首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 26 S proteasome is a 2.5-MDa molecular machine that degrades ubiquitinated proteins in eukaryotic cells. It consists of a proteolytic core particle and two 19 S regulatory particles (RPs) composed of 6 ATPase (Rpt) and 13 non-ATPase (Rpn) subunits. Multiple proteasome-dedicated chaperones facilitate the assembly of the proteasome, but little is known about the detailed mechanisms. Hsm3, a 19 S RP dedicated chaperone, transiently binds to the C-terminal domain of the Rpt1 subunit and forms a tetrameric complex, Hsm3-Rpt1-Rpt2-Rpn1, during maturation of the ATPase ring of 19 S RP. To elucidate the structural basis of Hsm3 function, we determined the crystal structures of Hsm3 and its complex with the C-terminal domain of the Rpt1 subunit (Rpt1C). Hsm3 has a C-shaped structure that consists of 11 HEAT repeats. The structure of the Hsm3-Rpt1C complex revealed that the interacting surface between Hsm3 and Rpt1 is a hydrophobic core and a complementary charged surface. Mutations in the Hsm3-Rpt1 surface resulted in the assembly defect of the 26 S proteasome. Furthermore, a structural model of the Hsm3-Rpt ring complex and an in vitro binding assay suggest that Hsm3 can bind Rpt2 in addition to Rpt1. Collectively, our results provide the structural basis of the molecular functions of Hsm3 for the RP assembly.  相似文献   

2.
The number of proteasomal substrates that are degraded without prior ubiquitylation continues to grow. However, it remains poorly understood how the proteasome recognizes substrates lacking a ubiquitin (Ub) signal. Here we demonstrated that the Ub-independent degradation of Rpn4 requires the 19S regulatory particle (RP). The Ub-independent degron of Rpn4 was mapped to an N-terminal region including the first 80 residues. Inspection of its amino acid sequence revealed that the Ub-independent degron of Rpn4 consists of an intrinsically disordered domain followed by a folded segment. Using a photo-crosslinking-label transfer method, we captured three 19S RP subunits (Rpt1, Rpn2 and Rpn5) that bind the Ub-independent degron of Rpn4. This is the first time that specific 19S RP subunits have been identified interacting with a Ub-independent degron. This study provides insight into the mechanism by which Ub-independent substrates are recruited to the 26S proteasome.  相似文献   

3.
The 20S Proteasome as an Assembly Platform for the 19S Regulatory Complex   总被引:1,自引:0,他引:1  
26S proteasomes consist of cylindrical 20S proteasomes with 19S regulatory complexes attached to the ends. Treatment with high concentrations of salt causes the regulatory complexes to separate into two sub-complexes, the base, which is in contact with the 20S proteasome, and the lid, which is the distal part of the 19S complex. Here, we describe two assembly intermediates of the human regulatory complex. One is a dimer of the two ATPase subunits, Rpt3 and Rpt6. The other is a complex of nascent Rpn2, Rpn10, Rpn11, Rpn13, and Txnl1, attached to preexisting 20S proteasomes. This early assembly complex does not yet contain Rpn1 or any of the ATPase subunits of the base. Thus, assembly of 19S regulatory complexes takes place on preexisting 20S proteasomes, and part of the lid is assembled before the base.  相似文献   

4.
The yeast (Saccharomyces cerevisiae) contains three N-acetyltransferases, NatA, NatB, and NatC, each of which acetylates proteins with different N-terminal regions. The 19S regulatory particle of the yeast 26S proteasome consists of 17 subunits, 12 of which are N-terminally modified. By using nat1, nat3, and mak3 deletion mutants, we found that 8 subunits, Rpt4, Rpt5, Rpt6, Rpn2, Rpn3, Rpn5, Rpn6, and Rpn8, were NatA substrates, and that 2 subunits, Rpt3 and Rpn11, were NatB substrates. Mass spectrometric analysis revealed that the initiator Met of Rpt2 precursor polypeptide was processed and a part of the mature Rpt2 was N-myristoylated. The crude extracts from the normal strain and the nat1 deletion mutant were similar in chymotrypsin-like activity in the presence of ATP in vitro and in the accumulation level of the 26S proteasome. These characteristics were different from those of the 20S proteasome: the chymotrypsin-like activity and accumulation level of 20S proteasome were appreciably higher from the nat1 deletion mutant than from the normal strain.  相似文献   

5.
The 26 S proteasome, a complex between the 20 S proteasome and 19 S regulatory units, catalyzes ATP-dependent degradation of unfolded and ubiquitinated proteins in eukaryotes. We have identified previously 20 S and activated 20 S proteasomes in Trypanosoma brucei, but not 26 S proteasome. However, the presence of 26 S proteasome in T. brucei was suggested by the hydrolysis of casein by cell lysate, a process that requires ATP but is inhibited by lactacystin, and the lactacystin-sensitive turnover of ubiquitinated proteins in the intact cells. T. brucei cDNAs encoding the six proteasome ATPase homologues (Rpt) were cloned and expressed. Five of the six T. brucei Rpt cDNAs, except for Rpt2, were capable of functionally complementing the corresponding rpt deletion mutants of Saccharomyces cerevisiae. Immunoblots showed the presence in T. brucei lysate of the Rpt proteins, which co-fractionated with the yeast 19 S proteasome complex by gel filtration and localized in the 19 S fraction of a glycerol gradient. All the Rpt and putative 19 S non-ATPase (Rpn) proteins were co-immunoprecipitated from T. brucei lysate by individual anti-Rpt antibodies. Treatment of T. brucei cells with a chemical cross-linker resulted in co-immunoprecipitation of 20 S proteasome with all the Rpt and Rpn proteins that sedimented in a glycerol gradient to the position of 26 S proteasome. These data demonstrate the presence of 26 S proteasome in T. brucei cells, which apparently dissociate into 19 S and 20 S complexes upon cell lysis. RNA interference to block selectively the expression of proteasome 20 S core and Rpt subunits resulted in significant accumulation of ubiquitinated proteins accompanied by cessation of cell growth. Expression of yeast RPT2 gene in T. brucei Rpt2-deficient cells could not rescue the lethal phenotype, thus confirming the incompatibility between the two Rpt2s. The T. brucei 11 S regulator (PA26)-deficient RNA interference cells grew normally, suggesting the dispensability of activated 20 S proteasome in T. brucei.  相似文献   

6.
The 26S proteasome is the most downstream element of the ubiquitin-proteasome pathway of protein degradation. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The RP consists of 6 AAA-ATPases and at least 13 non-ATPase subunits. Based on a cryo-EM map of the 26S proteasome, structures of homologs, and physical protein-protein interactions we derive an atomic model of the AAA-ATPase-CP sub-complex. The ATPase order in our model (Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5) is in excellent agreement with the recently identified base-precursor complexes formed during the assembly of the RP. Furthermore, the atomic CP-AAA-ATPase model suggests that the assembly chaperone Nas6 facilitates CP-RP association by enhancing the shape complementarity between Rpt3 and its binding CP alpha subunits partners.  相似文献   

7.
The 26S proteasome is a multicatalytic protease complex that degrades ubiquitinated proteins in eukaryotic cells. It consists of a proteolytic core (the 20S proteasome) as well as regulatory particles, which contain six ATPase (Rpt) subunits involved in unfolding and translocation of substrates to the catalytic chamber of the 20S proteasome. In this study, we used MS to analyze the N‐terminal modifications of the yeast Rpt1 subunit, which contains the N‐terminal recognition sequence for N‐methyltransferase. Our results revealed that following the removal of the initiation Met residue of yeast Rpt1, the N‐terminal Pro residue is either unmodified, mono‐methylated, or di‐methylated, and that this N‐methylation has not been conserved throughout evolution. In order to gain a better understanding of the possible function(s) of the Pro‐Lys (PK) sequence at positions 3 and 4 of yeast Rpt1, we generated mutant strains expressing an Rpt1 allele that lacks this sequence. The absence of the PK sequence abolished N‐methylation, decreased cell growth, and increased sensitivity to stress. Our data suggest that N‐methylation of Rpt1 and/or its PK sequence might be important in cell growth or stress tolerance in yeast.  相似文献   

8.
The 26S proteasome is an essential molecular machine for specific protein degradation in eukaryotic cells. The 26S proteasome is formed by a central 20S core particle capped by two 19S regulatory particle (RP) at both ends. The Rpn9 protein is a non-ATPase subunit located in the lid complex of the 19S RP, and is identified to be essential for efficient assembly of yeast 26S proteasome. Bioinformatics analysis of Saccharomyces cerevisiae Rpn9 suggested it contains a PCI domain at the C-terminal region. However, high-resolution structures of either the PCI domain or the full-length Rpn9 still remain elusive. Herein, we report the chemical shift assignments of 1H, 13C and 15N atoms of the individual N- and C-domains, as well as full-length S. cerevisiae Rpn9, which provide the basis for further structural and functional studies of Rpn9 using solution NMR technique.  相似文献   

9.
26S proteasome, a major regulatory protease in eukaryotes, consists of a 20S proteolytic core particle (CP) capped by a 19S regulatory particle (RP). The 19S RP is divisible into base and lid sub-complexes. Even within the lid, subunits have been demarcated into two modules: module 1 (Rpn5, Rpn6, Rpn8, Rpn9 and Rpn11), which interacts with both CP and base sub-complexes and module 2 (Rpn3, Rpn7, Rpn12 and Rpn15) that is attached mainly to module 1. We now show that suppression of RPN11 expression halted lid assembly yet enabled the base and 20S CP to pre-assemble and form a base-CP. A key role for Regulatory particle non-ATPase 11 (Rpn11) in bridging lid module 1 and module 2 subunits together is inferred from observing defective proteasomes in rpn11–m1, a mutant expressing a truncated form of Rpn11 and displaying mitochondrial phenotypes. An incomplete lid made up of five module 1 subunits attached to base-CP was identified in proteasomes isolated from this mutant. Re-introducing the C-terminal portion of Rpn11 enabled recruitment of missing module 2 subunits. In vitro, module 1 was reconstituted stepwise, initiated by Rpn11–Rpn8 heterodimerization. Upon recruitment of Rpn6, the module 1 intermediate was competent to lock into base-CP and reconstitute an incomplete 26S proteasome. Thus, base-CP can serve as a platform for gradual incorporation of lid, along a proteasome assembly pathway. Identification of proteasome intermediates and reconstitution of minimal functional units should clarify aspects of the inner workings of this machine and how multiple catalytic processes are synchronized within the 26S proteasome holoenzymes.  相似文献   

10.
The 19S regulatory particle of the yeast 26S proteasome consists of six related ATPases (Rpt proteins) and at least 11 non-ATPase proteins (Rpn proteins). RPN12 (formerly NIN1) encodes an Rpn component of the 19S regulatory particle and is essential for growth. To determine which subunit(s) of the 26S proteasome interact(s) with Rpn12, we attempted to screen for mutations that cause synthetic lethality in the presence of the rpn12-1 (formerly nin1-1) mutation. Among the candidates recovered was a new allele of RPT1 (formerly CIM5). This mutant allele was designated rpt1-2; on its own this mutation caused no phenotypic change, whereas the rpn12-1 rpt1-2 double mutant was lethal, suggesting a strong interaction between Rpn12 and Rpt1. The site of the rpt1-2 mutation was determined by DNA sequencing of the RPT1 locus retrieved from the mutant, and a single nucleotide alteration was found. This changes amino acid 446 of the RPT1 product from alanine to valine. The alanine residue is conserved in all Rpt proteins, except Rpt5, but no function has yet been assigned to the region that contains it. We propose that this region is necessary for Rpt1 to interact with Rpn12. The terminal phenotype of the rpn12-1 rpt1-2 double mutant was not cell cycle specific, suggesting that in the double mutant cells the function of the 26S proteasome is completely eliminated, thereby inducing multiple defects in cellular functions. Received: 1 February 1999 / Accepted: 5 May 1999  相似文献   

11.
26 S proteasomes fulfill final steps in the ubiquitin-dependent degradation pathway by recognizing and hydrolyzing ubiquitylated proteins. As the 26 S proteasome mainly localizes to the nucleus in yeast, we addressed the question how this 2-MDa multisubunit complex is imported into the nucleus. 26 S proteasomes consist of a 20 S proteolytically active core and 19 S regulatory particles, the latter composed of two subcomplexes, namely the base and lid complexes. We have shown that 20 S core particles are translocated into the nucleus as inactive precursor complexes via the classic karyopherin alphabeta import pathway. Here, we provide evidence that nuclear import of base and lid complexes also depends on karyopherin alphabeta. Potential classic nuclear localization sequences (NLSs) of base subunits were analyzed. Rpn2 and Rpt2, a non-ATPase subunit and an ATPase subunit of the base complex, harbor functional NLSs. The Rpt2 NLS deletion yielded wild type localization. However, the deletion of the Rpn2 NLS resulted in improper nuclear proteasome localization and impaired proteasome function. Our data support the model by which nuclear 26 S proteasomes are assembled from subcomplexes imported by karyopherin alphabeta.  相似文献   

12.
The 26 S proteasome is a large multi-subunit protein complex that degrades ubiquitinated proteins in eukaryotic cells. Proteasome assembly is a complex process that involves formation of six- and seven-membered ring structures from homologous subunits. Here we report that the assembly of hexameric Rpt ring of the 19 S regulatory particle (RP) requires nucleotide binding but not ATP hydrolysis. Disruption of nucleotide binding to an Rpt subunit by mutation in the Walker A motif inhibits the assembly of the Rpt ring without affecting heterodimer formation with its partner Rpt subunit. Coexpression of the base assembly chaperones S5b and PAAF1 with mutant Rpt1 and Rpt6, respectively, relieves assembly inhibition of mutant Rpts by facilitating their interaction with adjacent Rpt dimers. The mutation in the Walker B motif which impairs ATP hydrolysis does not affect Rpt ring formation. Incorporation of a Walker B mutant Rpt subunit abrogates the ATPase activity of the 19 S RP, suggesting that failure of the mutant Rpt to undergo the conformational transition from an ATP-bound to an ADP-bound state impairs conformational changes in the other five wild-type Rpts in the Rpt ring. In addition, we demonstrate that the C-terminal tails of Rpt subunits possessing core particle (CP)-binding affinities facilitate the cellular assembly of the 19 S RP, implying that the 20 S CP may function as a template for base assembly in human cells. Taken together, these results suggest that the ATP-bound conformational state of an Rpt subunit with the exposed C-terminal tail is competent for cellular proteasome assembly.  相似文献   

13.
The 26S proteasome plays a major role in eukaryotic protein breakdown, especially for ubiquitin-tagged proteins. Substrate specificity is conferred by the regulatory particle (RP), which can dissociate into stable lid and base subcomplexes. To help define the molecular organization of the RP, we tested all possible paired interactions among subunits from Saccharomyces cerevisiae by yeast two-hybrid analysis. Within the base, a Rpt4/5/3/6 interaction cluster was evident. Within the lid, a structural cluster formed around Rpn5/11/9/8. Interactions were detected among synonymous subunits (Csn4/5/7/6) from the evolutionarily related COP9 signalosome (CSN) from Arabidopsis, implying a similar quaternary arrangement. No paired interactions were detected between lid, base or core particle subcomplexes, suggesting that stable contacts between them require prior assembly. Mutational analysis defined the ATPase, coiled-coil, PCI and MPN domains as important for RP assembly. A single residue in the vWA domain of Rpn10 is essential for amino acid analog resistance, for degrading a ubiquitin fusion degradation substrate and for stabilizing lid-base association. Comprehensive subunit interaction maps for the 26S proteasome and CSN support the ancestral relationship of these two complexes.  相似文献   

14.
The 19S regulatory particle of the yeast 26S proteasome consists of six related ATPases (Rpt proteins) and at least 11 non-ATPase proteins (Rpn proteins). RPN12 (formerly NIN1) encodes an Rpn component of the 19S regulatory particle and is essential for growth. To determine which subunit(s) of the 26S proteasome interact(s) with Rpn12, we attempted to screen for mutations that cause synthetic lethality in the presence of the rpn12-1 (formerly nin1-1) mutation. Among the candidates recovered was a new allele of RPT1 (formerly CIM5). This mutant allele was designated rpt1-2; on its own this mutation caused no phenotypic change, whereas the rpn12-1 rpt1-2 double mutant was lethal, suggesting a strong interaction between Rpn12 and Rpt1. The site of the rpt1-2 mutation was determined by DNA sequencing of the RPT1 locus retrieved from the mutant, and a single nucleotide alteration was found. This changes amino acid 446 of the RPT1 product from alanine to valine. The alanine residue is conserved in all Rpt proteins, except Rpt5, but no function has yet been assigned to the region that contains it. We propose that this region is necessary for Rpt1 to interact with Rpn12. The terminal phenotype of the rpn12-1 rpt1-2 double mutant was not cell cycle specific, suggesting that in the double mutant cells the function of the 26S proteasome is completely eliminated, thereby inducing multiple defects in cellular functions.  相似文献   

15.
The 26 S proteasome is an energy-dependent protease that degrades proteins modified with polyubiquitin chains. It is assembled from two multi-protein subcomplexes: a protease (20 S proteasome) and an ATPase regulatory complex (PA700 or 19 S regulatory particle) that contains six different AAA family subunits (Rpt1 to -6). Here we show that binding of PA700 to the 20 S proteasome is mediated by the COOH termini of two (Rpt2 and Rpt5) of the six Rpt subunits that constitute the interaction surface between the subcomplexes. COOH-terminal peptides of either Rpt2 or Rpt5 bind to the 20 S proteasome and activate hydrolysis of short peptide substrates. Simultaneous binding of both COOH-terminal peptides had additive effects on peptide substrate hydrolysis, suggesting that they bind to distinct sites on the proteasome. In contrast, only the Rpt5 peptide activated hydrolysis of protein substrates. Nevertheless, the COOH-terminal peptide of Rpt2 greatly enhanced this effect, suggesting that proteasome activation is a multistate process. Rpt2 and Rpt5 COOH-terminal peptides cross-linked to different but specific subunits of the 20 S proteasome. These results reveal critical roles of COOH termini of Rpt subunits of PA700 in the assembly and activation of eukaryotic 26 S proteasome. Moreover, they support a model in which Rpt subunits bind to dedicated sites on the proteasome and play specific, nonequivalent roles in the asymmetric assembly and activation of the 26 S proteasome.  相似文献   

16.
Here, we report a novel mechanism of proteasome inhibition mediated by Thiostrepton (Thsp), which interacts covalently with Rpt subunits of the 19S proteasome and proteasome substrates. We identified Thsp in a cell‐based high‐throughput screen using a fluorescent reporter sensitive to degradation by the ubiquitin–proteasome pathway. Thiostrepton behaves as a proteasome inhibitor in several paradigms, including cell‐based reporters, detection of global ubiquitination status, and proteasome‐mediated labile protein degradation. In vitro, Thsp does not block the chymotrypsin activity of the 26S proteasome. In a cell‐based IκBα degradation assay, Thsp is a slow inhibitor and 4 hrs of treatment achieves the same effects as MG‐132 at 30 min. We show that Thsp forms covalent adducts with proteins in human cells and demonstrate their nature by mass spectrometry. Furthermore, the ability of Thsp to interact covalently with the cysteine residues is essential for its proteasome inhibitory function. We further show that a Thsp modified peptide cannot be degraded by proteasomes in vitro. Importantly, we demonstrate that Thsp binds covalently to Rpt subunits of the 19S regulatory particle and forms bridges with a proteasome substrate. Taken together, our results uncover an important role of Thsp in 19S proteasome inhibition.  相似文献   

17.
Tone Y  Tanahashi N  Tanaka K  Fujimuro M  Yokosawa H  Toh-e A 《Gene》2000,243(1-2):37-45
Nob1p, which interacts with Nin1p/Rpn12, a subunit of the 19S regulatory particle (RP) of the yeast 26S proteasome, has been identified by two-hybrid screening. NOB1 was found to be an essential gene, encoding a protein of 459 amino acid residues. Nob1p was detected in growing cells but not in cells in the stationary phase. During the transition to the stationary phase, Nob1p was degraded, at least in part, by the 26S proteasome. Nob1p was found only in proteasomal fractions in a glycerol gradient centrifugation profile and immuno-coprecipitated with Rpt1, which is an ATPase component of the yeast proteasomes. These results suggest that association of Nob1p with the proteasomes is essential for the function of the proteasomes in growing cells.  相似文献   

18.
Structural characterization of proteasome complexes is an essential step toward understanding the ubiquitin-proteasome system. Currently, high resolution structures are not available for the 26S proteasome holocomplex as well as its subcomplex, the 19S regulatory particle (RP). Here we have employed a novel integrated strategy combining chemical cross-linking with multistage tandem mass spectrometry to define the proximity of subunits within the yeast 19S RP to elucidate its topology. This has resulted in the identification of 174 cross-linked peptides of the yeast 19S RP, representing 43 unique lysine-lysine linkages within 24 nonredundant pair-wise subunit interactions. To map the spatial organization of the 19S RP, we have developed and utilized a rigorous probabilistic framework to derive maximum likelihood (ML) topologies based on cross-linked peptides determined from our analysis. Probabilistic modeling of the yeast 19S AAA-ATPase ring (i.e., Rpt1–6) has produced an ML topology that is in excellent agreement with known topologies of its orthologs. In addition, similar analysis was carried out on the 19S lid subcomplex, whose predicted ML topology corroborates recently reported electron microscopy studies. Together, we have demonstrated the effectiveness and potential of probabilistic modeling for unraveling topologies of protein complexes using cross-linking data. This report describes the first study of the 19S RP topology using a new integrated strategy combining chemical cross-linking, mass spectrometry, and probabilistic modeling. Our results have provided a solid foundation to advance our understanding of the 19S RP architecture at peptide level resolution. Furthermore, our methodology developed here is a valuable proteomic tool that can be generalized for elucidating the structures of protein complexes.Basic cellular homeostasis depends on the regulated protein degradation and turnover by the ubiquitin-proteasome system (1, 2). Central to this pathway is the 26S proteasome complex, which is responsible for ubiquitin/ATP-dependent protein degradation (35). The 26S holocomplex is a megadalton-sized protein assembly consisting of the 20S catalytic core particle (CP)1 and the 19S regulatory particle (RP). The eukaryotic 20S CP is composed of two copies of 14 nonidentical subunits (α1–7 and β1–7) arranged into four stacked heptameric rings in an order of α7β7β7α7. The crystal structure and topology of the highly ordered 20S CP has been resolved and is evolutionarily conserved (6). Although α subunits of the 20S CP are essential for the assembly of the complex and its interactions with the regulatory complex, three catalytic β subunits (β1, β2, and β5) harbor various catalytic activities responsible for regulated proteasomal degradation. The 19S RP is composed of 19 subunits, which forms two subcomplexes, the base consisting of six related AAA-ATPase (Rpt1–6) and four non-ATPase (Rpn1, Rpn2, Rpn10, and Rpn13) subunits and the lid containing nine non-ATPase subunits (Rpn3, Rpn5–9, Rpn11, Rpn12, and Rpn15/Sem1) (7, 8). In comparison with the 20S core, the function and structure of the 19S RP is much less well understood. Nevertheless, it is believed that the 19S RP is involved in multiple functions including recognition of polyubiquitinated substrates (9, 10), cleavage of the polyubiquitin chains to recycle ubiquitin (11), unfolding of substrates, assisting in opening the gate of the 20S chamber, and subsequently translocating the unfolded substrates into the catalytic chamber (4, 1214). The six AAA-ATPase subunits (Rpt1–6), which directly interact with the 20S α-ring, function as a molecular chaperone responsible for protein unfolding and are involved in substrate translocation and modulating gating of the CP (5, 15). Although detailed functions for most of the 19S non-ATPase subunits remain elusive, Rpn11 is known to carry an Mpr1p and Pad1p N-termini (MPN) domain, which harbors an essential deubiquitination activity responsible for cleaving polyubiquitin chains from proteasomal substrates (11, 16). In addition, two proteasome subunits, Rpn10 and Rpn13, have been identified as ubiquitin receptors, which are important in docking ubiquitinated substrates to the proteasome for degradation (4). Moreover, the two largest proteasome subunits, Rpn1 and Rpn2, interact with a variety of proteins including ubiquitin receptors and deubiquitinases and thus may function as scaffolding proteins to assist proteasomal degradation. Thus far, no atomic resolution structures are available for either the 19S RP or the 26S holocomplex. New insights of the overall topology of the 19S RP will illuminate protein interactions within, thus providing evidence for its otherwise unknown functions.Although many studies have been performed to characterize the 19S structure utilizing various techniques including cryo-EM (17, 18) and native mass spectrometry (19), details on spatial interfaces and subunit interconnectivity of the 19S RP remain to be unraveled. During the course of our study, the rough topology of the 19S RP was determined by cryo-EM alone (20) or coupled with other approaches (21); nevertheless more detailed information at the peptide or atomic level is still required. In addition to technological limitations in current approaches, the highly dynamic and heterogeneous nature of the 19S RP may attribute to the difficulty in obtaining its high resolution structure. In recent years, chemical cross-linking coupled with mass spectrometry (XL-MS) has become an attractive alternative for structure analysis of proteins and protein complexes (22, 23). The ability of XL-MS to identify interaction interfaces between proteins allows us to define low resolution protein topology. In addition to protein interaction networks and the site of protein interactions at binding interfaces, cross-linking analysis can reveal information about the spatial distance between cross-linked amino acids on the surface of folded proteins. Although such knowledge only reveals the maximum distance given by the length of the cross-linker and can be influenced by protein conformational flexibility, it can be used as the distance constraint for molecular modeling of protein folds and complex topologies, i.e., the arrangement of the constituents of a complex in space. A recent study by Chen et al. (24) on yeast RNA polymerase II (RNAPII) complex has exemplified the power of XL-MS in elucidating the architecture of large multisubunit complexes. Although effective, cross-linking studies have been challenging because of the low abundance of cross-linked products and the inherent complexity of sequencing interlinked peptides by MS for unambiguous identification. To facilitate MS detection and identification of cross-linked products, we have recently developed a novel homobifunctional amine reactive, low energy MS-cleavable cross-linker, disuccinimidyl sulfoxide (DSSO), and successfully applied it to cross-link the yeast 20S proteasome for rapid, accurate, and simplified determination of protein interaction interfaces within the complex (25). The unique functionality of our cross-linking reagent and specialized bioinformatics tools significantly increase our confidence and speed in the identification of cross-linked products when compared with cross-linking studies using traditional noncleavable reagents. Current cross-linking studies have been focused on protein complexes with known crystal structures, but topological structures of protein complexes based primarily on cross-linking data have not yet been reported. This is due to the lack of computational tools that use cross-linking data to deduce the spatial organization of subunits in a given complex. To define the architecture of the yeast 19S RP, we have characterized the proximity and interconnectivity of the subunits by employing our newly developed cross-linking strategy. The resulting cross-linking information serves as a basis for a rigorous probabilistic analysis to obtain the maximum likelihood (ML) topology. This strategy is developed by first analyzing our cross-linking data for the 19S six-member AAA-ATPase base ring, as the topology ordering of yeast orthologs has been recently determined (14, 2628). The effectiveness of this new probabilistic platform is supported by the agreement between our derived ML topology of the AAA-ATPase base ring and previous reports. When the same probabilistic approach is applied to the 19S lid subcomplex, the resulting topology is also in agreement with recently proposed models (20, 21). This work represents the first application of probabilistic modeling of protein complexes based solely on cross-link data, establishing a new workflow for future structural analysis of large protein complexes using XL-MS.  相似文献   

19.
We have developed S. cerevisiae as a model system for mechanistic studies of the 26S proteasome. The subunits of the yeast 19S complex, or regulatory particle (RP), have been defined, and are closely related to those of mammalian proteasomes. The multiubiquitin chain binding subunit (S5a/Mcb1/Rpn10) was found, surprisingly, to be nonessential for the degradation of a variety of ubiquitin-protein conjugates in vivo. Biochemical studies of proteasomes from rpn10 mutants revealed the existence of two structural subassemblies within the RP, the lid and the base. The lid and the base are both composed of 8 subunits. By electron microscopy, the base and the lid correspond to the proximal and distal masses of the RP, respectively. The base is sufficient to activate the 20S core particle for degradation of peptides, but the lid is required for ubiquitin-dependent degradation. The lid subunits share sequence motifs with components of the COP9/signalosome complex, suggesting that these functionally diverse particles have a common evolutionary ancestry. Analysis of equivalent point mutations in the six ATPases of the base indicate that they have well-differentiated functions. In particular, mutations in one ATPase gene, RPT2, result in an unexpected defect in peptide hydrolysis by the core particle. One interpretation of this result is that Rpt2 participates in gating of the channel through which substrates enter the core particle.  相似文献   

20.
Rpn10 is a ubiquitin receptor of the 26S proteasome, and plays an important role in poly-ubiquitinated proteins recognition in the ubiquitin–proteasome protein degradation pathway. It is located in the 19S regulatory particle and interacts with several subunits of both lid and base complexes. Bioinformatics analysis of yeast Rpn10 suggests that it contains a von Willebrand (VWA domain) and a C-terminal tail containing a Ub-interacting motif. Studies of Saccharomyces cerevisiae Rpn10 suggested that its VWA domain might participate in interactions with subunit from both lid and base subcomplexes of the 19S regulatory particle. Herein, we report the chemical shift assignments of 1H, 13C and 15N atoms of the VWA domain of S. cerevisiae Rpn10, which provide the basis for further structural and functional studies of Rpn10 by solution NMR technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号