首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plastids from roots of barley (Hordeum vulgare L.) seedlings were isolated by discontinuous Percoll-gradient centrifugation. Coinciding with the peak of nitrite reductase (NiR; EC 1.7.7.1, a marker enzyme for plastids) in the gradients was a peak of a glucose-6-phosphate (Glc6P) and NADP+-linked nitrite-reductase system. High activities of phosphohexose isomerase (EC 5.3.1.9) and phosphoglucomutase (EC 2.7.5.1) as well as glucose-6-phosphate dehydrogenase (Glc6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) were also present in the isolated plastids. Thus, the plastids contained an overall electron-transport system from NADPH coupled with Glc6PDH and 6PGDH to nitrite, from which ammonium is formed stoichiometrically. However, NADPH alone did not serve as an electron donor for nitrite reduction, although NADPH with Glc6P added was effective. Benzyl and methyl viologens were enzymatically reduced by plastid extract in the presence of Glc6P+ NADP+. When the plastids were incubated with dithionite, nitrite reduction took place, and ammonium was formed stoichiometrically. The results indicate that both an electron carrier and a diaphorase having ferredoxin-NADP+ reductase activity are involved in the electron-transport system of root plastids from NADPH, coupled with Glc6PDH and 6PGDH, to nitrite.Abbreviations Cyt cytochrome - Glc6P glucose-6-phosphate - Glc6PDH glucose-6-phosphate dehydrogenase - MVH reduced methyl viologen - NiR nitrite reductase - 6PG 6-phosphogluconate - 6PGDH 6-phosphogluconate dehydrogenase  相似文献   

2.
A simple device for taking in situ proton NMR measurements in 1H2O is described. This allows aeration of reactions in a 10 mm diameter NMR tube without modifying the magnet or the probe head. With this device, aerobic biotransformations can be monitored in the NMR-tube placed in the spectrometer. It allows in situ analyses of the transformations, separating the aeration period temporally from the measurement time, not unlike traditional Warburg respiratory experiments. Two reactions determining kinetic and stoichieometric parameters: (i) a biotransformation by a growing Pseudomonas putida culture and (ii) l-phenylalanine oxidation catalysed by l-amino acid oxidase [E.C. 1.4.3.2]; both incubations were contained in the magnet.  相似文献   

3.
A flavoenzyme which showed NADPH-cytochrome c reductase (NADPH-cytochrome c oxidoreductase EC 1.6.2.4) and transhydrogenase (NADPH-NAD+ oxidoreductase, EC 1.6.1.1) activities was purified to an electrophoretically homogeneous state from Nitrobacter winogradskyi. The reductase was a flavoprotein which contained one FAD per molecule but no FMN. The oxidized form of the enzyme showed absorption maxima at 272, 375 and 459 nm with a shoulder at 490 nm, its molecular weight was estimated to be 36,000 by SDS polyacrylamide gel electrophoresis, and the enzyme seemed to exist as a dimer in aqueous solution. The enzyme catalyzed reduction of cytochrome c, DCIP and benzylviologen by NADPH, oxidation of NADPH with menadione and duroquinone, and showed transhydrogenase activity. NADH was less effective than NADPH as the electron donor in the reactions catalyzed by the enzyme. The NADPH-reduction catalyzed by the enzyme of N. winogradskyi cytochrome c-550 and horse cytochrome c was stimulated by spinach ferredoxin. The enzyme reduced NADP+ with reduced spinach ferredoxin and benzylviologen radical.Abbreviations DCIP dichlorophenolindophenol - Tris trishydroxy-methylaminomethane - Mops 3-(N-morpholino) propanesulfonic acid - SDS sodium dodecylsufate  相似文献   

4.
It has been found that metyrapone can inhibit both type I and type II mixed-function oxygenase reactions, while cysteamine inhibits only type I activity in this mammalian system. Following pretreatment with phenobarbital and 3-methylcholanthrene the half-maximal inhibiting concentrations for the O-demethylation of paranitranisol are increased for cysteamine and decreased for metyrapone. Both cysteamine and metyrapone give type II binding spectra with oxidized cytochrome P-450. The negative and positive peaks are at 393 and 426 nm respectively for metyrapone, and 410 and 434 nm for cysteamine. Cysteamine showed no binding comparable to that of metyrapone for reduced cytochrome P-450. Metyrapone showed little or no inhibition of the NADH cytochrome-c reductase (EC 1.6.1.1) or NADPH (EC 1.6.2.3) cytochrome-c reductase while cysteamine had a more or less strong inhibiting effect depending on the pretreatment of animals. Neither the binding to P-450 heme nor the inhibition of NADH and NADPH cytochrome-c reductase correlates well with cysteamine inhibition of total activity. It is therefore suggested that cysteamine reacts with an intermediate electron carrier of non-heme iron or glycoprotein character thus inhibiting mixed-function oxygenase activity.  相似文献   

5.
Euphorbia pulcherrima Klotz plants exposed to short days (11 h light/13 h dark) for a period of eight weeks, developed flowers and a red canopy consisting of bracts and few true leaves. Plants maintained for three weeks under short day conditions, failed to produce flower primordia or a red canopy in the following 5 weeks in continuous light. Between the 4th and 5th short day week, the youngest leaves began to accumulate anthocyanin and turned red while the apical meristems differentiated into flower primordia. Chlorophyll accumulation ceased at the onset of anthocyanin synthesis and the protein content per unit leaf area declined. mRNA for glutamyl-tRNAGlu synthetase (EC 6.1.1.17) and glutamyl-tRNAGlu reductase also declined during this period. Western blot analysis revealed a loss of glutamyl-tRNAGlu reductase, glutamate 1-semialdehyde (EC 5.4.3.8) and the Mg-chelatase subunits, Olive and CH42, in the last 2 to 4 weeks of the photoperiod.  相似文献   

6.
CoASH and some of its acyl derivatives, especially acetyl-SCoA, occupy a central position in the energy metabolism of the anaerobic Clostridium kluyveri, both as intermediates and as regulatory effectors. The steady state concentrations of these compounds were determined in growing cultures of this organism using an anaerobic and fast deproteinization technique and radio isotope assays. Acetyl-SCoA was determined as [1-14C]citrate formed in the presence of [4-14C]oxaloacetate and citrate synthase; 0.49 mol/g cell wet wt. were found CoASH, CoAS-SCoA after borohydride reduction, and total acyl derivatives of coenzyme A after hydrolysis of the thiol esters were converted to thioethers with [2,3-14C]N-ethylmaleimide and brought to radiochemical purity by chromatographic methods. While disulfides of coenzyme A were undetectable, 0.13 mol CoASH and 1.17 mol of total acyl-SCoA per g wet wt. were found. These data are consistent with the regulatory scheme of the energy metabolism of C. kluyveri previously proposed.Abbreviations DTE dithioerythritol - NEM N-ethylmaleimide - NES N-ethylsuccinimide Enzymes (EC 2.7.2.1) Acetate kinase, ATP: acetate phosphotransferase - (EC 3.1.3.1) Alkaline phosphatase, orthophosphoric monoester phosphohydrolase - (GOT) Aspartate aminotransferase - (EC 2.6.1.1) L-aspartate:2-oxoglutarate aminotransferase - (CS) Citrate synthase - (EC 4.1.3.7) citrate oxaloacetate-lyase (pro 3S-CH2COOacetyl-CoA) - (EC 2.8.3.8) CoA-transferase, acyl-CoA:acetate CoA-transferase - (EC 1.1.1.37) Malate dehydrogenase, L-malate:NAD+ oxidoreductase - (EC 1.18.1.3) NADH:ferredoxin reductase, ferredoxin:NAD+ oxidoreductase - (EC 3.1.4.1) Phosphodiesterase (snake venom), orthophosphoric diester phosphohydrolase - (EC 2.3.1.8) Phosphotransacetylase, acetyl-CoA:orthophosphate acetyltransferase - (EC 2.3.1.9) Thiolase, acetyl-CoA:acetyl-CoA C-acetyltransferase A preliminary account of this work has been given (Decker et al. 1976)  相似文献   

7.
Kuzniak E  Skłodowska M 《Planta》2005,222(1):192-200
Peroxisomes, being one of the main organelles where reactive oxygen species (ROS) are both generated and detoxified, have been suggested to be instrumental in redox-mediated plant cell defence against oxidative stress. We studied the involvement of tomato (Lycopersicon esculentum Mill.) leaf peroxisomes in defence response to oxidative stress generated upon Botrytis cinerea Pers. infection. The peroxisomal antioxidant potential expressed as superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6) and glutathione peroxidase (GSH-Px, EC 1.11.1.19) as well as the ascorbate-glutathione (AA-GSH) cycle activities was monitored. The initial infection-induced increase in SOD, CAT and GSH-Px indicating antioxidant defence activation was followed by a progressive inhibition concomitant with disease symptom development. Likewise, the activities of AA-GSH cycle enzymes: ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate reductase (MDHAR, EC 1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and glutathione reductase (GR, EC 1.6.4.2) as well as ascorbate and glutathione concentrations and redox ratios were significantly decreased. However, the rate and timing of these events differed. Our results indicate that B. cinerea triggers significant changes in the peroxisomal antioxidant system leading to a collapse of the protective mechanism at advanced stage of infection. These changes appear to be partly the effect of pathogen-promoted leaf senescence.  相似文献   

8.
M. J. Emes  M. W. Fowler 《Planta》1979,144(3):249-253
The intracellular distribution of the enzymes of nitrate and ammonia assimilation in apical cells of pea (Pisum sativum L.) roots is described. Nitrate reductase (EC 1.6.6.2) was found to have no organelle association, and is considered to be located in the cytosol or possibly loosely bound to the outside of an organelle. Nitrite reductase and glutamate synthase (EC 2.6.1.53) are plastid located, as is glutamine synthetase (EC 6.3.1.2) although this enzyme also has activity in the cytosol. Glutamate dehydrogenase (EC 1.4.1.3) was found only in the mitochondrion.  相似文献   

9.
A biotransformation system was designed to co-express CYP107P3 (CSP4), cytochrome P450, from Streptomyces peuceticus, along with CamA (putidaredoxin reductase) and CamB (putidaredoxin) from Pseudomonas putida, the necessary reducing equivalents, in a class I type electron-transfer system in E. coli BL21 (DE3). This was carried out using two plasmids with different selection markers and compatible origins of replication. The study results showed that this biotransformation system was able to mediate the O-dealkylation of 7-ethoxycumarin.  相似文献   

10.
NADH:nitrate reductase (EC 1.6.6.1) from squash (Cucurbita maxima Duch., cv. Buttercup) can catalyze the reduction of a ferriphytosiderophore from barley (Hordeum vulgare L. cv. Europa). Maximal activity occurs at pH 6, with an apparentK m andV max of 76 M and 21 nmol·min-1·(mg protein)-1, respectively. The ferriphytosiderophore strongly inhibits nitrate reduction catalyzed by nitrate reductase at the optimal pH for nitrate reduction, i.e. 7.5. On the contrary, nitrate is a poor inhibitor of ferriphytosiderophore reduction catalyzed by nitrate reductase at the optimal pH for this reaction, pH 6.0. Thus, squash has the potential to assimilate the iron from a ferriphytosiderophore synthesized by another plant.  相似文献   

11.
V. K. Rajasekhar  H. Mohr 《Planta》1986,169(4):594-599
Nitrate-induced and phytochrome-modulated appearance of nitrate reductase (NR; EC 1.6.6.1) and nitrite reductase (NIR; EC 1.7.7.1) in the cotyledons of the mustard (Sinapis alba L.) seedling is strongly affected by externally supplied ammonium (NH 4 + ). In short-term experiments between 60 and 78 h after sowing it was found that in darkness NH 4 + —simultaneously given with NO 3 - —strongly inhibits appearance of nitrate-inducible NR and NIR whereas in continuous far-red light—which operates exclusively via phytochrome without significant chlorophyll formation —NH 4 + (simultaneously given with NO 3 - ) strongly stimulates appearance of NR. The NIR levels are not affected. This indicates that NR and NIR levels are regulated differently. In the absence of external NO 3 - appearance of NR is induced by NH4 in darkness as well as in continuous far-red light whereas NIR levels are not affected. On the other hand, in the absence of external NO 3 - , exogenous NH 4 + strongly inhibits growth of the mustard seedling in darkness as well as in continuous far-red light. This effect can be abolished by simultaneously supplying NO 3 - . The adverse effect of NH 4 + on growth (NH 4 + -toxicity) cannot be attributed to pH-changes in the medium since it was shown that neither the growth responses nor the changes of the enzyme levels are related to pH changes in the medium. Non-specific osmotic effects are not involved either.Abbreviations c continuous - D darkness - FR far-red light - NIR nitrite reductase (EC 1.7.7.1) - NR nitrate reductase (EC 1.6.6.1)  相似文献   

12.
Previous studies in our laboratory have shown that tentoxin prevents the incorporation of polyphenol oxidase (PPO), a nuclearly-coded protein, into the chloroplasts of sensitive species. In this study, we show, by comparison of electrophoretically separated isozymes, that ferredoxin-NADP+ reductase (FNR) is nuclearly coded in Nicotiana. Electrophoresis of FNR isozymes from tentoxin treated seedlings of a sensitive and a resistant species demonstrated that, unlike PPO, ferredoxin-NADP+ reductase was unaffected by tentoxin treatment. These data indicate that tentoxin selectively inhibits transport of cytoplasmically synthesized proteins into the chloroplast, and does not produce a generalized disruption of cellular integration.This research was supported, in part, by funding under cooperative agreement number 58-7B30-3-548, and is published with the approval of the Director of Arkansas Agr. Exp. Stn. Mention of a trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by the US Dep. Agric. or cooperating agencies and does not imply its approval to the exclusion of other products or vendors that may also be suitable.  相似文献   

13.
Shewanella decolorationis S12 is capable of high rates of azo dye decolorization and dissimilatory Fe(III) reduction. Under anaerobic conditions, when Fe(III) and azo dye were copresent in S12 cultures, dissimilatory Fe(III) reduction and azo dye biodecolorization occurred simultaneously. Furthermore, the dye decolorization was enhanced by the presence of Fe(III). When 1 mM Fe(III) was added, the methyl red decolorizing efficiency was 72.1% after cultivation for 3 h, whereas the decolorizing efficiency was only 60.5% in Fe(III)-free medium. The decolorizing efficiencies increased as the concentration of Fe(III) was increased from 0 to 6 mM. Enzyme activities, which mediate the dye decolorization and Fe(III) reduction, were not affected by preadaption of cells to Fe(III) and azo dye nor by the addition of chloramphenicol. Both the Fe(III) reductase and the azo reductase were membrane associated. The respiratory electron transport chain inhibitors metyrapone, dicumarol, and stigmatellin showed significantly different effects on Fe(III) reduction than on azo dye decolorization.  相似文献   

14.
15.
16.
Andrea Polle 《Planta》1996,198(2):253-262
It is generally believed that a restricted export of carbohydrates from source leaves causes oxidative stress because of an enhanced utilisation of O2 instead of NADP+ as electron acceptor in photosynthesis. To test this hypothesis, developmental changes of antioxidative systems were investigated in wild-type and transgenic tobacco (Nicotiana tabacum L.) suffering from disturbed sink-source relations by expression of yeast invertase in the apoplastic space. Young expanding leaves of the wild type contained higher activities of Superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11), catalase (EC 1.11.1.6), dehydroascorbate reductase (EC 1.8.5.1), glutathione reductase (EC 1.6.4.2) and a higher glutathione content than mature source leaves. The activity of monodehydroascorbate-radical reductase (EC 1.1.5.4) and the ascorbate content remained unaffected by the developmental stage in the wild type. In young expanding leaves of the transgenic plants the capacity of the antioxidative systems was similar to or higher than in corresponding leaves from the wild type. Source leaves of transgenic tobacco with an increased carbohydrate content showed a small chlorophyll loss, an increased malondialdehyde content, a selective loss of the activities of Cu/Zn-superoxide dismutase isoenzymes and a fourfold decrease in ascorbate compared with the wild type. There was no evidence that the protection from H2O2 was insufficient since source leaves of transgenic tobacco contained increased activities of catalase, ascorbate peroxidase, and monodehydroascorbate-radical reductase and an increased ascorbate-to-dehydroascorbate ratio compared with source leaves of the wild type. In severely chlorotic leaf sections of the transgenic plants, most components of the antioxidative system were lower than in green leaf sections, but the ascorbate-to-dehydroascorbate ratio was increased. These results suggest that carbohydrate-accumulating cells have an increased availability of reductant, which can increase the degree of reduction of the ascorbate system via glutathione-related systems or via the activity of monodehydroascorbate-radical reductase. At the same time, transgenic tobacco leaves seem to suffer from an increased oxidative stress, presumably as a result of a decreased consumption of O 2 .- by Cu/Zn-superoxide dismutases in the chloroplasts. There was no evidence that carbohydrate-accumulating leaves acclimated to enhanced O 2 .- production rates in the chloroplasts.  相似文献   

17.
An inactivated nitrate reductase (EC 1.6.6.1) formed in vivo by the green alga Chlorella fusca Shihira and Kraus is shown to be a cyanide complex. The partially purified inactive enzyme releases 0.048 nmol of HCN per unit of enzyme activated. This compares with 0.066 nmol of HCN liberated in similar previous measurements with the inactivated enzyme from Chlorella vulgaris. The nitrate reductase from C. fusca has been purified to a level of 67 mol nitrate reduced per min per mg enzyme. It contains a cytochrome b557, at a level 1.9-fold higher per unit of active enzyme, than the nitrate reductase from C. vulgaris.Abbreviations FAD flavin-adenine dinucleotide - NADH nicotineamide-adenine-dinucleotide (reduced)  相似文献   

18.
The enzyme nitrite reductase (EC 1.6.6.4) is generally assayed in terms of disappearance of nitrite from the assay medium. We describe a technique which allowed estimation of the enzyme level in leaf tissues of Vigna mungo (L). Hepper in terms of the release of the product (NH3) of the enzyme reaction. The technique is offered as an alternative, possibly more convenient method for assay of nitrite reductase in plant tissue in vivo.  相似文献   

19.
Nitrite reductase (EC 1.6.6.4) prepared from pea roots was found to be immunologically indistinguishable from pea leaf nitrite reductase. Comparisons of the pea root enzyme with nitrite reductase from leaf sources showed a close similarity in inhibition properties, light absorption spectrum, and electron paramagnetic resonance signals. The resemblances indicate that the root nitrite reductase is a sirohaem enzyme and that it functions in the same manner as the leaf enzyme in spite of the difference in reductant supply implicit in its location in a non-photosynthetic tissue.Abbreviations DEAE diethylaminoethyl - EPR electron paramagnetic resonance - NIR nitrite reductase - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis  相似文献   

20.
D. Kaplan  A. M. Mayer  S. H. Lips 《Planta》1978,138(3):205-209
Comparative studies of nitrate-activated nitrate reductase (NR-NO2) and nitrate-induced nitrate reductase (NR-NO3) (EC 1.6.6.2) indicate that the enzymes differ in structure, heat stability, and pH dependence, but have the same cofactor requirment. NR-NO2 developes in barley (Hordeum vulgare L. var. Dvir) seedlings as NR-NO3 disappears. A transition from the active to the inactive form of nitrate reductase takes place. Nitrite seems to activate the inactive form of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号