首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dental stem cell proliferation and osteoblast differentiation are key cellular processes involved in periodontitis diseases. Researchers have found that SIRT1 (sirtuin 1, silent mating type information regulation 2 homolog 1) and microRNAs play a pivotal role in the process, but a clear underlying mechanism has not been determined. In this study, the has‐miR‐22‐3p that target SIRT1 was predicted by TargetScan. Luciferase reporter assay was used to confirm that SIRT1 is the direct target of miR‐22‐3p. Importantly, miR‐22‐3p was revealed to control SIRT1 in periodontal ligament stem cell (PDLSC) and to regulate the proliferation and differentiation of PDLSC by SIRT1 silencing. Furthermore, we detected the induction of miR‐22‐3p expression by nicotinamide treatment on PDLSC. Induction of PDLSC proliferation and differentiation by nicotinamide treatment was blocked by miR‐22‐3p knockdown. These results suggested that the effect of nicotinamide on PDLSC is through miR‐22‐3p. In addition, miR‐22‐3p also upregulated the expression levels of the inflammatory cytokines tumor necrosis factor‐α, interleukin‐1β (IL‐1β), and IL‐8 in PDLSC through SIRT1 pathway and downregulated the expression of TLR‐2 and TLR‐4. miR‐22‐3p is a new target either for the treatment of periodontitis or the improvement of inflammation caused by orthodontics.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Human periodontal ligament stem cells (hPDLSCs) are a promising source in regenerative medicine. Due to the complexity and heterogeneity of hPDLSCs, it is critical to isolate homogeneous hPDLSCs with high regenerative potential. In this study, p75 neurotrophin receptor (p75NTR) was used to isolate p75NTR+ and p75NTR? hPDLSCs by fluorescence‐activated cell sorting. Differences in osteogenic differentiation among p75NTR+, p75NTR? and unsorted hPDLSCs were observed. Differential gene expression profiles between p75NTR+ and p75NTR? hPDLSCs were analysed by RNA sequencing. α1 Integrin (ITGA1) small interfering RNA and ITGA1‐overexpressing adenovirus were used to transfect p75NTR+ and p75NTR? hPDLSCs. The results showed that p75NTR+ hPDLSCs demonstrated superior osteogenic capacity than p75NTR? and unsorted hPDLSCs. Differentially expressed genes between p75NTR+ and p75NTR? hPDLSCs were highly involved in the extracellular matrix‐receptor interaction signalling pathway, and p75NTR+ hPDLSCs expressed higher ITGA1 levels than p75NTR? hPDLSCs. ITGA1 silencing inhibited the osteogenic differentiation of p75NTR+ hPDLSCs, while ITGA1 overexpression enhanced the osteogenic differentiation of p75NTR? hPDLSCs . These findings indicate that p75NTR optimizes the osteogenic potential of hPDLSCs by up‐regulating ITGA1 expression, suggesting that p75NTR can be used as a novel cell surface marker to identify and purify hPDLSCs to promote their applications in regenerative medicine.  相似文献   

12.
High‐mobility group box 1 (HMGB1) has been reported to attenuate ventricular remodeling, but its mechanism remains mostly unresolved. Transforming growth factor‐beta (TGF‐β) is a crucial mediator in the pathogenesis of post‐infarction remodeling. Our study focused on the effects of HMGB1 on ventricular remodeling, and explored whether or not these effects were depended upon the TGF‐β signaling pathway. Rats underwent coronary artery ligation. An intramyocardium injection of phosphate buffered saline (PBS) with or without HMGB1 was administered 3 weeks after myocardial infarction (MI). At 4 weeks after the treatment, HMGB1 significantly increased the left ventricular ejection fraction (LVEF) (P < 0.05), decreased the left ventricular end diastolic dimension (LVEDD; P < 0.05), left ventricular end systolic dimension (LVESD) (P < 0.05) and the infarct size (P < 0.05) compared with control group. The expressions of collagen I, collagen III, and tissue inhibitor of metalloproteinase 2 (TIMP2) were also decreased, while the matrix metalloproteinases 2 (MMP2) and MMP9 expressions were upregulated by HMGB1 injection (P < 0.05) compared with control group. No effect on TIMP3 was observed. Furthermore, TGF‐β1 and phosphor‐Smad2 (p‐Smad2) were significantly suppressed and Smad7 was increased in HMGB1‐treated group (P < 0.05) compared with control group, no effects on p‐Smad3 and p‐p38 were observed. HMGB1 also upregulated Smad 7 expression and decreased the level of collagen I on cardiac fibroblasts (P < 0.05). Silencing of Smad7 gene by small interfering RNA abolished the fibrogenic effects of HMGB1 on cardiac fibroblasts (P < 0.05). These finding suggested that HMGB1 injection modulated ventricular remodeling may function through the possible inhibition of TGF‐β/Smad signaling pathway. J. Cell. Biochem. 114: 1634–1641, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Clinically reported reparative benefits of mesenchymal stromal cells (MSCs) are majorly attributed to strong immune‐modulatory abilities not exactly shared by fibroblasts. However, MSCs remain heterogeneous populations, with unique tissue‐specific subsets, and lack of clear‐cut assays defining therapeutic stromal subsets adds further ambiguity to the field. In this context, in‐depth evaluation of cellular characteristics of MSCs from proximal oro‐facial tissues: dental pulp (DPSCs) and periodontal ligament (PDLSCs) from identical donors provides an opportunity to evaluate exclusive niche‐specific influences on multipotency and immune‐modulation. Exhaustive cell surface profiling of DPSCs and PDLSCs indicated key differences in expression of mesenchymal (CD105) and pluripotent/multipotent stem cell–associated cell surface antigens: SSEA4, CD117, CD123 and CD29. DPSCs and PDLSCs exhibited strong chondrogenic potential, but only DPSCs exhibited adipogenic and osteogenic propensities. PDLSCs expressed immuno‐stimulatory/immune‐adhesive ligands like HLA‐DR and CD50, upon priming with IFNγ, unlike DPSCs, indicating differential response patterns to pro‐inflammatory cytokines. Both DPSCs and PDLSCs were hypo‐immunogenic and did not elicit robust allogeneic responses despite exposure to IFNγ or TNFα. Interestingly, only DPSCs attenuated mitogen‐induced lympho‐proliferative responses and priming with either IFNγ or TNFα enhanced immuno‐modulation capacity. In contrast, primed or unprimed PDLSCs lacked the ability to suppress polyclonal T cell blast responses. This study indicates that stromal cells from even topographically related tissues do not necessarily share identical MSC properties and emphasizes the need for a thorough functional testing of MSCs from diverse sources with respect to multipotency, immune parameters and response to pro‐inflammatory cytokines before translational usage.  相似文献   

14.
Periodontal ligament and gingival fibroblasts play important roles in bone remodeling. Periodontal ligament fibroblasts stimulate bone remodeling while gingival fibroblasts protect abnormal bone resorption. However, few studies had examined the differences in stimulation of osteoclast formation between the two fibroblast populations. The precise effect of mechanical forces on osteoclastogenesis of these populations is also unknown. This study revealed that more osteoclast‐like cells were induced in the co‐cultures of bone marrow cells with periodontal ligament than gingival fibroblasts, and this was considerably increased when anti‐osteoprotegerin (OPG) antibody was added to the co‐cultures. mRNA levels of receptor activator of nuclear factor‐kappaB ligand (RANKL) were increased in both populations when they were cultured with dexamethasone and vitamin D3. Centrifugal forces inhibited osteoclastogenesis of both populations, and this was likely related to the force‐induced OPG up‐regulation. Inhibition of extracellular signal‐regulated kinase (ERK) signaling by a pharmacological inhibitor (10 µM PD98059) or by siERK transfection suppressed the force‐induced OPG up‐regulation along with the augmentation of osteoclast‐like cells that were decreased by the force. These results suggest that periodontal ligament fibroblasts are naturally better at osteoclast induction than gingival fibroblasts, and that centrifugal force inhibited osteoclastogenesis of the periodontal fibroblasts through OPG production and ERK activation. J. Cell. Biochem. 106: 1010–1019, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
16.
Toll-like receptors (TLRs) are present in the ovaries and reproductive tract of various mammals. The biological function of TLR during ovulation is one of the main contents in the research of reproductive immunology. In this study, we found that messenger RNA levels of TLR1–TLR10 in granulosa cells were different, and TLRs and high mobility group box 1 (HMGB1) in granulosa cells of large follicles were significantly higher than those of small and middle follicles. Coimmunoprecipitation results showed that HMGB1 interacts with TLR2 in granulosa cells, especially large follicles. The result of immunohistochemistry showed that TLRs and HMGB1 were present in granulosa cell layer of ovarian follicles. We also found 25 mIU/ml follicle-stimulating hormone (FSH) significantly upregulated the expression of TLRs and HMGB1. These results suggest that TLR2/4 and HMGB1 in granulosa cells may be involved in the ovarian innate immune and ovarian follicular maturation, regulated by FSH. However, further research of the function and mechanisms of TLRs and HMGB1 in granulosa cells are needed.  相似文献   

17.
Inflammation plays a key role in pressure overload‐induced cardiac hypertrophy and heart failure, but the mechanisms have not been fully elucidated. High‐mobility group box 1 (HMGB1), which is increased in myocardium under pressure overload, may be involved in pressure overload‐induced cardiac injury. The objectives of this study are to determine the role of HMGB1 in cardiac hypertrophy and cardiac dysfunction under pressure overload. Pressure overload was imposed on the heart of male wild‐type mice by transverse aortic constriction (TAC), while recombinant HMGB1, HMGB1 box A (a competitive antagonist of HMGB1) or PBS was injected into the LV wall. Moreover, cardiac myocytes were cultured and given sustained mechanical stress. Transthoracic echocardiography was performed after the operation and sections for histological analyses were generated from paraffin‐embedded hearts. Relevant proteins and genes were detected. Cardiac HMGB1 expression was increased after TAC, which was accompanied by its translocation from nucleus to both cytoplasm and intercellular space. Exogenous HMGB1 aggravated TAC‐induced cardiac hypertrophy and cardiac dysfunction, as demonstrated by echocardiographic analyses, histological analyses and foetal cardiac genes detection. Nevertheless, the aforementioned pathological change induced by TAC could partially be reversed by HMGB1 inhibition. Consistent with the in vivo observations, mechanical stress evoked the release and synthesis of HMGB1 in cultured cardiac myocytes. This study indicates that the activated and up‐regulated HMGB1 in myocardium, which might partially be derived from cardiac myocytes under pressure overload, may be of crucial importance in pressure overload‐induced cardiac hypertrophy and cardiac dysfunction.  相似文献   

18.
19.
The selective in vitro expansion and differentiation of multipotent stem cells are critical steps in cell‐based regenerative therapies, while technical challenges have limited cell yield and thus affected the success of these potential treatments. The Rho GTPases and downstream Rho kinases are central regulators of cytoskeletal dynamics during cell cycle and determine the balance between stem cells self‐renewal, lineage commitment and apoptosis. Trans‐4‐[(1R)‐aminoethyl]‐N‐(4‐pyridinyl)cylohexanecarboxamidedihydrochloride (Y‐27632), Rho‐associated kinase (ROCK) inhibitor, involves various cellular functions that include actin cytoskeleton organization, cell adhesion, cell motility and anti‐apoptosis. Here, human periodontal ligament stem cells (PDLSCs) were isolated by limiting dilution method. Cell counting kit‐8 (CCK8), 5‐ethynyl‐2′‐deoxyuridine (EdU) labelling assay, cell apoptosis assay, cell migration assay, wound‐healing assay, alkaline phosphatase (ALP) activity assay, Alizarin Red S staining, Oil Red O staining, quantitative real‐time polymerase chain reaction (qRT‐PCR) were used to determine the effects of Y‐27632 on the proliferation, apoptosis, migration, stemness, osteogenic and adipogenic differentiation of PDLSCs. Afterwards, Western blot analysis was performed to elucidate the mechanism of cell proliferation. The results indicated that Y‐27632 significantly promoted cell proliferation, chemotaxis, wound healing, fat droplets formation and pluripotency, while inhibited ALP activity and mineral deposition. Furthermore, Y‐27632 induced PDLSCs proliferation through extracellular‐signal‐regulated kinase (ERK) signalling cascade. Therefore, control of Rho‐kinase activity may enhance the efficiency of stem cell‐based treatments for periodontal diseases and the strategy may have the potential to promote periodontal tissue regeneration by facilitating the chemotaxis of PDLSCs to the injured site, and then enhancing the proliferation of these cells and maintaining their pluripotency.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号