首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple derivative of histamine, alpha-methylhistamine i.e. 4-(2-aminopropyl)-imidazole, was shown to potently inhibit the K+-induced release of [3H] histamine from slices of rat cerebral cortex previously incubated in the presence of [3H] histidine. The maximal inhibition elicited by alpha-methylhistamine was of about 60% i.e. similar to that elicited by exogenous histamine. The effect occurred with an EC50 value of 4.3 +/- 1.1 X 10(-9) M about 10 times lower than that of histamine and was reversed by a H3-receptor antagonist. Since alpha-methylhistamine is known to display negligible potency at H1- and H2-receptors, this compound appears to be the first highly potent and selective H3-receptor agonist to be identified.  相似文献   

2.
Preincubation of eosinophils with 10(-5) M or higher concentrations of histamine inhibited the eosinophil chemotactic response to endotoxin-activated serum whether by using the nucleopore filter assay and counting the cells migrating through the filter, or by using the Zigmond-Hirsch assay and counting the cells at each 10-mum interval. When the H2-receptor sites on the eosinophils were blocked by metiamide, the inhibitory capacity of histamine was prevented. Preincubation of eosinophils with 10(-6) M histamine increased the number of responding eosinophils to endotoxin-activated serum and this enhancement was blocked by an H1-receptor antagonist. Isoproteronol and aminophylline inhibited eosinophil movement and increasing concentrations of dibutryl cyclic AMP inhibited eosinophil migration. Concentrations of histamine that consistently resulted in inhibition of eosinophil movement stimulated an increase in cyclic AMP that was prevented by blocking the H2-receptor but not the H1-receptor. Thus, histamine-dependent inhibition of the eosinophil chemotactic response to other agents is mediated through the H2-receptor and is associated with an increase in the intracellular level of cyclic AMP whereas histamine dependent enhancement of eosinophil migration to other agents appears to be mediated through the H1-receptor. Eosinophils behave as a heterogeneous population as assessed by the ability of histamine to augment or inhibit cell migration. This may reflect differences in H1 to H2 receptor density or cell responsiveness to receptor stimulation. The chemoattractant activity of histamine itself is not influenced by H1 or H2 receptor antagonists, thus it is possible that an eosinophil has a third type of histamine receptor.  相似文献   

3.
The effects of the administration into the brain ventricle of histamine, selective H1- and H2-receptor agonists and antagonists and chemically similar substances with nonspecific activity on basal and morphine-stimulated growth hormone (GH) secretion in normal male rats were studied. None of the drugs had any significant effect on baseline rat GH levels, but histamine and H1 agonists were able to decrease the rat GH release evoked by morphine. Mepyramine (H1 antagonist) had no consistent effect by itself but was effective in preventing the inhibitory action of 2-methylhistamine (H1 agonist). H2 agonists and antagonists and their chemical analogues were all inhibitory, but by a mechanism which is nonspecific and must be interpreted cautiously. These results confirm the inhibitory effect of histamine on rat GH release and indicate that H1 receptors in the CNS are responsible for this effect.  相似文献   

4.
Histamine has been shown to mediate features of pulmonary allergic reactions including increased tracheobronchial blood flow. To determine whether the increase in blood flow was due to stimulation of H1- or H2-histamine receptors, we gave histamine base (0.1 micrograms/kg iv) or histamine dihydrochloride as an aerosol (10 breaths of 0.5% "low dose" or 5% "high dose") before and after H1- or H2-receptor antagonists. Blood velocity in the common bronchial branch of the bronchoesophageal artery (Vbr) was continuously measured using a chronically implanted Doppler flow probe. Pretreatment with H2-receptor antagonists cimetidine, ranitidine, or metiamide did not affect the increase in Vbr induced by intravenous histamine [106 +/- 45% (SD)]. Addition of the H1-receptor antagonists diphenhydramine or chlorpheniramine, however, reduced the Vbr response to 16 +/- 22, 21 +/- 28, 23 +/- 23, and 37 +/- 32% of the unblocked responses (P less than 0.05) when intravenous histamine was given at 3, 10, 20, and 30 min, respectively, after the H1 antagonist. At 40, 50, and 60 min the H1-receptor blockade appeared to attenuate, but subsequent continuous infusion of chlorpheniramine (2 mg.kg-1.min-1) then blocked the histamine response for 60 min. Low-dose histamine aerosol did not change mean arterial or pulmonary arterial pressures, cardiac output, or arterial blood gases but increased Vbr transiently from 15.2 +/- 3.4 to 37.6 +/- 8.4 (SE) cm/s. After chlorpheniramine, the Vbr response to histamine, 16.3 +/- 2.2 to 22.6 +/- 3.6 cm/s, was significantly reduced (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Brain histamine participates in central regulation of the hypothalamic-pituitary-adrenal (HPA) axis. Endogenous prostaglandins modulate signal transduction of different neurotransmitters involved in activation of HPA axis. In the present experiment we investigated whether endogenous prostaglandins are involved in the stimulation of ACTH and corticosterone secretion by histaminergic systems in the rat brain. Histamine (50 microg), histamine-trifluoromethyl-toluidine derivative (HTMT, 75microg) a selective and potent H(1)-receptor agonist, and amthamine (50 microg) a H(2)-receptor agonist given intracerebroventricularly (i.c.v.) to non-anesthetized rats considerably increased ACTH and corticosterone secretion 1h after administration. A non-selective cyclooxygenase inhibitor indomethacin (2 mg/kg i.p. or 10 microg i.c.v.), piroxicam (0.02 and 0.2 microg i.c.v.) a more potent antagonist of constitutive cyclooxygenase (COX-1) and compound NS-398 (0.1 and 1.0 microg i.c.v.), a selective inhibitor of inducible cyclooxygenase (COX-2) were given 15 min before histamine and histamine receptor agonists. One hour after the last injection trunk blood from decapitated rats was collected for hormones determination. The histamine-induced ACTH and corticosterone secretion was significantly diminished by piroxicam and was not markedly altered by indomethacin and compound NS-398. The HTMT-elicited increase in ACTH and corticosterone secretion was significantly prevented by indomethacin and was not affected by piroxicam or compound NS-398. The amthamine-evoked increase in ACTH and corticosterone secretion was not markedly influenced by any cyclooxygenase blocker applied in the present experiment. These results indicate that the histamine H(1)-receptor transmitted central stimulation of the HPA axis is considerably mediated by prostaglandins generated by consititutive cyclooxygenase, whereas stimulation transmitted via H(2)-receptor does not significantly depend on endogenous prostaglandins mediation.  相似文献   

6.
J Bugajski  Z Janusz 《Life sciences》1983,33(12):1179-1189
In conscious rats histamine, the H1-receptor agonist 2-pyridylethylamine (PEA), and the H2-receptor agonists dimaprit and impromidine given intracerebroventriculary (i.c.v.) increased the hypophyseal-adrenocortical response, evaluated indirectly through the corticosterone concentration in the blood serum. On a molar basis histamine was the most potent drug whereas its agonists were less potent in inducing an increased corticosterone response. Impromidine however, was far more active than dimaprit and PEA. The effect of histamine was significantly yet not totally antagonized by either mepyramine, a H1-receptor antagonist, or cimetidine, a H2-receptor blocker. The combination of mepyramine and cimetidine caused a considerably stronger inhibition than that induced by either antagonist given separately. Mepyramine impaired the corticosterone response to PEA, and the responses to impromidine and dimaprit were significantly diminished by cimetidine. The results suggest that i.c.v. histamine increases the pituitary-adrenocortical activity via both H1- and H2-receptors, and there seems to be no significant prevalence of either of these receptors in mediating this action of histamine.  相似文献   

7.
H2 antihistamines, including cimetidine, burimamide, metiamide, and tiotidine, consistently augmented antigen-induced histamine release from human basophils in vitro when control histamine release was less than 20% of total. This effect was specific to the H2-receptor blocking activity of these drugs: equivalent degrees of receptor blockade by four different H2 antihistamines resulted in equipotent enhancement; H1-receptor antagonists did not alter histamine release; and aminoguanidine and amodiaquine, agents that inhibit histamine metabolism but do not block H2 receptors, did not enhance histamine release. Cimetidine did not enhance release when present a) when basophils were "activated" but did not release histamine ("first stage"), or b) when basophils were no longer susceptible to histamine inhibition ("second stage"). Thus, H2 antagonists enhanced histamine release by blocking the capacity of released histamine to act on H2 receptors to inhibit release. Because it is likely that only small percentages of histamine are released in vivo, it is possible that H2 antihistamines amplify the inflammatory process by blocking the inhibitory effects of the released histamine.  相似文献   

8.
This study of newborn (3-10 day old) and juvenile (6-8 mo old) in situ isolated lamb lungs was undertaken to determine whether 1) histamine receptor blockade accentuates hypoxic pulmonary vasoconstriction more in newborns than in juveniles, 2) histamine infusion causes a decrease in both normoxic pulmonary vascular resistance and hypoxic pulmonary vasoconstriction in newborns, and 3) the H1-mediated dilator response to infused histamine in newborns is due to enhanced dilator prostaglandin release. Pulmonary arterial pressure (Ppa) was determined at baseline and in response to histamine (infusion rates of 0.1-10.0 micrograms.kg-1 min-1) in control, H1-blocked, H2-blocked, combined H1- and H2-blocked, and cyclooxygenase-inhibited H2-blocked lungs under "normoxic" (inspired O2 fraction 0.28) and hypoxic (inspired O2 fraction 0.04) conditions. In newborns, H1-receptor blockade markedly accentuated baseline hypoxic Ppa, and H2-receptor blockade caused an increase in baseline normoxic Ppa. In juveniles, neither H1 nor H2 blockade altered baseline normoxic or hypoxic Ppa. Histamine infusion caused both H1- and H2-mediated decreases in Ppa in normoxic and hypoxic newborn lungs. In juvenile lungs, histamine infusion also caused H2-mediated decreases in Ppa during both normoxia and hypoxia. During normoxia, histamine infusion caused an H1-mediated increase in normoxic Ppa in juveniles as previously seen in mature animals; however, during hypoxia there was an H1-mediated decrease in Ppa at low doses of histamine followed by an increase in Ppa. Combined histamine-receptor blockade markedly reduced both dilator and pressor responses to histamine infusion. Indomethacin failed to alter the H1-mediated dilator response to histamine in newborns.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We investigated the peripheral effects of an H3-receptor agonist and an H3-receptor antagonist (R)alpha-methylhistamine (Ralpha-MeHA) and thioperamide, respectively, on basal feeding and the CCK8-induced inhibition of food intake in rat. Intraperitoneal injection of thioperamide reduced food intake in a dose-dependent manner with maximal inhibition (35%, P<0.01 vs saline) at 3 mg/kg. (R)alpha-MeHA (0.3-3 mg/kg i.p.), an H3-receptor agonist alone had no effect on feeding but reversed the thioperamide-induced inhibition of food intake in a dose-dependent manner. The maximal feeding inhibitory dose of thioperamide (3 mg.kg i.p) increased by 40% and 22 % (P<0.01 vs saline) brain and stomach histamine contents, respectively. Histamine (0.3 - 6 mg/kg i.p.) and CCK-8 (3 - 30 microg/kg i.p) also inhibited food intake in a dose-dependent manner. Inhibition was 20% to 40% for histamine and 40% to 80% (P<0.01 vs saline) for CCK8. CCK-8 inhibition of feeding was increased by thioperamide and prevented by (R)alpha-MeHA in a dose-dependent way. In addition, CCK-8 did not reduce food intake if rats were pretreated with pyrilamine or ranitidine postsynaptic H1- and H2-receptor antagonists respectively. Our data suggest that the H3-receptor is involved in basal feeding. They also suggest that CCK satiety depends upon the release of histamine which acts on the H2- and H1-receptors, the final mediators of this effect.  相似文献   

10.
Vasoactive intestinal peptide (VIP) is known to induce histamine release in human skin and to include a nitric oxide (NO)-dependent dilation in several other vascular beds. However, the relative contribution of histamine and NO to VIP-mediated vasodilation in human skin is unknown. Forty-three subjects volunteered to participate in two studies designed to examine the mechanism of VIP-mediated vasodilation in human skin. Study 1 examined the contribution of NO in the skin blood flow response to eight doses of VIP ranging from 25 to 800 pmol. In addition, study 1 examined a specific role for NO in VIP-mediated dilation. Study 2 examined the relative contribution of NO and histamine to VIP-mediated dilation via H1 and H2 histamine receptors. Infusions were administered to skin sites via intradermal microdialysis. Red blood cell flux was measured by using laser-Doppler flowmetry (LDF), and cutaneous vascular conductance (CVC; LDF/mean arterial pressure) was calculated and normalized to maximal vasodilation. VIP-mediated vasodilation includes a NO-dependent component at doses above 100 pmol, where NO synthase inhibition significantly attenuates CVC (P < 0.05). Inhibition of H1 receptors attenuates the rise in CVC to exogenous VIP (P < 0.05); however, combined H1-receptor inhibition and NO synthase inhibition further reduced VIP-mediated vasodilation compared with either H1 inhibition or NO synthase inhibition alone (P < 0.05). In contrast to H1-receptor inhibition, H2-receptor inhibition did not affect vasodilation to exogenous VIP. Thus, in human skin, VIP-mediated vasodilation includes a NO-dependent component that could not be explained by H1- and H2-receptor activation.  相似文献   

11.
In rats, the hypothalamic neurotransmitter histamine participates in regulation of vasopressin secretion and seems to be of physiological importance, because blockade of the histaminergic system reduces dehydration-induced vasopressin secretion. We investigated whether histamine is also involved in regulation of vasopressin secretion during dehydration in humans. We found that 40 h of dehydration gradually increased plasma osmolality by 10 mosmol/kg and induced a fourfold increase in vasopressin levels. Pretreatment with the H(2)-receptor antagonists cimetidine or ranitidine significantly reduced the dehydration-induced increase in vasopressin levels approximately 40% after 34 and 37 h of dehydration, whereas this was not the case with the H(1)-receptor antagonist mepyramine. Dehydration reduced aldosterone secretion by approximately 50%. This effect of dehydration was reduced by both H(1)- and H(2)-receptor blockade after 16 and/or 34 h of dehydration. We conclude that vasopressin secretion in response to dehydration in humans is under the regulatory influence of histamine and that the effect seems to be mediated via H(2)-receptors. In addition, the regulation of aldosterone secretion during dehydration also seems to involve the histaminergic system via H(1) and H(2) receptors.  相似文献   

12.
The present work investigates (a) the modification by pretreatment with selective H1- and H2-receptor antagonists on the dose-response curves (DRC) to histamine for heart rate, blood pressure, renal arterial blood flow and renal vascular resistance in anesthetized dogs, and (b) the characteristics of the DRC to histamine in canine isolated renal artery. In vivo, pretreatment with metiamide (10 mg/kg i.v.) did not modify the DRC to histamine. In contrast, significant rightward shift of the DRC to histamine for all the hemodynamic parameters was observed after diphenhydramine (5 mg/kg i.v.). Combined pretreatment with metiamide and diphenhydramine resulted in further rightward displacement of the DRC to histamine. Analysis of the DRC to the relaxant effect of histamine in depolarized (K+ 67 mM) isolated canine renal artery yielded an ED50 of 3.3 x 10(-4) M and a Hill coefficient of 1.74. The results demonstrate the existence of the two types of histamine receptors, H1 and H2, in the renal artery of the dog, both mediating dilator responses, although the H1-receptor appears to predominate.  相似文献   

13.
M Turoń  J Tytoń  J Bugajski 《Life sciences》1991,48(12):1191-1198
Involvement of a central histaminergic mechanism in the stimulating effect of beta-endorphin (beta-End) on the pituitary-adrenocortical activity, measured indirectly through corticosterone secretion, was investigated in conscious rats. The rise in serum corticosterone levels, induced by beta-End injected intraventricularly (icv) was considerably impaired by pretreatment with naltrexone, an opioid receptor antagonist. The stimulating effect of beta-End was almost totally suppressed by a prior icv administration of mepyramine, a histamine H1-receptor antagonist, and also considerably reduced by pretreatment with cimetidine, an H2-receptor antagonist. The strongest suppression, by 83%; of the beta-End-induced corticosterone response was evoked by a prior administration of alpha-fluoromethylhistidine, an inhibitor of neuronal histamine synthesis in the brain. These results indicate that both the brain neuronal histamine and central histamine H1- and H2-receptors are considerably involved in the beta-endorphin-induced stimulation of the pituitary-adrenocortical activity.  相似文献   

14.
Benztropine (BZT) and its analogues inhibit dopamine uptake and bind with moderate to high affinity to the dopamine transporter (DAT). However, many of these compounds, in contrast to other monoamine uptake inhibitors, lack cocaine-like behavioral effects and fail to potentiate the effects of cocaine. The BZT analogues also exhibit varied binding affinities for muscarinic M(1) and histamine H(1) receptors. In this study, a comparative analysis was conducted of pharmacophoric features with respect to the activities of BZT analogues at the DAT and at the histamine H(1) receptor. The BZT analogues showed a wide range of histamine H(1) receptor (K(i)=16-37,600 nM) and DAT (K(i)=8.5-6370 nM) binding affinities. A stereoselective histamine H(1)-antagonist pharmacophore, using a five-point superimposition of classical antagonists on the template, cyproheptadine, was developed. A series of superimpositions and comparisons were performed with various analogues of BZT. In general, smaller substituents were well tolerated on the aromatic rings of the diphenyl methoxy group for both the DAT and H(1) receptor, however, for the H(1) receptor, substitution at only one of the aromatic rings was preferred. The substituents at the 2- and N-positions of the tropane ring were preferred for DAT, however, these groups seem to overlap receptor essential regions in the histamine H(1) receptor. Molecular models at the DAT and the histamine H(1) receptor provide further insight into the structural requirements for binding affinity and selectivity that can be implemented in future drug design.  相似文献   

15.
We have investigated effects of histamine on the spontaneous cytotoxic activity of human natural killer (NK) cells in vitro. Addition of histamine (10(-3) to 10(-7) M) to assay cultures of Percoll-fractionated mononuclear cells (MNC) and erythroleukemic K 562 target cells resulted in a strong enhancement of the cytotoxicity of low-density MNC, enriched for NK cell cytotoxicity (NKCC). No enhancing or suppressing effects of histamine could be detected after removal of monocytes/adherent cells from the effector cell suspensions. When unfractionated MNC were used as NK effectors, similar results were obtained, i.e., dose-dependent enhancement of NKCC by histamine in the presence of monocytes and lack of effect in nonadherent effector cells. Freshly isolated monocytes displayed low spontaneous cytotoxicity against K 562 targets and were not induced by histamine. The histamine-induced enhancement was mimicked by dimaprit, a specific histamine H2-receptor agonist, but not by N-methyldimaprit, a chemical control for H2-receptor agonist activity of dimaprit. Furthermore, the enhancement was completely antagonized by the specific histamine H2-receptor antagonists cimetidine and ranitidine. The effect of histamine could not be ascribed to endogenous interferon (IFN) production, since no IFN activity could be detected in histamine-treated MNC effectors. Also, the enhancing effects of histamine and human leukocyte IFN-alpha were clearly additive. On the basis of these findings, we suggest that histamine, via specific activation of H2 receptors, may be an important regulator of human NK cell activity.  相似文献   

16.
H3-Receptors Control Histamine Release in Human Brain   总被引:4,自引:1,他引:3  
The regulation of histamine release was studied on slices prepared from pieces of human cerebral cortex removed during neurosurgery and labeled with L-[3H]histidine. Depolarization by increased extracellular K+ concentration induced [3H]histamine release, although to a lesser extent than from rat brain slices. Exogenous histamine reduced by up to 60% the K+-evoked release, with an EC50 of 3.5 +/- 0.5 X 10(-8) M. The H3-receptor antagonists impromidine and thioperamide reversed the histamine effect in an apparently competitive manner and enhanced the K+-evoked release, indicating a participation of endogenous histamine in the release control process. The potencies of histamine and the H3-receptor antagonists were similar to those of these agents at presynaptic H3-autoreceptors controlling [3H]histamine release from rat brain slices. It is concluded that H3-receptors control histamine release in the human brain.  相似文献   

17.
Allergic rhinoconjunctivitis is the most common atopic condition encountered in clinical practice. Analysis of the pathogenesis of this condition permits identification of optimal therapeutic targets. The increased knowledge of the underlying pathophysiology suggests that multiple inflammatory mediators are involved in the pathogenesis of the allergic reaction in the ocular and nasal mucosa. However, despite the presence of a wide range of different mediators, it would appear that histamine plays a key role. Experimental allergen challenge studies have demonstrated that histamine is the only mediator which produces the full spectrum of clinical manifestations of the acute allergic reaction when applied to the mucosal surface. While both H(1)- and H(2)-receptors are present in the nasal and ocular mucosa, only H(1)-receptor antagonists are capable of inhibiting histamine-induced symptoms of allergic rhinoconjunctivitis. Furthermore, although the exact role of histamine in the immediate and prolonged allergic reaction has not yet been fully elucidated, these findings do not exclude the possibility that histamine is involved in these processes. The available evidence therefore supports current clinical practice for use of H(1)-receptor antagonist as a first-line therapy in patients with this atopic condition.  相似文献   

18.
A theoretical study was performed to elucidate the mode of interaction of the histamine H2-agonist dimaprit with the histamine H2-receptor. For this purpose receptor mapping techniques, including ab initio energy calculations, geometry optimizations and molecular electrostatic potential calculations (MEPs), have been used. The characteristics of dimaprit were compared to those of histamine for which the points of interaction with the H2-receptor are known, as well as its bioactive conformation. In this comparative study two possible models for the interaction of dimaprit with the H2-receptor were considered. In one model the two nitrogen atoms of the isothiourea moiety of dimaprit play an essential role in the recognition of the ligand by the receptor and have the same function as the nitrogen atoms of the imidazole ring of histamine; in the second model this role is fulfilled by a sulphur and a nitrogen atom of the same isothiourea moiety. The comparison to histamine was based on geometrical resemblance as well as on similarity in MEPs. Also the conformational energy of dimaprit in the two interaction models was considered. Results of the investigations reveal that the isothiourea moiety of dimaprit most probably interacts with the histamine H2-receptor through the sulphur and nitrogen atom, the first atom acting as a proton acceptor and the second one as a proton donor. Subsequently, three analogues of dimaprit, namely SK&F 91487, SK&F 91488 and SK&F 92054, were studied. It was possible to explain their pharmacological behavior within the proposed model. Furthermore, the new model for the interaction of dimaprit with the H2-receptor enabled the design of a structurally new histamine H2-agonist, 2-amino-5-(2-aminoethyl)thiazole.  相似文献   

19.
Certain chemical properties, which may determine the biological actions of the recently discovered histamine H2-receptor antagonists burimamide and metiamide, are identified, partly by considering the derivation of these antagonists. Examples are given of attempts to design antagonists using histamine as starting point. A partial agonist was eventually obtained through modifying the side chain of histamine but retaining the imidazole ring. Further developments led to the synthesis of uncharged thioureido analogues and to the discovery of the antagonist, burimamide. Consideration of the relative concentration of imidazole tautomers led to the replacement of a methylene group (-CH2-) with an isosteric thioether (-S-) link in the side chain, and incorporation of a methyl group in the imidazole ring; these changes afforded metiamide, an orally active antagonist. These developments emphasize that the imidazole ring appears to have a special importance at H2 receptors. Burimamide and metiamide are hydrophilic molecules that resemble histamine in having an imidazole ring but differ in the side chain which, though polar, is uncharged. By contrast, the H1-receptor antihistaminic drugs are lipophilic molecules; their resemblance to histamine is in having a positively charged ammonium side chain. These substantial chemical differences between the respective antagonists probably determine their selectivity in distinguishing between the two types of histamine receptor. Furthermore, the very low lipophilicities of these H2-receptor antagonists probably account for the lack of central nervous system and local anesthetic effects normally associated with the use of antihistaminic drugs.  相似文献   

20.
Recent advances in molecular biological techniques have seen the cloning of the H2-receptor gene from canine parietal cells, and the structural identification and cloning of the H1- and H3-receptors should soon follow. This information will allow the elucidation of the mechanisms responsible for the species and tissue heterogeneity in the H1-receptor binding and functional characteristics. The mechanisms underlying the inhibitory effect of H3-receptor stimulation on neurotransmitter release remains to be established, but this receptor appears to be coupled to its effector system (perhaps an ion channel?) via a G-protein. Patch-clamp studies on histamine receptors in invertebrate neurones have identified a ligand-gated chloride channel at a photoreceptor synapse of the housefly and it remains an intriguing possibility that there is a counterpart in mammalian species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号