首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aging is influenced by endocrine pathways including the growth hormone/insulin‐like growth factor‐1 (GH/IGF) axis. Mitochondrial function has also been linked to the aging process, but the relevant mitochondrial signals mediating the effects of mitochondria are poorly understood. Humanin is a novel signaling peptide that acts as a potent regulator of cellular stress responses and protects from a variety of in vitro and in vivo toxic and metabolic insults. The circulating levels of humanin decline with age in mice and humans. Here, we demonstrate a negative correlation between the activity of the GH‐IGF axis and the levels of humanin, as well as a positive correlation between humanin and lifespan in mouse models with altered GH/IGF‐I axis. Long‐lived, GH‐deficient Ames mice displayed elevated humanin levels, while short‐lived GH‐transgenic mice have reduced humanin levels. Furthermore, treatment with GH or IGF‐I reduced circulating humanin levels in both mice and human subjects. Our results indicate that GH and IGF are potent regulators of humanin levels and that humanin levels correlate with lifespan in mice. This suggests that humanin represents a circulating mitochondrial signal that participates in modulating the aging process, adding a coordinated mitochondrial element to the endocrine regulation of aging.  相似文献   

2.
Growth hormone (GH) in rhesus macaque in vitro oocyte maturation (IVM) has been shown to increase cumulus expansion and development of embryos to the 9–16 cell stage in response to 100 ng/ml recombinant human GH (r‐hGH) supplementation during IVM. Although developmental endpoints for metaphase II (MII) oocytes and embryos are limited in the macaque, gene expression analysis can provide a mechanism to explore GH action on IVM. In addition, gene expression analysis may allow molecular events associated with improved cytoplasmic maturation to be detected. In this study, gene expression of specific mRNAs in MII oocytes and cumulus cells that have or have not been exposed to r‐hGH during IVM was compared. In addition, mRNA expression was compared between in vitro and in vivo‐matured metaphase II (MII) oocytes and germinal vesicle (GV)‐stage oocytes. Only 2 of 17 genes, insulin‐like growth factor 2 (IGF2) and steroidogenic acute regulator (STAR), showed increased mRNA expression in MII oocytes from the 100 ng/ml r‐hGH treatment group compared with other IVM treatment groups, implicating insulin‐like growth factor (IGF) and steroidogenesis pathways in the oocyte response to GH. The importance of IGF2 is notable, as expression of IGF1 was not detected in macaque GV‐stage or MII oocytes or cumulus cells. Mol. Reprod. Dev. 77: 353–362, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
The effect of feed cycling (consisting of periods of starvation followed by periods of refeeding to satiation) on compensatory growth was evaluated in growth hormone transgenic and non‐transgenic wild‐type coho salmon Oncorhynchus kisutch. The specific growth rate (GSR) of feed‐restricted non‐transgenic O. kisutch was not significantly different from the GSR of fully‐fed non‐transgenic O. kisutch during two refeeding periods, whereas the GSR of feed‐restricted transgenic O. kisutch was significantly higher in relation to the GSR of fully‐fed transgenic O. kisutch during the second refeeding period, but not during the first, indicating that growth compensation mechanisms are different between non‐transgenic and growth‐hormone (GH)‐transgenic O. kisutch and may depend on life history (i.e. previous starvation). Despite the non‐significant growth rate compensation in non‐transgenic O. kisutch, these fish showed a level of body mass catch‐up growth not displayed by transgenic O. kisutch.  相似文献   

4.
Reduced growth hormone (GH) signaling has been consistently associated with increased health and lifespan in various mouse models. Here, we assessed GH secretion and its control in relation with human familial longevity. We frequently sampled blood over 24 h in 19 middle‐aged offspring of long‐living families from the Leiden Longevity Study together with 18 of their partners as controls. Circulating GH concentrations were measured every 10 min and insulin‐like growth factor 1 (IGF‐1) and insulin‐like growth factor binding protein 3 (IGFBP3) every 4 h. Using deconvolution analysis, we found that 24‐h total GH secretion was 28% lower (P = 0.04) in offspring [172 (128–216) mU L?1] compared with controls [238 (193–284) mU L?1]. We used approximate entropy (ApEn) to quantify the strength of feedback/feedforward control of GH secretion. ApEn was lower (P = 0.001) in offspring [0.45 (0.39–0.53)] compared with controls [0.66 (0.56–0.77)], indicating tighter control of GH secretion. No significant differences were observed in circulating levels of IGF‐1 and IGFBP3 between offspring and controls. In conclusion, GH secretion in human familial longevity is characterized by diminished secretion rate and more tight control. These data imply that the highly conserved GH signaling pathway, which has been linked to longevity in animal models, is also associated with human longevity.  相似文献   

5.
Longitudinal bone growth is a tightly regulated process that relies on complex synchronized mechanisms at the growth plate. Chronic paediatric inflammatory diseases are well accepted to lead to growth retardation and this is likely due to raised inflammatory cytokine levels and reduced growth hormone (GH)/insulin‐like growth factor‐1 (IGF‐I) signalling. The precise cellular mechanisms responsible for this inhibition are unclear and therefore in this article, we will review the potential interactions between inflammatory cytokines and the GH/IGF‐I axis in the regulation of bone growth. In particular, we will emphasis the potential contribution of the suppressors of cytokine signalling (SOCS) proteins, and in particular SOCS2, in mediating this process. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Young‐onset calorie restriction (CR) in rodents decreases serum IGF‐1 concentration and increases serum corticosterone levels, which have been hypothesized to play major roles in mediating its anticancer and anti‐aging effects. However, little is known on the effects of CR on the IGF‐1 system and cortisol in humans. To test the sustained effects of CR on these key hormonal adaptations, we performed a multicenter randomized trial of a 2‐year 25% CR intervention in 218 nonobese (body mass index between 22 and 27.8 kg m?2) young and middle‐aged (20–50 years age range) men and women. Average CR during the first 6 months was 19.5 ± 0.8% and 9.1 ± 0.7% over the next 18 months of the study. Weight loss averaged 7.6 ± 0.3 kg over the 2‐years period of which 71% was fat mass loss (P < 0.0001). Average CR during the CR caused a significant 21% increase in serum IGFBP‐1 and a 42% reduction in IGF‐1:IGFBP‐1 ratio at 2 years (P < 0.008), but did not change IGF‐1 and IGF‐1:IGFBP‐3 ratio levels. Serum cortisol concentrations were slightly but significantly increased by CR at 1 year only (P = 0.003). Calorie restriction had no effect on serum concentrations of PDGF‐AB and TGFβ‐1. We conclude, on the basis of the present and previous findings, that, in contrast to rodents, humans do not respond to CR with a decrease in serum IGF‐1 concentration or with a sustained and biological relevant increase in serum cortisol. However, long‐term CR in humans significantly and persistently increases serum IGFBP‐1 concentration.  相似文献   

7.
8.
Insulin and insulin‐like growth factor 1 (IGF‐1) are evolutionarily conserved hormonal signalling molecules, which influence a wide array of physiological functions including metabolism, growth and development. Using genetic mouse studies, both insulin and IGF‐1 have been shown to be anabolic agents in osteoblasts and bone development primarily through the activation of Akt and ERK signalling pathways. In this study, we examined the temporal signalling actions of insulin and IGF‐1 on primary calvarial osteoblast growth and differentiation. First, we observed that the IGF‐1 receptor expression decreases whereas insulin receptor expression increases during osteoblast differentiation. Subsequently, we show that although both insulin and IGF‐1 promote osteoblast differentiation and mineralization in vitro, IGF‐1, but not insulin, can induce osteoblast proliferation. The IGF‐1‐induced osteoblast proliferation was mediated via both MAPK and Akt pathways because the IGF‐1‐mediated cell proliferation was blocked by U0126, an MEK/MAPK inhibitor, or LY294002, a PI3‐kinase inhibitor. Osteocalcin, an osteoblast‐specific protein whose expression corresponds with osteoblast differentiation, was increased in a dose‐ and time‐dependent manner after insulin treatment, whereas it was decreased with IGF‐1 treatment. Moreover, insulin treatment dramatically induced osteocalcin promoter activity, whereas IGF‐1 treatment significantly inhibited it, indicating direct effect of insulin on osteocalcin synthesis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The Growth hormone (GH)/insulin-like growth factor (IGF) system promotes embryonic growth in higher vertebrates. Such a system exists in salmonids, but exhibits an additional level of complexity resulting from a recent whole genome tetraploidisation. Thus, two nonallelic GH genes are present in the trout genome. Although the two GH genes are similar, the possibility remains that the two genes have evolved separately, acquiring a distinct expression pattern. In this study, using whole mounted in situ hybridisation, we observed a one stage delay between the appearance of GH-2 (Stage 22) and GH-1 (Stage 23) soon after pituitary formation (Stage 21). In addition, by double in situ hybridisation, we clearly evidenced two types of somatotroph, one expressing only GH-2 and the other type both GH-1 and GH-2 at Stage 24. Consequently, at this stage more cells expressed GH-2 than GH-1 as confirmed by quantitative RT-PCR. However at hatching, as in adult, the difference between the expression of the two GH genes was no longer observed. In addition, our immunohistochemical studies did not show any delay between the expression of the mRNA and its translation as a protein at Stage 24. A comparison of the expression pattern of the IGF system components (IGF-1, IGF-2, and the receptor type I) determined by real time RT-PCR, have shown an IGF-1 mRNA increase concomitantly to the appearance of GH expression. On the whole, our results demonstrate a differential regulation of GH-1 and GH-2 genes in rainbow trout embryo. The relationship observed between the expression of different component of the GH/IGF system seems to indicate that this system could be functional early on during embryonic development.  相似文献   

10.
Lifespan in rodents is prolonged by caloric restriction (CR) and by mutations affecting the somatotropic axis. It is not known if CR can alter the age‐associated decline in growth hormone (GH), insulin‐like growth factor (IGF)‐1 and GH secretion. To evaluate the effect of CR on GH secretory dynamics; forty‐three young (36.8 ± 1.0 years), overweight (BMI 27.8 ± 0.7) men (n = 20) and women (n = 23) were randomized into four groups; control = 100% of energy requirements; CR = 25% caloric restriction; CR + EX = 12.5% CR + 12.5% increase in energy expenditure by structured exercise; LCD = low calorie diet until 15% weight reduction followed by weight maintenance. At baseline and after 6 months, body composition (DXA), abdominal visceral fat (CT) 11 h GH secretion (blood sampling every 10 min for 11 h; 21:00–08:00 hours) and deconvolution analysis were measured. After 6 months, weight (control: ?1 ± 1%, CR: ?10 ± 1%, CR + EX: ?10 ± 1%, LCD: ?14 ± 1%), fat mass (control: ?2 ± 3%, CR: ?24 ± 3%, CR + EX: ?25 ± 3%, LCD: ?31 ± 2%) and visceral fat (control: ?2 ± 4%, CR: ?28 ± 4%, CR + EX: ?27 ± 3%, LCD: ?36 ± 2%) were significantly (P < 0.001) reduced in the three intervention groups compared to control. Mean 11 h GH concentrations were not changed in CR or control but increased in CR + EX (P < 0.0001) and LCD (P < 0.0001) because of increased secretory burst mass (CR + EX: 34 ± 13%, LCD: 27 ± 22%, P < 0.05) and amplitude (CR + EX: 34 ± 14%, LCD: 30 ± 20%, P < 0.05) but not to changes in secretory burst frequency or GH half‐life. Fasting ghrelin was significantly increased from baseline in all three intervention groups; however, total IGF‐1 concentrations were increased only in CR + EX (10 ± 7%, P < 0.05) and LCD (19 ± 4%, P < 0.001). A 25% CR diet for 6 months does not change GH, GH secretion or IGF‐1 in nonobese men and women.  相似文献   

11.
12.
Epigenetic regulation of imprinted genes during embryonic development is influenced by the prenatal environment. Our aim was to examine the effect of maternal emotional stress and cortisol levels during pregnancy on methylation of imprinted genes, insulin‐like growth factor 2 (IGF2) and guanine nucleotide‐binding protein, alpha stimulating extra‐large (GNASXL), using umbilical cord blood DNA. Maternal depressed mood (Edinburgh Depression Scale; EDS), pregnancy‐related anxiety questionnaire (PRAQ) and cortisol day profiles were assessed throughout pregnancy. At birth, a cord blood sample (n = 80) was taken to study DNA methylation of IGF2 DMR0 (differentially methylated region), IGF2 anti‐sense (IGF2AS) and GNASXL using Sequenom Epi TYPER. Linear mixed models were used to examine the relationship between DNA methylation and maternal stress, while correcting for confounders. We also studied the association of DNA methylation with the child ponderal index at birth. We found a cytosine–guanine dinucleotide (CpG)‐specific association of PRAQ subscales with IGF2 DMR0 (CpG5, P < 0.0001) and GNASXL (CpG11, P = 0.0003), while IGF2AS was associated with maternal EDS scores (CpG33, P = 0.0003) and cortisol levels (CpG33, P = 0.0006; CpG37‐38, P = 0.0005). However, there was no association of methylation with ponderal index at birth. In conclusion, maternal stress during pregnancy, as defined by cortisol measurements, EDS and PRAQ scores, is associated with DNA methylation of imprinted genes IGF2 and GNASXL. Our results provide further evidence that prenatal adversity can influence imprinted gene methylation, although future studies are needed to unravel the exact mechanisms.  相似文献   

13.
Exogenous gonadotropins frequently are used to stimulate ovarian follicular growth and ovulation in mammalian species, including felids. However, repeated exogenous gonadotropin treatment can result in decreased ovarian responsiveness due to antibody formation. In this study, our objectives were to assess the effectiveness of alternating gonadotropin regimens on ovarian responses in ocelots and tigrinas, and investigate the humoral immune responses to these gonadotropins in each species. Females were treated four to six times with alternating equine chorionic gonadotropin (eCG)/human chorionic gonadotropin (hCG) and porcine follicle stimulating hormone (pFSH)/luteinizing hormone (pLH) regimens at 4‐month intervals. With each treatment, the females were evaluated laparoscopically to assess ovarian follicular development and recover oocytes from mature follicles. Blood was collected before each treatment and at laparoscopy. Overall, the ocelots averaged more (P<0.05) follicles and corpus luteum (CL) (6.8±0.8; mean±SEM) per stimulation than the tigrinas (2.3±0.4), but the percentage of mature oocytes (mean range=54–55%) did not differ (P<0.05). Within species, both gonadotropin regimens were equally effective (P>0.05) in inducing follicular growth and oocyte maturation. The total number of ovarian structures and oocyte maturation percentages did not decrease (P<0.05) in either species with sequential stimulations. Although the percentage of blood samples containing anti‐gonadotropin immunoglobulins increased (P<0.05) with sequential treatment, the presence of positive titers did not cause a decrease (P<0.05) in ovarian responsiveness. In summary, the female ocelots and tigrinas continued to respond to these alternating ovarian stimulation protocols after repeated use, despite the formation of anti‐gonadotropin antibodies in some of the females. These findings suggest that the use of alternating gonadotropin regimens may permit more intensive reproductive management of these endangered cat species for conservation. Zoo Biol 00:1–14, 2005. © 2005 Wiley‐Liss, Inc.  相似文献   

14.
The membrane‐bound rat GH‐R and an alternatively spliced isoform, the soluble rat GH‐BP, are comprised of identical N‐terminal GH‐binding domains; however, their C‐terminal sequences differ. Immunological reagents are needed to distinguish between the two isoforms in order to understand their respective roles in mediating the actions of GH. Accordingly, a tetravalent MAP dendrimer with four identical branches of a C‐terminal peptide sequence of the rat GH‐BP (GH‐BP263–279) was synthesized and used as an immunogen in rabbits. Solid‐phase peptide synthesis of four GH‐BP263–279 segments onto a tetravalent Lys2‐Lys‐β‐Ala‐OH core peptide was carried out using Fmoc chemistry. The mass of the RP‐HPLC‐purified synthetic product, 8398 Da, determined by ESI‐MS, was identical to expected mass. Three anti‐rat GH‐BP263–279 MAP antisera, BETO‐8039, BETO‐8040, and BETO‐8041, at dilutions of 10?3, recognized both the rat GH‐BP263–279 MAP and recombinant mouse GH‐BP with ED50s within a range of 5–10 fmol, but did not cross‐react with BSA in dot blot analyses. BETO‐8041 antisera (10?3 dilution) recognized GH‐BPs of rat serum and liver having Mrs ranging from 35 to 130 kDa, but did not recognize full‐length rat GH‐Rs. The antisera also detected recombinant mouse GH‐BPs. In summary, the tetravalent rat GH‐BP263–279 MAP dendrimer served as an effective immunogenic antigen in eliciting high titer antisera specific for the C‐termini of both rat and mouse GH‐BPs. The antisera will facilitate studies aimed at improving our understanding of the biology of GH‐BPs. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
Insulin‐like growth factor‐I (IGF‐I) is a key component of the complex system that regulates differentiation, development, growth and reproduction of fishes. The IGF‐I gene is mainly expressed in the liver that represents the principal source of endocrine IGF‐I but also in numerous other organs where the hormone most probably acts in an autocrine–paracrine manner. The primary stimulus for synthesis and release of IGF‐I is growth hormone (GH) from the anterior pituitary. Thus, in analogy to mammals, it is usual to speak of a fish ‘GH–IGF‐I axis'. The GH–IGF‐I system is affected by changes in the environment and probably represents a target of endocrine disrupting compounds (EDC) that impair many physiological processes in fishes. Thus, the review deals with the influences of changes in different environmental factors, such as food availability, temperature, photoperiod, season, salinity and EDCs, on GH gene expression in pituitary, IGF‐I gene expression in liver and extrahepatic sites and the physiological effects resulting from the evoked alterations in endocrine and local IGF‐I. Environmental influences certainly interact with each other but for convenience of the reader they will be dealt with in separate sections. Current trends in GH–IGF‐I research are analysed and future focuses are suggested at the end of the sections.  相似文献   

16.
To investigate the alterations of glucose homeostasis and variables of the insulin‐like growth factor‐1 (IGF‐1) growth system in sedentary and trained diabetic (TD) rats, Wistar rats were divided into sedentary control (SC), trained control (TC), sedentary diabetic (SD), and TD groups. Diabetes was induced by Alloxan (35 mg kg?1 b.w.). Training program consisted of swimming 5 days week?1, 1 h day?1, during 8 weeks. Rats were sacrificed and blood was collected for determinations of serum glucose, insulin, growth hormone (GH), IGF‐1, and IGF binding protein‐3 (IGFBP‐3). Muscle and liver were removed to evaluate glycogen content. Cerebellum was extracted to determinate IGF‐1 content. Diabetes decreased serum GH, IGF‐1, IGFBP‐3, liver glycogen, and cerebellum IGF‐1 peptide content in baseline condition. Physical training recovered liver glycogen and increased serum and cerebellum IGF‐1 peptide in diabetic rats. Physical training induces important metabolic and hormonal alterations that are associated with an improvement in glucose homeostasis and serum and cerebellum IGF‐1 concentrations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Implantation of peripheral blood aspirates induced towards chondrogenic differentiation upon genetic modification in sites of articular cartilage injury may represent a powerful strategy to enhance cartilage repair. Such a single‐step approach may be less invasive than procedures based on the use of isolated or concentrated MSCs, simplifying translational protocols in patients. In this study, we provide evidence showing the feasibility of overexpressing the mitogenic and pro‐anabolic insulin‐like growth factor I (IGF‐I) in human peripheral blood aspirates via rAAV‐mediated gene transfer, leading to enhanced proliferative and chondrogenic differentiation (proteoglycans, type‐II collagen, SOX9) activities in the samples relative to control (reporter rAAV‐lacZ) treatment over extended periods of time (at least 21 days, the longest time‐point evaluated). Interestingly, IGF‐I gene transfer also triggered hypertrophic, osteo‐ and adipogenic differentiation processes in the aspirates, suggesting that careful regulation of IGF‐I expression may be necessary to contain these events in vivo. Still, the current results demonstrate the potential of targeting human peripheral blood aspirates via therapeutic rAAV transduction as a novel, convenient tool to treat articular cartilage injuries.  相似文献   

18.
Obesity is a major health problem that courses with severe comorbidities and a drastic impairment of homeostasis and function of several organs, including the prostate gland (PG). The endocrine–metabolic regulatory axis comprising growth hormone (GH), insulin and IGF1, which is drastically altered under extreme metabolic conditions such as obesity, also plays relevant roles in the development, modulation and homeostasis of the PG. However, its implication in the pathophysiological interplay between obesity and prostate function is still to be elucidated. To explore this association, we used a high fat–diet obese mouse model, as well as in vitro primary cultures of normal‐mouse PG cells and human prostate cancer cell lines. This approach revealed that most of the components of the GH/insulin/IGF1 regulatory axis are present in PGs, where their expression pattern is altered under obesity conditions and after an acute insulin treatment (e.g. Igfbp3), which might have some pathophysiological implications. Moreover, our results demonstrate, for the first time, that the PG becomes severely insulin resistant under diet‐induced obesity in mice. Finally, use of in vitro approaches served to confirm and expand the conception that insulin and IGF1 play a direct, relevant role in the control of normal and pathological PG cell function. Altogether, these results uncover a fine, germane crosstalk between the endocrine–metabolic status and the development and homeostasis of the PG, wherein key components of the GH, insulin and IGF1 axes could play a relevant pathophysiological role.  相似文献   

19.
The aim of the current investigations was to examine the effects of a low‐carbohydrate high‐fat diet (LC‐HFD) on body weight, body composition, growth hormone (GH), IGF‐I, and body weight regain after stopping the dietary intervention and returning the diet back to standard laboratory chow (CH). In study one, both adolescent and mature male Wistar rats were maintained on either an isocaloric LC‐HFD or CH for 16 days before having their diet switched. In study two, mature rats were maintained on either LC‐HFD or CH for 16 days to determine the effects of the LC‐HFD on fat pad weight. LC‐HFD leads to body weight loss in mature rats (P < 0.01) and lack of body weight gain in adolescent rats (P < 0.01). Despite less body weight, increased body fat was observed in rats maintained on LC‐HFD (P < 0.05). Leptin concentrations were higher (P < 0.05), and IGF‐I (P < 0.01) concentrations were reduced in the LC‐HFD rats. When the diet was returned to CH following LC‐HFD, body weight regain was above and beyond that which was lost (P < 0.01). The LC‐HFD resulted in increased body fat and had a negative effect upon both GH and IGF‐I concentrations, which might have implications for the accretion and maintenance of lean body mass (LBM), normal growth rate and overall metabolic health. Moreover, when the LC‐HFD ceases and a high‐carbohydrate diet follows, more body weight is regained as compared to when the LC‐HFD is consumed, in the absence of increased energy intake.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号