首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis of a novel class of compounds and their biophysical studies with TAR-RNA are presented. The synthesis of these compounds was achieved by conjugating neomycin, an aminoglycoside, with benzimidazoles modeled from a B-DNA minor groove binder, Hoechst 33258. The neomycin–benzimidazole conjugates have varying linkers that connect the benzimidazole and neomycin units. The linkers of varying length (5–23 atoms) in these conjugates contain one to three triazole units. The UV thermal denaturation experiments showed that the conjugates resulted in greater stabilization of the TAR-RNA than either neomycin or benzimidazole used in the synthesis of conjugates. These results were corroborated by the FID displacement and tat-TAR inhibition assays. The binding of ligands to the TAR-RNA is affected by the length and composition of the linker. Our results show that increasing the number of triazole groups and the linker length in these compounds have diminishing effect on the binding to TAR-RNA. Compounds that have shorter linker length and fewer triazole units in the linker displayed increased affinity towards the TAR RNA.  相似文献   

2.
Synthesis and antibacterial activity of metronidazole–triazole conjugates are reported. Total 21 hybrid compounds have been synthesized with different substitution pattern on the triazole ring in order to study their influence on the antibacterial activity. These compounds demonstrated potent to weak antibacterial activity against Gram-positive, and Gram-negative bacteria. Six compounds have shown equal or better antibacterial activity against Gram-negative strains than the reference compound.  相似文献   

3.
The synthesis of conjugates consisting of two or three mannose units interconnected by a 1,2,3-triazole linker installed by the "click" reaction is reported. These conjugates were evaluated in mycobacterial mannosyltransferase (ManT) assay. Detailed analysis of the reaction products showed that these compounds with triazole linker between sugar moieties were tolerated by the enzyme, which elongated them by one or two sugar units with α-(1→6) linkage. The effectiveness of this transfer was reduced in comparison to that observed for the acceptor analogues containing a glycosidic linkage, but still, this is the first report on such unnatural compounds serving as substrates for mycobacterial ManT. The ability of the studied compounds to function as acceptors for the ManT suggests that the relative distance and spatial orientation of acceptor octyl hydrophobic aglycone (optimal length for the ManT) and free primary C-6 hydroxy group of the nonreducing terminal mannose unit (to which glycosyl residue is transferred by the mycobacterial ManT) are important for ManT activity, but at the same time, their variations are tolerated by the enzyme in a relatively wide range.  相似文献   

4.
Surface functionalization of nanoparticles has become an important tool for in vivo delivery of bioactive agents to their target sites. Here we describe the reverse strategy, nanoharvesting, in which nanoparticles are used as a tool to isolate bioactive compounds from living cells. Anatase TiO2 nanoparticles smaller than 20 nm form strong bonds with molecules bearing enediol and especially catechol groups. We show that these nanoparticles enter plant cells, conjugate enediol and catechol group‐rich flavonoids in situ, and exit plant cells as flavonoid‐nanoparticle conjugates. The source plant tissues remain viable after treatment. As predicted by the surface chemistry of anatase TiO2 nanoparticles, quercetin‐based flavonoids were enriched amongst the nanoharvested flavonoid species. Nanoharvesting eliminates the use of organic solvents, allows spectral identification of the isolated compounds, and opens new avenues for use of nanomaterials for coupled isolation and testing of bioactive properties of plant‐synthesized compounds.  相似文献   

5.
A series of new estradiol linked pyrrolo[2,1-c][1,4]benzodiazepine (E(2)-PBD) conjugates (3a-f, 4a-f and 5a-f) with different linker architectures including a triazole moiety have been designed and synthesized. All the 18 compounds have been evaluated for their anticancer activity and it is observed that some of the compounds particularly 4c-e and 5c,d exhibited significant anticancer activity. The detailed biological aspects relating to the cell cycle effects and tubulin depolymerization activity have been examined with a view to understand the mechanism of action of these conjugates. Among all these conjugates, one of the compound 5c could be considered as the most effective compound particularly against MCF-7 breast cancer cell line.  相似文献   

6.

Background

Cyclodextrins (CDs) in combination with therapeutic proteins and other bioactive compounds have been proposed as candidates that show enhanced chemical and enzymatic stability, better absorption, slower plasma clearance and improved dose–response curves or immunogenicity. As a result, an important number of therapeutic complexes between cyclodextrins and bioactive compounds capable to control several diseases have been developed.

Results

In this article, the synthesis and the structural study of a conjugate between a luteinizing hormone-releasing hormone (LHRH) analogue, related to the treatment of hormone dependent cancer and fertility, and modified β-cyclodextrin residue are presented. The results show that both the phenyl group of tyrosine (Tyr) as well as the indole group of tryptophan (Trp) can be encapsulated inside the cyclodextrin cavity. Solution NMR experiments provide evidence that these interactions take place intramolecularly and not intermolecularly.

Conclusions

The study of a LHRH analogue conjugated with modified β-cyclodextrin via high field NMR and MD experiments revealed the existence of intramolecular interactions that could lead to an improved drug delivery.

General significance

NMR in combination with MD simulation is of great value for a successful rational design of peptide–cyclodextrin conjugates showing stability against enzymatic proteolysis and a better pharmacological profile.  相似文献   

7.
Triplex-forming oligonucleotides (TFOs) are among the most specific DNA ligands and represent an important tool for specific regulation of gene expression. TFOs have also been used to target DNA-modifying molecules to obtain irreversible modifications on a specific site of the genome. A number of molecules have been recognized to target topoisomerase II and stabilize double-stranded cleavage mediated by this enzyme thus determining permanent DNA damage. Among these poisons, etoposide (VP16), a 4'-demethylepipodophyllotoxin derivative, is widely used in cancer chemotherapy. In the aim to design DNA site-specific molecules, three analogues of VP16 (1, 2, and 3), recently described (Duca et al. J. Med. Chem. 2005, 48, 596-603), were attached to TFOs, together with a fourth one, of which the synthesis is reported here. Two different oligonucleotides, differing by the length (a 16-mer and a 20-mer), and two different linker arms between the oligonucleotide and the drug were used. The coupling reaction between the drug and the TFO was further improved. For the first time, we also report the synthesis of TFO conjugates bearing two molecules of inhibitor linked to the same oligonucleotide end. In total, 16 new conjugates were synthesized and evaluated for their ability to form triple helices. The loss in triplex stability due to the conjugation of the TFO to compounds that do not interact with DNA is compensated by the presence of the ethylene glycol linker arm. This stabilization effect is more pronounced at the 3' end than at the 5' end. All conjugates form a stable triplex selectively on the DNA target at 37 degrees C and pH 7.2.  相似文献   

8.
Cell-penetrating peptides (CPPs), which are usually short basic peptides, are able to cross cell membranes and convey bioactive cargoes inside cells. CPPs have been widely used to deliver inside cells peptides, proteins, and oligonucleotides; however, their entry mechanisms still remain controversial. A major problem concerning CPPs remains their lack of selectivity to target a specific type of cell and/or an intracellular component. We have previously shown that myristoylation of one of these CPPs affected the intracellular distribution of the cargo. We report here on the synthesis of glycosylated analogs of the cell-penetrating peptide (R6/W3): Ac-RRWWRRWRR-NH2. One, two, or three galactose(s), with or without a spacer, were introduced into the sequence of this nonapeptide via a triazole link, the Huisgen reaction being achieved on a solid support. Four of these glycosylated CPPs were coupled via a disulfide bridge to the proapoptotic KLAK peptide, (KLAKLAKKLAKLAK), which alone does not enter into cells. The effect on cell viability and the uptake efficiency of different glycosylated conjugates were studied on CHO cells and were compared to those of the nonglycosylated conjugates: (R6/W3)S-S-KLAK and penetratinS-S-KLAK. We show that glycosylation significantly increases the cell viability of CHO cells compared to the nonglycosylated conjugates and concomitantly decreases the internalization of the KLAK cargo. These results suggest that glycosylation of CPP may be a key point in targeting specific cells.  相似文献   

9.
In the last decade the screening of microalgae, especially the cyanobacteria (blue-green algae), for antibiotics and pharmacologically active compounds has received ever increasing interest. A large number of antibiotic compounds, many with novel structures, have been isolated and characterised. Similarly many cyanobacteria have been shown to produce antiviral and antineoplastic compounds. A range of pharmacological activities have also been observed with extracts of microalgae, however the active principles are as yet unknown in most cases. Several of the bioactive compounds may find application in human or veterinary medicine or in agriculture. Others should find application as research tools or as structural models for the development of new drugs. The microalgae are particularly attractive as natural sources of bioactive molecules since these algae have the potential to produce these compounds in culture which enables the production of structurally complex molecules which are difficult or impossible to produce by chemical synthesis.  相似文献   

10.
Radioiodinated ubiquitin was introduced into HeLa cells by erythrocyte-mediated microinjection. Subsequent electrophoretic analyses revealed that the injected ubiquitin molecules were rapidly conjugated to HeLa proteins. At equilibrium, 10% of the injected ubiquitin was conjugated to histones and 40% was distributed among conjugates of higher molecular weight. Although the remaining ubiquitin molecules appeared to be unconjugated, the free pool of ubiquitin decreased by one-third and additional conjugates were present when electrophoresis was performed at low temperature under nonreducing conditions. Molecular weights of these labile conjugates suggest that they are ubiquitin adducts in thiolester linkage to activating enzymes. Despite the fairly rapid degradation of injected ubiquitin (t1/2 approximately 10-20 h), the size distribution of ubiquitin conjugates within interphase HeLa cells remained constant for at least 24 h after injection. The intracellular locations of ubiquitin and ubiquitin conjugates were determined by autoradiography, by differential sedimentation of subcellular fractions in sucrose, and by extraction of injected cells with buffer containing Triton X-100. Free ubiquitin was found mostly in the cytosolic or Triton X-100-soluble fractions. As expected, histone conjugates were located predominately in the nuclear fraction and exclusively in the Triton X-100-insoluble fraction. Although high molecular weight conjugates were enriched in the Triton X-100-insoluble fraction, their size distribution was similar to that of soluble conjugates. When injected HeLa cells were exposed to cycloheximide to inhibit protein synthesis, the size distribution of ubiquitin conjugates was similar to that found in untreated cells. Moreover, high molecular weight conjugates decreased less than 20% after inhibition of protein synthesis. These results indicate that most ubiquitin conjugates are not newly synthesized proteins which have been marked for destruction.  相似文献   

11.
A library of purine and pyrimidine nucleosides modified with carborane or metallacarborane boron clusters at different locations, consisting of new molecules as well as already described compounds, was prepared. The compounds were tested as substrates for human deoxynucleoside kinases. Some conjugates, with modification attached to N3 of thymidine via a linker containing the triazole moiety, were efficiently phosphorylated by cytosolic thymidine kinase 1 and mitochondrial thymidine kinase 2. Higher phosphorylation levels were observed with thymidine kinase 1, the phosphorylation of nucleosides modified with metallacarboranes was observed for the first time.  相似文献   

12.
Though the delivery of siRNA into cells, tissues or organs remains to be a big obstacle for its applications, recently siRNA therapeutics has developed rapidly and already there are clinical trials ongoing or planned. Some non-viral vectors have attracted much more attention and shown the great potential for combating the delivery obstacle. As a novel class of lipid like materials lipidoids have the advantages of easy synthesis and large library of compounds. Cell penetrating peptides and chitosans have been used for the delivery of bioactive molecules for many years, but they are showing great promise for the delivery of siRNA. The hybrids of inorganic particles and the conjugates of siRNA have indicated the complex utilization different materials may provide another solution to the delivery problem. The most exciting thing is some clinical trials are undergoing, which provokes the hope of real curing method by using RNAi mediated by some non-viral vectors.  相似文献   

13.
Macrocyclic molecules can serve as ion carriers when their polar groups form an inner cage to capture ions while their hydrophobic groups form an outer layer to dissolve the molecule in lipid membranes. A “template method” has been developed for high-yield synthesis of a whole variety of macrocyclic esters, amides, and other families which may show ionophoric properties. In order to select the more promising compounds for synthesis, energetic and conformational characteristics of such molecules have been calculated from empirical energy functions. Calculations are examined using known structures and are employed to predict the properties of molecules not yet synthesized.  相似文献   

14.
15.
Arenediyne–isoxazolidine conjugates have been synthesized as a new scaffold for the development of bioactive mimics. Some of the synthesized compounds are endowed with antiproliferative activity against three human cancer cell lines. Their thermal reactivity suggests that the biological activity probably could not be linked to the Bergman cyclization.  相似文献   

16.
Nature products have been extensively used in the discovery and development of new drugs, as the most important source of drugs. The triazole ring is one of main pharmacophore of the nitrogen-containing heterocycles. Thus, a new class of triazole-containing natural product conjugates has been synthesised. These compounds reportedly exert anticancer, anti-inflammatory, antimicrobial, antiparasitic, antiviral, antioxidant, anti-Alzheimer, and enzyme inhibitory effects. This review summarises the research progress of triazole-containing natural product derivatives involved in medicinal chemistry in the past six years. This review provides insights and perspectives that will help scientists in the fields of organic synthesis, medicinal chemistry, phytochemistry, and pharmacology.  相似文献   

17.
Betula alleghaniensis and B. papyrifera are widely distributed in the province of Québec (Canada) and, since these trees are valuable exports for the local lumber industry, large amounts of their residual ligneous biomass are available for further exploitation. Betula species are well known for their significant concentrations of triterpenes, some of which were recently discovered to present promising bioactivity. The secondary transformation of birch biomass could therefore become important for many industries, particularly the pharmaceutical industry. In the present study, extracts from birch sawdust were obtained using an optimised ultrasound-assisted extraction in which the careful choice of temperature permitted a selective extraction of the targeted triterpenes. Moreover, compared with the classical Soxhlet method, higher extraction yields were obtained in a shorter time. The lipophilic extracts obtained using dichloromethane as a solvent were analysed by GC-MS and the major compounds identified as lupane-type cyclic triterpenoids accompanied by the non-cyclic triterpene squalene. Numerous aliphatic long-chain fatty acids were also found in the extracts together with phytosterols. Betulonic acid and squalene, the major extract constituents for both B. alleghaniensis and B. papyrifera, are both bioactive molecules.  相似文献   

18.
We have previously demonstrated that transferrin-polycation conjugates are efficient carrier molecules for the introduction of genes into eukaryotic cells. We describe here a more specific method for conjugation of transferrin with DNA-binding compounds involving attachment at the transferrin carbohydrate moiety. We used the polycation poly(L-lysine) or the DNA intercalator, ethidium homodimer as DNA-binding domains. Successful transferrin-receptor-mediated delivery and expression of the Photinus pyralis luciferase gene in K562 cells has been shown with these new transferrin conjugates. The activity of the transferrin-ethidium homodimer (TfEtD) conjugates is low relative to transferrin-polylysine conjugates; probably because of incomplete condensation of the DNA. However, DNA delivery with TfEtD is drastically improved when ternary complexes of the DNA with TfEtD and the DNA condensing agent polylysine are prepared. The gene delivery with the carbohydrate-linked transferrin-polylysine conjugates is equal or superior to described conjugates containing disulfide linkage. The new ligation method facilitates the synthesis of large quantities (greater than 100 mg) of conjugates.  相似文献   

19.
The search for novel biologically active molecules has extended to the screening of organisms associated with less explored environments. In this sense, Oceans, which cover nearly the 67% of the globe, are interesting ecosystems characterized by a high biodiversity that is worth being explored. As such, marine microorganisms are highly interesting as promising sources of new bioactive compounds of potential value to humans. Some of these microorganisms are able to survive in extreme marine environments and, as a result, they produce complex molecules with unique biological interesting properties for a wide variety of industrial and biotechnological applications. Thus, different marine microorganisms (fungi, myxomycetes, bacteria, and microalgae) producing compounds with antioxidant, antibacterial, apoptotic, antitumoral and antiviral activities have been already isolated. This review compiles and discusses the discovery of bioactive molecules from marine microorganisms reported from 2018 onwards. Moreover, it highlights the huge potential of marine microorganisms for obtaining highly valuable bioactive compounds.  相似文献   

20.
As the linker between the A chain and B chain of proinsulin, C-peptide displays high variability in length and amino acid composition, and has been considered as an inert byproduct of insulin synthesis and processing for many years. Recent studies have suggested that C-peptide can act as a bioactive hormone, exerting various biological effects on the pathophysiology and treatment of diabetes. In this study, we analyzed the coevolution of insulin molecules among vertebrates, aiming at exploring the evolutionary characteristics of insulin molecule, especially the C-peptide. We also calculated the correlations of evolutionary rates between the insulin and the insulin receptor (IR) sequences as well as the domain-domain pairs of the ligand and receptor by the mirrortree method. The results revealed distinctive features of C-peptide in insulin intramolecular coevolution and correlated residue substitutions, which partly supported the idea that C-peptide can act as a bioactive hormone, with significant sequence features, as well as a linker assisting the formation of mature insulin during synthesis. Interestingly, the evolution of C-peptide exerted the highest correlation with that of the insulin receptor and its ligand binding domain (LBD), implying a potential relationship with the insulin signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号