首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The involvement of a vicinally spaced dithiol group in steroid binding to the glucocorticoid receptor has been deduced from experiments with the thiol-specific reagent methyl methanethiolsulfonate and the vicinal dithiol-specific reagent sodium arsenite. The vicinally spaced dithiol appears to reside in the 16-kDa trypsin fragment of the receptor, which is thought to contain 3 cysteines (Cys-640, -656, and -661 of the rat receptor) and binds hormone with an approximately 23-fold lower affinity than does the intact 98-kDa receptor. We now report that the steroid binding specificity of preparations of this 16-kDa fragment and the intact receptor are virtually identical. This finding supports our designation of the 16-kDa fragment as a steroid-binding core domain and validates our continued use of this tryptic fragment in studies of steroid binding. To identify the cysteines which comprise the vicinally spaced dithiol group, and to examine further the role of cysteines in steroid binding, a total of five point mutant receptors were prepared: cysteine-to-serine for each suspected cysteine, cysteine-to-glycine for Cys-656, and the C656,661S double mutant. Unexpectedly, each receptor with a single point mutation still bound steroid. Even the double mutant (C656,661S) bound steroid with wild type affinity. These results suggest that none of these cysteines are directly required either for steroid binding to the glucocorticoid receptor or for heat shock protein 90 association with the receptor. However, the presence of Cys-656 was obligatory for covalent labeling of the receptor by [3H]dexamethasone 21-mesylate. Studies with preparations of the 98 and 16 kDa forms of these mutant receptors revealed both that Cys-656 and -661 comprise the vicinally spaced dithiols reacting with arsenite and that any two of the three thiols could form an intramolecular disulfide after treatment with low concentrations of methyl methanethiolsulfonate. These data, in conjunction with those from experiments on the effects of steric bulk on various receptor functions, support a model for the ligand binding cavity of the receptor that involves all three thiols in a flexible cleft but where thiol-steroid interactions are not essential for binding.  相似文献   

2.
Low concentrations of arsenite, but not arsenate, and Cd2+ blocked steroid binding to the glucocorticoid receptors of HTC cells. Inhibition by arsenite was faster and occurred at lower concentrations than for Cd2+. Half-maximal inhibition of [3H]dexamethasone binding was seen after a 30-min preincubation with approximately 7 microM arsenite. The effect of arsenite and of Cd2+ appears to be mediated by a reaction with vicinal dithiols of the receptor as shown by (a) the reversal of arsenite inhibition by much lower concentrations of dithiothreitol (approximately 0.1 mM) than of beta-mercaptoethanol (approximately 10 mM); (b) the ability of both arsenite and Cd2+ to block [3H]dexamethasone 21-mesylate labeling of receptors but not of other thiol-containing proteins; and (c) the known selectivity of arsenite and of Cd2+ for reactions with vicinal dithiols. Arsenite forms a tight complex with these vicinal dithiols since the removal of loosely associated arsenite by gel exclusion chromatography did not reverse the inhibition of steroid binding. The effect of other ions on steroid binding was also examined. Half-maximal inhibition of binding occurred with approximately 5 microM selenite, whereas up to 300 microM Zn2+ was without effect. Much higher concentrations of arsenite were required for effects on unactivated and activated complexes. Arsenite slowly induced a loss of unactivated complexes but rapidly inhibited a portion of the DNA binding of activated complexes. Any effect on activation occurred at arsenite concentrations equal to or higher than those that inhibited DNA binding. In contrast, Cd2+ concentrations similar to those that block steroid binding caused a biphasic loss of unactivated complexes and a marginal loss of activated complexes. This is the first report of effects of arsenite on glucocorticoid receptors. These results confirm directly our earlier hypothesis that steroid binding to rat glucocorticoid receptors involves a vicinal dithiol (Miller, N. R., and Simons, S. S., Jr. (1988) J. Biol. Chem. 263, 15217-15225) and show that arsenite is a potent new reagent for probing receptor structure and function.  相似文献   

3.
The present investigation was aimed at examining whether interaction of aldosterone with specific mineralocorticoid receptors at the level of the pituitary gland may account for the inhibitory effect of that steroid on ACTH secretion. By using pituitaries from neonatal rats, which we show to completely lack specific mineralocorticoid receptors but to contain a functional glucocorticoid receptor system, we demonstrated the persistence of aldosterone-induced inhibition of ACTH release from perifused glands. Conversely, when the glucocorticoid receptors sites were blocked in pituitaries from mature rats by means of a potent antiglucocorticoid (RU 38486), thus leaving unaltered mineralocorticoid binder, aldosterone no longer dampened hormonal output. We conclude that the latter steroid affected corticotropic activity by interacting not with its proper and specific receptor, but rather with the glucocorticoid binding sites.  相似文献   

4.
The steroid hormone receptors regulate important physiological functions such as reproduction, metabolism, immunity, and electrolyte balance. Mutations within steroid receptors result in endocrine disorders and can often drive cancer formation and progression. Despite the conserved three-dimensional structure shared among members of the steroid receptor family and their overlapping DNA binding preference, activation of individual steroid receptors drive unique effects on gene expression. Here, we present the first structure of the human mineralocorticoid receptor DNA binding domain, in complex with a canonical DNA response element. The overall structure is similar to the glucocorticoid receptor DNA binding domain, but small changes in the mode of DNA binding and lever arm conformation may begin to explain the differential effects on gene regulation by the mineralocorticoid and glucocorticoid receptors. In addition, we explore the structural effects of mineralocorticoid receptor DNA binding domain mutations found in type I pseudohypoaldosteronism and multiple types of cancer.  相似文献   

5.
6.
7.
8.
Transformed and bacterially expressed glucocorticoid receptors free from Mr 90,000 heat shock protein (hsp90) have a 100-fold lower steroid-binding affinity than the hsp90-bound nontransformed receptor, suggesting that hsp90 is needed for high-affinity steroid binding [Nemoto, T., Ohara-Nemoto, Y., Denis, M., & Gustafsson, J.-A. (1990) Biochemistry 29, 1880-1886]. To investigate whether or not this phenomenon is common to all steroid receptors, we investigated the steroid-binding affinities of bacterially expressed and transformed androgen receptors. The C-terminal portion of the rat androgen receptor containing the putative steroid-binding domain was expressed as a fusion protein of protein A in Escherichia coli. The recombinant protein bound a synthetic androgen, [3H]R1881, with high affinity (Kd = 0.8 +/- 0.3 nM). Glycerol gradient analysis revealed that the recombinant protein sedimented at around the 3S region irrespective of the presence of molybdate, indicating that the receptor is present in monomeric form. The steroid-free transformed androgen receptor was obtained by exposure of rat submandibular gland cytosol to 0.4 M NaCl in the absence of steroid. High-performance ion-exchange liquid chromatography analysis showed that the transformed androgen receptor bound to [3H]R1881 with high affinity. Thus these observations indicate that, in contrast to the glucocorticoid receptor, hsp90 is not required for the high-affinity steroid binding of the androgen receptor. In addition, the hsp90-free androgen receptor prebound with radioinert R1881 was efficiently relabeled with [3H]R1881, while the triamcinolone acetonide-bound, transformed glucocorticoid receptor failed in ligand exchange. The inability to achieve ligand exchange probably reflects the low steroid-binding affinity of this entity.  相似文献   

9.
The DNA-binding domain (DBD) of the androgen, mineralocorticoid, and glucocorticoid receptors and the steroid-binding domain (SBD) of the androgen receptor (AR) were expressed separately as fusion proteins with glutathione-S-transferase (GST) in Escherichia coli. Native polyacrylamide gel electrophoresis and gel exclusion HPLC demonstrated that the GST-ARDBD fusion protein was present as a dimer. On the other hand, the GST-ARSBD fusion protein formed a high-molecular weight oligomer, which seemed to be formed by two separate interactions, i.e. GST-GST and ARSBD-ARSBD between the fusion molecules. These findings strongly suggest that ARSBD has a potent ability to form a homodimer and that ARDBD does not. GST-ARDBD specifically interacted with the glucocorticoid response elements of the mouse mammary tumor virus long terminal repeat (GREMMTV). Cleavage of the fusion protein by thrombin abolished the binding, while the nonspecific DNA-cellulose binding ability was retained. Therefore, the dimeric configuration of GST-ARDBD, even if accomplished through the interaction with the GST moiety, is needed for high-affinity binding to the response element. The binding of GST-ARDBD to GREMMTV was strongly competed by the glucocorticoid response element of rat tyrosine aminotransferase gene, followed by the androgen response element of the rat probasin gene. A palindromic thyroid response element showed no competition. Unexpectedly, no apparent different in the binding affinity to these response elements was observed among the DBDs of androgen, mineralocorticoid and glucocorticoid receptors.  相似文献   

10.
A new affinity matrix for mineralocorticoid receptors   总被引:2,自引:0,他引:2  
The behavior of mineralocorticoid and glucocorticoid receptors of rabbit kidney cytosol was investigated on two affinity gels: a new affinity matrix prepared with a 3-O-derivative of carboxymethyloxime deoxycorticosterone (deoxycorticosterone gel) and a gel linked to a 17 beta-dexamethasone derivative (dexamethasone gel). Deoxycorticosterone gel was highly specific, since it retained mineralocorticoid but not glucocorticoid receptors, and dexamethasone gel exhibited high selectivity for glucocorticoid receptors since it did not bind mineralocorticoid receptors. The use of these two matrices allowed separation of mineralocorticoid and glucocorticoid receptors and further characterization of each type of cytosolic receptors after its isolation. Cytosolic mineralocorticoid and glucocorticoid receptors stabilized by tungstate were found to have a Stokes radius of approximately 6 nm, as determined by high performance size exclusion chromatography and a sedimentation coefficient of approximately 9 S, determined on a glycerol density gradient containing tungstate, under either high or low salt conditions. The hydrodynamic parameters, binding characteristics, and specificity of mineralocorticoid receptors were the same in the untreated and dexamethasone gel-treated cytosol. Similarly glucocorticoid receptor characteristics remained unchanged after deoxycorticosterone gel treatment, indicating biochemical independence of cytosolic mineralocorticoid and glucocorticoid receptors. The [3H]aldosterone receptor complex eluted from deoxycorticosterone gel was recovered with a 30-40% yield and a purification factor of about 1000. Purified mineralocorticoid receptors had the same sedimentation coefficient as cytosolic mineralocorticoid receptors (9 S) but a different Stokes radius (4 versus 6 nm). The decrease in the Stokes radius of the purified mineralocorticoid receptors was probably due to the gel filtration method. These results indicate that the newly synthesized matrix specific for mineralocorticoid receptors constitutes a powerful tool for their extensive purification.  相似文献   

11.
12.
13.
Almost all modifications of the steroid binding domain of glucocorticoid receptors are known to cause a reduction or loss of steroid binding activity. Nonetheless, we now report that mutations of cysteine 656 of the rat receptor, which was previously suspected to be a crucial amino acid for the binding process, have produced "super" receptors. These receptors displayed an increased affinity for glucocorticoid steroids and a decreased relative affinity for cross-reacting steroids such as progesterone and aldosterone. The increased in vitro affinity of the super receptors was maintained in a whole cell bioassay. These results indicate that additional modifications of the glucocorticoid receptor, and probably the other steroid receptors, may further increase the binding affinity and/or specificity.  相似文献   

14.
To determine if activation of the glucocorticoid receptor involves covalent charge modification of the steroid-binding protein, unactivated and activated IM-9 cell glucocorticoid receptors were examined by high resolution two-dimensional gel electrophoresis. As previously reported (Smith, A. C., and Harmon, J. M. (1985) Biochemistry 24, 4946-4951), two-dimensional electrophoresis of immunopurified, [3H]dexamethasone mesylate-labeled, steroid-binding protein from unactivated receptors resolves two 92-kDa isoforms (pI congruent to 5.7 and 6.0-6.5). After activation, the apparent pI of neither isoform was altered, indicating that there had been no covalent charge modification of the steroid-binding protein. Thus, the physicochemical changes observed after activation of the steroid receptor cannot be explained by dephosphorylation or other models which involve covalent charge modification of the steroid-binding protein. This conclusion was consistent with the observation that treatment of immunopurified, affinity-labeled receptors with calf intestine alkaline phosphatase did not alter the apparent pI values or distribution of the steroid-binding protein isoforms. However, chromatography of activated steroid-receptor complexes on DNA-cellulose revealed that only the more basic of the two steroid-binding protein isoforms bound to DNA. Therefore, the charge heterogeneity of the steroid-binding protein may be important in regulating the ability of the steroid-binding protein to interact with DNA.  相似文献   

15.
16.
Glucocorticoid receptors have been proposed to undergo an ATP-dependent recycling process in intact cells, and a functional role for receptor phosphorylation has been suggested. To further investigate this possibility we have examined the phosphate content of the steroid-binding protein of all glucocorticoid receptor forms which have been isolated from WEHI-7 mouse thymoma cells. By labeling of intact cells with 32Pi for 18-20 h in the absence of hormone, covalent binding of [3H]dexamethasone 21-mesylate, immunopurification and SDS-PAGE analysis, the steroid binding protein was found to contain, on average, 2-3 phosphates as phosphoserine. One third of the phosphates were associated with proteolytic fragments encompassing the C-terminal steroid-binding domain. The central DNA-binding domain was not phosphorylated, leaving the other two thirds of the phosphates localized in the N-terminal domain. The phosphate content of various receptor forms from cells incubated with 32Pi and [35S]methionine was compared using 35S to normalize for quantity of protein. In ATP-depleted cells a non-steroid-binding form of the receptor (the "null" receptor) is found tightly bound to the nucleus, even without steroid. The phosphate content of null receptors was two thirds that of cytosolic receptors from normal cells, suggesting phosphorylation-dependent cycling in the absence of hormone. Addition of glucocorticoid agonists, but not antagonist, to 32P- and 35S-labeled cells increased the phosphate content of the cytosolic steroid-binding protein up to 170%, indicating an average increase in the phosphates from about 3 to 5. After 30 min of hormone treatment the phosphate content of the steroid-binding protein of cytosolic activated (DNA-binding) and nonactivated receptors, and that of nuclear receptors extractable with high salt concentrations and/or DNase I digestion, was the same. No change in the phosphate content of the 90-kDa heat shock protein associated with unliganded and nonactivated receptors was detected following association of the free protein with the receptor and following hormone binding of the receptor. Analysis of the unextractable nuclear receptors indicated that they contained less phosphate (60% of that of cytosolic receptors), similarly to null receptors, indicating that dephosphorylation is associated with the unextractable nuclear fraction. The rate of hormone-dependent phosphorylation appeared to be much faster than the rate of dephosphorylation in the presence of hormone, the latter determined by a chase of the 32P label with unlabeled phosphate. Our results show that phosphorylation and dephosphorylation are involved in the mechanism of action of glucocorticoid receptors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
When small intestinal epithelial cells are incubated with [(3)H]corticosterone, nuclear binding is displaced neither by aldosterone nor RU-28362, suggesting that [(3)H]corticosterone is binding to a site distinct from mineralocorticoid receptor and glucocorticoid receptor. Saturation and Scatchard analysis of nuclear [(3)H]corticosterone binding demonstrate a single saturable binding site with a relatively low affinity (49 nM) and high capacity (5 fmol/microg DNA). Competitive binding assays indicate that this site has a unique steroid binding specificity, which distinguishes it from other steroid receptors. Steroid specificity of nuclear binding mirrors inhibition of the low 11beta-dehydrogenase activity, suggesting that binding may be to an 11beta-hydroxysteroid dehydrogenase (11betaHSD) isoform, although 11betaHSD1 is not present in small intestinal epithelia and 11betaHSD2 does not colocalize intracellularly with the binding site. In summary, a nuclear [(3)H]corticosterone binding site is present in small intestinal epithelia that is distinct from other steroid receptors and shares steroid specificity characteristics with 11betaHSD2 but is distinguishable from the latter by its distinct intracellular localization.  相似文献   

18.
The antiproliferative effect of glucocorticoid hormones on lymphoid tissue serves as the basis for their use in chemotherapy of lymphomas and leukemias. The effectiveness of the steroid-mediated response is potentially contingent upon a variety of factors, including the cellular level of glucocorticoid receptors. This report demonstrates that differences in the expression of the glucocorticoid receptor gene can modulate steroid sensitivity of individuals within a population of lymphoma cells. We have also found that loss of cAMP-dependent protein kinase activity caused a measurable decrease of steroid sensitivity in the murine T-lymphoma WEHI-7 without producing a significant change in steroid binding capacity. However, the extent of this change in sensitivity was dependent upon the level of glucocorticoid receptor expression. Lymphoma cells containing few spare steroid receptors became significantly resistant to glucocorticoids through loss of cAMP-dependent kinase function. On the other hand, elevated levels of cAMP were found to cause an increase in glucocorticoid receptor mRNA concentrations. Thus, cAMP-dependent protein kinase activity has the potential to modulate a lymphoma cell's steroid sensitivity by affecting the level of glucocorticoid receptor expression as well as the receptor's efficiency in producing a cytolytic response.  相似文献   

19.
In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. The lateral amygdala is a key site for synaptic plasticity underlying conditioned fear, which can both trigger and be coincident with the stress response. A large body of electrophysiological data shows rapid regulation of neuronal excitability by steroid hormone receptors. Despite the importance of these receptors, to date, only the glucocorticoid receptor has been anatomically localized to the membrane. We investigated the subcellular sites of mineralocorticoid receptors in the lateral amygdala of the Sprague-Dawley rat. Immunoblot analysis revealed the presence of mineralocorticoid receptors in the amygdala. Using electron microscopy, we found mineralocorticoid receptors expressed at both nuclear including: glutamatergic and GABAergic neurons and extra nuclear sites including: presynaptic terminals, neuronal dendrites, and dendritic spines. Importantly we also observed mineralocorticoid receptors at postsynaptic membrane densities of excitatory synapses. These data provide direct anatomical evidence supporting the concept that, at some synapses, synaptic transmission is regulated by mineralocorticoid receptors. Thus part of the stress signaling response in the brain is a direct modulation of the synapse itself by adrenal steroids.  相似文献   

20.
Treatment of rat liver cytosol with hydrogen peroxide (H2O2) or sodium molybdate (MoO4(2-)) inhibits thermal inactivation of glucocorticoid receptor steroid-binding capacity at 25 degrees C. Dithiothreitol (DTT) prevents the stabilization of receptors by H2O2. Heating (25 degrees C) of immune pellets formed by immunoadsorption of L-cell murine glucocorticoid receptor complexes to protein-A-Sepharose with an anti-receptor monoclonal antibody (BuGR2) results in dissociation of the M 90,000 heat shock protein (hsp90) from the steroid binding protein. Such thermal-induced dissociation of hsp90 is inhibited by H2O2. Pretreatment of immunoadsorbed receptor complexes with the thiol derivatizing agent, methyl methanethiosulfonate (MMTS) prevents the ability of H2O2 to stabilize the hsp90-receptor interaction. These data suggest a role for hsp90 in maintaining an active steroid-binding conformation of the glucocorticoid receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号