (SC) of the Syrian hamster was tested using iontophoretic application of bicuculline methiodide, a GABAA receptor competitive antagonist. The impulse activity of 22 low pass-tuned (LP) cells was recorded extracellularly. Following application of bicuculline, 10 cells exhibited an increase in the velocity selectivity, while the other 12 units showed decreases in their tuning. We assume that SC intrinsic inhibitory networks contributing to the velocity tuning of neurons of this structure are driven in a dissimilar way by afferent volleys arriving from the retina through “fast” Y and “slow” W channels. Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 385–387, July–October, 2007.  相似文献   

3.
Despite the progress in studies of the properties and functions of low-threshold calcium channels (LTCCs) [1], the mechanisms of their selectivity and permeability remain unstudied in detail. We performed a comparative analysis of the selectivity of three cloned pore-forming LTCC subunits (α1G, α1H, and α1I) functionally expressed in Xenopus oocytes with respect to bivalent alkaline-earth metal cations (Ba2+, Ca2+, and Sr2+. The relative conductivities (G) of these channels were determined according to the amplitudes of macroscopic currents (I) and potentials of zero currents (E). The currents were recorded after preliminary intracellular injection of a fast calcium buffer, BAPTA, in order to suppress the endogenous calcium-dependent chloride conductivity. Channels formed by α1G subunits demonstrated the following ratios of the amplitudes of macroscopic currents and potentials of zero current: I Ca:I Ba:I Sr = 1.00:0.75:1.12 and E CaE BaE Sr. For channels that were formed by α1H and α1I subunits, these ratios were as follows: I Ca:I Ba:I Sr = 1.00:1.20:1.17, E CaE BaE Sr and I Ca:I Ba:I Sr = 1.00:1.48: 1.45, E CaE BaE Sr respectively. The different macroscopic conductivities and similar potentials of zero current typical of α1G and α1I channels indicate that, probably, various bivalent cations can in a differential manner influence the stochastic parameters of functioning of these channels. At the same time, channels formed by α1H subunits are characterized by more positive potentials of zero current for Ca2+. It seems possible that the selectivity of the above channels is determined by mechanisms that mediate the selectivity of most high-threshold calcium channels (more affine binding of Ca2+ inside the pore). Neirofiziologiya/Neurophysiology, Vol. 37, No. 4, pp. 319–329, July–August, 2005.  相似文献   

4.
The binding and unbinding constants describing interaction of ω-CTx-GVIA with N-type Ca2+ channels were calculated based on the time course of the blocking action of the toxin. The experiments were carried out on pyramidal neurons freshly dissociated from theCA3 region of the rat hippocampus using a “concentration-clamp” technique and a patch-clamp technique in the whole-cell configuration. The bindingk 1 and unbindingk −1 constants were evaluated as 0.32 (μM·sec)−1 and 0.004 sec−1, respectively. The dissociation constantK D kinetically derived from the ratiok −1/k 1 was 0.012 μM. These values allow us to interpret the apparent “irreversibility” of the toxin action.  相似文献   

5.
Low voltage-activated, rapidly inactivating T-type Ca2+ channels are found in a variety of cells, where they regulate electrical activity and Ca2+ entry. In whole-cell patch-clamp recordings from mouse spermatogenic cells, trace element copper (Cu2+) inhibited T-type Ca2+ current (I T-Ca) with IC50 of 12.06 μM. Inhibition of I T-Ca by Cu2+ was concentration-dependent and mildly voltage-dependent. When voltage stepped to −20 mV, Cu2+ (10 μM) inhibited I T-Ca by 49.6 ± 4.1%. Inhibition of I T-Ca by Cu2+ was accompanied by a shift of −2.23 mV in the voltage dependence of steady-state inactivation. Cu2+ upshifted the current–voltage (I-V) curve. To know the change of the gating kinetics of T-type Ca2+ channels, we analyzed the effect of Cu2+ on activation, inactivation, deactivation and reactivation of T-type Ca2+ channels. Since T-type Ca2+ channels are a key component in capacitation and the acrosome reaction, our data suggest that Cu2+ can affect male reproductive function through T-type Ca2+ channels as a preconception contraceptive material.  相似文献   

6.
Using nystatin-perforated whole-cell recording configuration, the modulatory effect of N-methyl-D-aspartate (NMDA) on γ-aminobutyric acid (GABA)-activated whole-cell currents was investigated in neurons freshly dissociated from the rat sacral dorsal commissural nucleus (SDCN). The results showed that: (i) NMDA suppressed GABA-and muscimol (Mus)-activated currents (Igaba and IMus), respectively in the Mg2+-free external solution containing 1 μmol/L glycine at a holding potential (V H ) of −40 mV in SDCN neurons. The selective NMDA receptor antagonist, D-2-amino-5-phosphonovaleric acid (APV, 100 γmol/L), inhibited the NMDA-evoked currents and blocked the NMDA-induced suppression of Igaba; (ii) when the neurons were incubated in a Ca2+-free bath or pre-loaded with a membrane-permeable Ca2+ chelator, BAPTA AM (10 μmol/L), the inhibitory effect of NMDA on IGAba disappeared. Cd2+ (10 μmol/L) or La3+ (30 μmol/L), the non-selective blockers of voltage-dependent calcium channels, did not affect the suppression of Igaba by NMDA application; (iii) the suppression of IGAba by NMDA was inhibited by KN-62, a calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitor. These results indicated that the inhibition of GABA response by NMDA is Ca2+-dependent and CaMKII is involved in the process of the Ca2+-dependent inhibition.  相似文献   

7.
Neuronal ion channels of different types often do not function independently but will inhibit or potentiate the activity of other types of channels, a process called cross-talk. The N-methyl-D-aspartate receptor (NMDA receptor) and the γ-aminobutyric acid type A receptor (GABAA receptor) are important excitatory and inhibitory receptors in the central nervous system, respectively. Currently, cross-talk between the NMDA receptor and the GABAA receptor, particularly in the central auditory system, is not well understood. In the present study, we investigated functional interactions between the NMDA receptor and the GABAA receptor using whole-cell patch-clamp techniques in cultured neurons from the inferior colliculus, which is an important nucleus in the central auditory system. We found that the currents induced by aspartate at 100 μmol L−1 were suppressed by the pre-perfusion of GABA at 100 μmol L−1, indicating cross-inhibition of NMDA receptors by activation of GABAA receptors. Moreover, we found that the currents induced by GABA at 100 μmol L−1 (I GABA) were not suppressed by the pre-perfusion of 100 μmol L−1 aspartate, but those induced by GABA at 3 μmol L−1 were suppressed, indicating concentration-dependent cross-inhibition of GABAA receptors by activation of NMDA receptors. In addition, inhibition of IGABA by aspartate was not affected by blockade of voltage-dependent Ca2+ channels with CdCl2 in a solution that contained Ca2+, however, CdCl2 effectively attenuated the inhibition of I GABA by aspartate when it was perfused in a solution that contained Ba2+ instead of Ca2+ or a solution that contained Ca2+ and 10 mmol L−1 BAPTA, a membrane-permeable Ca2+ chelator, suggesting that this inhibition is mediated by Ca2+ influx through NMDA receptors, rather than voltage-dependent Ca2+ channels. Finally, KN-62, a potent inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaMKII), reduced the inhibition of I GABA by aspartate, indicating the involvement of CaMKII in this cross-inhibition. Our study demonstrates a functional interaction between NMDA and GABAA receptors in the inferior colliculus of rats. The presence of cross-talk between these receptors suggests that the mechanisms underlying information processing in the central auditory system may be more complex than previously believed.  相似文献   

8.
Using the voltage-clamp technique, we investigated transmembrane ion currents in isolated smooth muscle cells of the guinea pigtaenia coli. In our study, we identified and studied a charibdotoxin-sensitive component of Ca2+-dependent K+ current carried through the channels of high conductance (in most publications called “big conductance,”I BK(Ca)). This component was completely blocked by 100 nM charibdotoxin and by tetraethylammonium in concentrations as low as 1 mM.I BK(Ca) demonstrated fast kinetics of inactivation, which nearly coincided with that of Ca2+ current. In addition to the dependence on Ca2+ concentration, this current also showed voltage-dependent properties: with a rise in the level of depolarization its amplitude increased. In many cells, depolarizing shifts in the membrane potential evoke spontaneous outward currents. Such currents probably represent the secondary effect of cyclic Ca2+ release from the caffeine-sensitive intracellular stores that result in short-term activation of charibdotoxin-sensitive Ca2+-dependent K+ channels.  相似文献   

9.
To explore non-synaptic mechanisms in paroxysmal discharges, we used a computer model of a simplified hippocampal pyramidal cell, surrounded by interstitial space and a “glial-endothelial” buffer system. Ion channels for Na+, K+, Ca2+ and Cl , ion antiport 3Na/Ca, and “active” ion pumps were represented in the neuron membrane. The glia had “leak” conductances and an ion pump. Fluxes, concentration changes and cell swelling were computed. The neuron was stimulated by injecting current. Afterdischarge (AD) followed stimulation if depolarization due to rising interstitial K+ concentration ([K+]o) activated persistent Na+ current (I Na,P). AD was either simple or self-regenerating; either regular (tonic) or burst-type (clonic); and always self-limiting. Self-regenerating AD required sufficient I Na,P to ensure re-excitation. Burst firing depended on activation of dendritic Ca2+ currents and Ca-dependent K+ current. Varying glial buffer function influenced [K+]o accumulation and afterdischarge duration. Variations in Na+ and K+ currents influenced the threshold and the duration of AD. The data show that high [K+]o and intrinsic membrane currents can produce the feedback of self-regenerating afterdischarges without synaptic input. The simulated discharge resembles neuron behavior during paroxysmal firing in living brain tissue. Action Editor: David Terman  相似文献   

10.
Removal of extracellular divalent cations activated a Cl channel in the plasma membrane of Xenopus laevis oocytes. This so-called Ca2+-inactivated Cl channel (CaIC) was present in every oocyte and was investigated using two-electrode whole-cell voltage clamp and single-channel patch-clamp techniques. Beside other Cl channel inhibitors, anthracene-9-carboxylic acid (9-AC) and 3′azido-3′deoxythymidine (AZT), a nucleoside analogue commonly used as an antiviral drug, blocked at least partly the CalC-mediated currents. Using the Cl-sensitive dye 6-methoxy-N-(sulfopropyl)quinolinium (SPQ) we could visualize the transport of Cl from the oocyte cytoplasm to the surrounding medium after activation of the CaIC by Ca2+ removal. In the absence of external Cl and Ca2+, the emission intensity of SPQ declined continuously, indicating a quenching of fluorescence by the efflux of Cl in the millimolar range. In the presence of external Ca2+, no emission changes could be observed during the same time period. Chelating external Ca2+ in absence of Cl immediately activated Ca2+-inactivated Cl channels leading to subsequent emission decrease of SPQ. Investigations on the selectivity of the CaIC revealed only poor discrimination between different anions. With single-channel measurements, we found an anion selectivity sequence I > Br > Cl≫ gluconate as it is also typical for maxi Cl channels. Contrary to the majority of all other transport systems of the Xenopus oocyte, which show reduced activity due to membrane depolarization or endocytotic removal of the transport protein from the plasma membrane during oocyte maturation, the CaIC remained active in maturated oocytes. Single-channel measurements on maturated oocytes, also known as eggs, showed the presence of Ca2+-inactivated Cl channels. However, this egg CaIC revealed an altered sensitivity to external Ca2+ concentrations. All these data confirm and extend our previous observations on the CaIC and give clear evidence that this channel is peculiar among all Cl channels described up to now. Received: 16 May 1996/Revised: 4 September 1996  相似文献   

11.
Inorganic ions have been used widely to investigate biophysical properties of high voltage-activated calcium channels (HVA: Cav1 and Cav2 families). In contrast, such information regarding low voltage-activated calcium channels (LVA: Cav3 family) is less documented. We have studied the blocking effect of Cd2+, Co2+ and Ni2+ on T-currents expressed by human Cav3 channels: Cav3.1, Cav3.2, and Cav3.3. With the use of the whole-cell configuration of the patch-clamp technique, we have recorded Ca2+ (2 mM) currents from HEK−293 cells stably expressing recombinant T-type channels. Cd2+ and Co2+ block was 2- to 3-fold more potent for Cav3.2 channels (EC50 = 65 and 122 μM, respectively) than for the other two LVA channel family members. Current-voltage relationships indicate that Co2+ and Ni2+ shift the voltage dependence of Cav3.1 and Cav3.3 channels activation to more positive potentials. Interestingly, block of those two Cav3 channels by Co2+ and Ni2+ was drastically increased at extreme negative voltages; in contrast, block due to Cd2+ was significantly decreased. This unblocking effect was slightly voltage-dependent. Tail-current analysis reveals a differential effect of Cd2+ on Cav3.3 channels, which can not close while the pore is occupied with this metal cation. The results suggest that metal cations affect differentially T-type channel activity by a mechanism involving the ionic radii of inorganic ions and structural characteristics of the channels pore.  相似文献   

12.
This combined study of patch-clamp and intracellular Ca2+ ([Ca2+] i ) measurement was undertaken in order to identify signaling pathways that lead to activation of Ca2+-dependent Cl channels in cultured rat retinal pigment epithelial (RPE) cells. Intracellular application of InsP3 (10 μm) led to an increase in [Ca2+] i and activation of Cl currents. In contrast, intracellular application of Ca2+ (10 μm) only induced transient activation of Cl currents. After full activation by InsP3, currents were insensitive to removal of extracellular Ca2+ and to the blocker of I CRAC, La3+ (10 μm), despite the fact that both maneuvers led to a decline in [Ca2+] i . The InsP3-induced rise in Cl conductance could be prevented either by thapsigargin-induced (1 μm) depletion of intracellular Ca2+ stores or by removal of Ca2+ prior to the experiment. The effect of InsP3 could be mimicked by intracellular application of the Ca2+-chelator BAPTA (10 mm). Block of PKC (chelerythrine, 1 μm) had no effect. Inhibition of Ca2+/calmodulin kinase (KN-63, KN-92; 5 μm) reduced Cl-conductance in 50% of the cells investigated without affecting [Ca2+] i . Inhibition of protein tyrosine kinase (50 μm tyrphostin 51, 5 μm genistein, 5 μm lavendustin) reduced an increase in [Ca2+] i and Cl conductance. In summary, elevation of [Ca] i by InsP3 leads to activation of Cl channels involving cytosolic Ca2+ stores and Ca2+ influx from extracellular space. Tyrosine kinases are essential for the Ca2+-independent maintenance of this conductance. Received: 15 October 1998/Revised: 3 March 1999  相似文献   

13.
Rat forebrain- and heart-derived mRNA were used to express Ca2+ channels inXenopus oocytes to study their cAMP-dependent regulation. Forebrain and heart mRNA-directed Ca2+ channel currents (I Ba, 40 mM Ba2+ were used as a charge carrier) showed similar voltage dependence and macroscopic kinetics but different pharmacology, which allowed us to attribute them to N- and L-type, respectively. Brain mRNA-directedI Ba was insensitive to the dihydropyridine (DHP) antagonist nitrendipine and the agonist Bay K 8644, but could be inhibited by 70% by 1 μM of ω-conotoxin GVIA, whileI Ba directed by cardiac mRNA was extremely sensitive to DHP. Neither forebrain, nor heart mRNA-directedI Ba could be augmented by the external applications of the β-agonist isoproterenol (ISO, 10 μM), the adenylate cyclase (AC) activator forskolin (FSK, 10 μM), the phosphodiesterase inhibitor IBMX (200 μM), or their mixtures. “Cardiac”I Ba was also unresponsive to the external applications of a membrane-permeable cAMP analog 8-(4-chlorophenylthio)-cAMP (500 μM), as well as to the direct intracellular infusion of cAMP (300 μM). Blockade of cAMP-dependent phosphorylation pathway by intracellular perfusion of the oocytes with 200 μM Rp-cAMP plus 200 μM of a synthetic protein kinase A (PKA) inhibitor peptide also exerted no effect on the basal level ofI Ba, suggesting that the expressed Ca2+ channels are not fully phosphorylated in the resting state. Measurements of the concentration of cAMP in the control and heart mRNA-injected oocytes, using an enzyme-immunoassay system, showed that they display a similar basal cAMP concentration (2.0–2.5 μM); however, application of ISO + FSK increased the cAMP concentration 2- to 3-fold in mRNA-injected oocytes, but not in control oocytes. Thus, our data demonstrate that injection of rat cardiac mRNA intoXenopus oocytes results in the expression of receptor-stimulated AC and L-type Ca2+ channels, which do not respond to cAMP or PKA inhibitors. Unresponsiveness to cAMP-dependent regulation is not channel type-specific, since N-type Ca2+ channels expressed by means of forebrain mRNA are also insensitive to such regulation. Unresponsiveness of the channels to cAMP-mediated regulation is most probably due to lack/inaccessibility of PKA-dependent phosphorylation site(s), or loss of functional significance of phosphorylation.  相似文献   

14.
The perforated-patch technique was used to study the response of human bronchial cells to extracellular nucleotides. ATP or UTP (100 μm) elicited a complex response consisting of a large transient membrane current increase followed by a relatively small sustained level. These two phases were characterized by different current kinetics. Throughout the transient phase (2–3 min) the membrane current (I p ) displayed slow activation and deactivation kinetics at depolarizing and hyperpolarizing potentials respectively. At steady-state (I s ) the relaxation at hyperpolarizing potential disappeared whereas at positive membrane potentials the current became slightly deactivating. The I s amplitude was dependent on the extracellular Ca2+ concentration, being completely inhibited in Ca2+-free medium. Cell pre-incubation with the membrane-permeable chelating agent BAPTA/AM prevented completely the response to nucleotides, thus suggesting that both I p and I s were dependent on intracellular Ca2+. The presence of a hypertonic medium during nucleotide stimulation abolished I s leaving I p unchanged. On the contrary, niflumic acid, a blocker of Ca2+-activated Cl channels, prevented completely I p without reducing significantly I s . 1,9-dideoxyforskolin fully inhibited I s but also reduced I p . Replacement of extracellular Cl with aspartate demonstrated that the currents activated by nucleotides were Cl selective. I p resulted five times more Cl selective than I s with respect to aspartate. Taken together, our results indicate that ATP and UTP activate two types of Cl currents through a Ca2+-dependent mechanism. Received: 15 August 1996/Revised: 6 December 1996  相似文献   

15.
Properties of large conductance Ca2+-activated K+ channels were studied in the soma of motoneurones visually identified in thin slices of neonatal rat spinal cord. The channels had a conductance of 82 ± 5 pS in external Ringer solution (5.6 mm K+ o //155 mm K+ i ) and 231 ± 4 pS in external high-K o solution (155 mm K+ o //155 mm K+ i ). The channels were activated by depolarization and by an increase in internal Ca2+ concentration. Potentials of half-maximum channel activation (E50) were −13, −34, −64 and −85 mV in the presence of 10−6, 10−5, 10−4 and 10−3 m internal Ca2+, respectively. Using an internal solution containing 10−4 m Ca2+, averaged KCa currents showed fast activation within 2–3 msec after a voltage step to +50 mV. Averaged KCa currents did not inactivate during 400 msec voltage pulses. External TEA reduced the apparent single-channel amplitude with a 50% blocking concentration (IC50) of 0.17 ± 0.02 mm. KCa channels were completely suppressed by externally applied 100 mm charybdotoxin. It is concluded that KCa channels activated by Ca2+ entry during the action potential play an important role in the excitability of motoneurones. Received: 7 November 1996/Revised: 29 October 1997  相似文献   

16.
The “arginine paradox” in cardiomyocytes isolated from the left ventricle of Spraque Dawlay (SD) and spontaneously hypertensive rats (SHR) was studied. With 1 mM L-arginine in the bath, the addition of 5 mM L-arginine to incubation medium increased NO production and inhibited amplitude of L-type Ca2+ currents in SD cardiomyocytes. A variety of compounds, including the antagonist of α2-adrenoceptors yohimbine and inhibitors of PI3 kinase (wortmanine), NO synthase (7NI), and cGMP-dependent protein kinase (KT5823), dramatically weakened the inhibitory effects of 5 mM L-arginine on Ca2+ currents. The agonist of α2-adrenoceptors guanabenz acetate increased NO production and inhibited Ca2+ currents, while wortmanine, 7NI, and KT5823 antagonized guanabenz. In SHR cardiomyocytes, the “arginine paradox” was not observed: 5 mM L-arginine affected neither NO production nor Ca2+ currents. Consistently, guanabenz acetate did not alter NO production and inhibited Ca2+ currents to a much smaller extent in SHR cardiomyocytes as compared to SD cardiomyocytes. Taken together, the data of the inhibitory analysis suggest that millimolar L-arginine serves as an agonist of α2-adrenoceptors, which are coupled to PI3K-Akt pathway as well as downstream NO-cGMP pathway to control activity of L-type Ca2+ channels, thus providing new insights into the “arginine paradox” in cardiomyocytes.  相似文献   

17.
Excitatory effect of ATP on rat area postrema neurons   总被引:1,自引:0,他引:1  
ATP-induced inward currents and increases in the cytosolic Ca2+ concentration ([Ca]in) were investigated in neurons acutely dissociated from rat area postrema using whole-cell patch-clamp recordings and fura-2 microfluorometry, respectively. The ATP-induced current (I ATP) and [Ca]in increases were mimicked by 2-methylthio-ATP and ATP-γS, and were inhibited by P2X receptor (P2XR) antagonists. The current–voltage relationship of the I ATP exhibited a strong inward rectification, and the amplitude of the I ATP was concentration-dependent. The I ATP was markedly reduced in the absence of external Na+, and the addition of Ca2+ to Na+-free saline increased the I ATP. ATP did not increase [Ca]in in the absence of external Ca2+, and Ca2+ channel antagonists partially inhibited the ATP-induced [Ca]in increase, indicating that ATP increases [Ca]in by Ca2+ influx through both P2XR channels and voltage-dependent Ca2+ channels. There was a negative interaction between P2XR- and nicotinic ACh receptor (nAChR)-channels, which depended on the amplitude and direction of current flow through either channel. Current occlusion was observed at V hs between −70 and −10 mV when the I ATP and ACh-induced current (I ACh) were inward, but no occlusion was observed when these currents were outward at a V h of +40 mV. The I ATP was not inhibited by co-application of ACh when the I ACh was markedly decreased either by removal of permeant cations, by setting V h close to the equilibrium potential of I ACh, or by the addition of d-tubocurarine or serotonin. These results suggest that the inhibitory interaction is attributable to inward current flow of cations through the activated P2XR- and nAChR-channels.  相似文献   

18.
Voltage-gated Ca2+ currents in early-passage rat dental pulp cells were studied using whole-cell patch-clamp techniques. With Ba2+ as the charge carrier, two prominent inwardly-directed currents, I f and I s , were identified in these cells that could be distinguished on the basis of both kinetics and pharmacology. I f was activated by membrane depolarizations more positive than −30 mV, and displayed fast inactivation kinetics, while I s was activated by steeper depolarizations and inactivated more slowly. At peak current, time constants of inactivation for I f and I s were ∼17 vs.∼631 msec. Both I f and I s could be blocked by lanthanum. By contrast, only I s was sensitive to either Bay-K or nifedipine, a specific agonist and antagonist, respectively, of L-type Ca2+ channels. I s was also blocked by the peptide omega-Conotoxin GVIA. Taken together, results suggested that I f was mediated by divalent cation flow through voltage-gated T-type Ca2+ channels, whereas I s was mediated by L- and N-type Ca2+ channels in the pulp cell membrane. The expression of these prominent, voltage-gated Ca2+ channels in a presumptive mineral-inductive phenotype suggests a functional significance vis a vis differentiation of dental pulp cells for the expression and secretion of matrix proteins, and/or formation of reparative dentin itself. Received: 29 November 1999/Revised: 24 April 2000  相似文献   

19.
We studied the peculiarities of permeability with respect to the main extracellular cations, Na+ and Ca2+, of cloned low-threshold calcium channels (LTCCs) of three subtypes, Cav3.1 (α1G), Cav3.2 (α 1H), and Cav3.3 (α1I), functionally expressed in Xenopus oocytes. In a calcium-free solution containing 100 mM Na+ and 5 mM calcium-chelating EGTA buffer (to eliminate residual concentrations of Ca2+) we observed considerable integral currents possessing the kinetics of inactivation typical of LTCCs and characterized by reversion potentials of −10 ± 1, −12 ± 1, and −18 ± 2 mV, respectively, for Cav3.1, Cav3.2, and Cav3.3 channels. The presence of Ca2+ in the extracellular solution exerted an ambiguous effect on the examined currents. On the one hand, Ca2+ effectively blocked the current of monovalent cations through cloned LTCCs (K d = 2, 10, and 18 μM for currents through channels Cav3.1, Cav3.2, and Cav3.3, respectively). On the other hand, at the concentration of 1 to 100 mM, Ca2+ itself functioned as a carrier of the inward current. Despite the fact that the calcium current reached the level of saturation in the presence of 5 mM Ca2+ in the external solution, extracellular Na+ influenced the permeability of these channels even in the presence of 10 mM Ca2+. The Cav3.3 channels were more permeable with respect to Na+ (P Ca/P Na ∼ 21) than Cav3.1 and Cav3.2 (P Ca/P Na ∼ 66). As a whole, our data indicate that cloned LTCCs form multi-ion Ca2+-selective pores, as these ions possess a high affinity for certain binding sites. Monovalent cations present together with Ca2+ in the external solution modulate the calcium permeability of these channels. Among the above-mentioned subtypes, Cav3.3 channels show the minimum selectivity with respect to Ca2+ and are most permeable for monovalent cations. Neirofiziologiya/Neurophysiology, Vol. 38, No. 3, pp. 183–192, May–June, 2006.  相似文献   

20.
Fast inactivation of the Ca2+ release-activated Ca2+ current (I CRAC) was studied using whole cell patch-clamp recordings in rat basophilic leukemia (RBL-1) cells. Application of hyperpolarizing voltage steps from the holding potential of 0 mV revealed that I CRAC declined in amplitude over tens of milliseconds during steps more negative than −40 mV. This fast inactivation was predominantly Ca2+-dependent because first, it could be more effectively suppressed when BAPTA was included in the recording pipette instead of EGTA and second, replacing external Ca2+ with Sr2+ resulted in less inactivation. Recovery from inactivation was faster in the presence of BAPTA than EGTA. The extent of fast inactivation was independent of the whole cell I CRAC amplitude, compatible with the notion that the inactivation arose from a local feedback inhibition by permeating Ca2+ ions only on the channel it permeated. Ca2+ release from stores did not affect fast inactivation, nor did FCɛRI receptor stimulation. Current clamp recordings showed that the majority of RBL cells had a membrane potential close to −90 mV following stimulation of FCɛRI receptors. Hence fast inactivation is likely to impact on the extent of Ca2+ influx through CRAC channels under physiological conditions and appears to be an important negative feedback process that limits Ca2+ increases. Received: 28 August 1998/Revised: 30 November 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号