首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Y chromosome haplotyping based on microsatellites and single nucleotide polymorphisms (SNPs) has proved to be a powerful tool for population genetic studies of humans. However, the promise of the approach is hampered in the majority of nonhuman mammals by the lack of Y-specific polymorphic markers. We were able to identify new male-specific polymorphisms in the domestic cat Felis catus and 6 additional Felidae species with a combination of molecular genetic and cytogenetic approaches including 1) identifying domestic cat male-specific microsatellites from markers generated from a male cat microsatellite-enriched genomic library, a flow-sorted Y cosmid library, or a Y-specific cat bacteria artificial chromosome (BAC) clone, (2) constructing microsatellite-enriched libraries from flow-sorted Y chromosomes isolated directly from focal wildcat species, and (3) screening Y chromosome conserved anchored tagged sequences primers in Felidae species. Forty-one male-specific microsatellites were identified, but only 6 were single-copy loci, consistent with the repetitive nature of the Y chromosome. Nucleotide diversity (pi) of Y-linked intron sequences (2.1 kbp) was in the range of 0 (tiger) to 9.95 x 10(-4) (marbled cat), and the number of SNPs ranged from none in the tiger to 7 in the Asian leopard cat. The Y haplotyping system described here, consisting of 4 introns (SMCY3, SMCY7, UTY11, and DBY7) and 1 polymorphic microsatellite (SMCY-STR), represents the first available markers for tracking intraspecific male lineage polymorphisms in Felidae species and promises to provide significant insights to evolutionary and population genetic studies of the species.  相似文献   

2.
Comparing Y-chromosomal and mitochondrial haplotype variation is a promising approach to independently investigate paternal and maternal evolutionary histories in wild mammal populations. However, the difficulty of developing male-specific genetic markers, because of its distinctive genetic architecture and the general low level of polymorphisms observed on the Y chromosome, hampers usually an effective application of this approach. Here, we present a further method of the established Y chromosome conserved anchored tagged sequences strategy to develop Y-chromosomal markers by screening introns of male-specific region (MSY) genes for sequence polymorphisms. By applying long-template PCR using target species-specific primers, adequate sequence information of several kb in size can be obtained. We applied this method in the snow vole (Chionomys nivalis) and obtained 12.4 kb of male-specific sequence data for nine males representing four populations in the Swiss Alps. A total of 28 single nucleotide polymorphisms, four indels (> 1 bp) and one polymorphic microsatellite were identified in introns of the SMCY and DBY genes. Based on this information, we developed a Y-chromosomal genotyping assay and identified four different paternal lineages within one local snow vole population. The method we present is straightforward and as such will probably be suitable to detect adequate Y-chromosomal diversity in a wide range of mammalian species.  相似文献   

3.
The gene encoding glutamic acid decarboxylase (GAD), the key enzyme in the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid, is shown to be expressed in the testis of several different species. Nucleotide sequence analysis of a cDNA clone isolated from the human testis confirmed the presence of GAD mRNA in the testis. The major GAD mRNA in the testis was 2.5 kilobases. Smaller amounts of a 3.7-kilobase mRNA with the same size as GAD mRNA in the brain was also detected in the testis. In situ hybridization using a GAD-specific probe revealed GAD mRNA expressing spermatocytes and spermatids located in the middle part of rat seminiferous tubules. Studies on the ontogeny of GAD mRNA expression showed low levels of GAD mRNA in testes of prepubertal rats, with increasing levels as sexual maturation is reached, compatible with GAD mRNA expression in germ cells. In agreement with this, fractionation of cells from the rat seminiferous epithelium followed by Northern (RNA) blot analysis showed the highest levels of GAD mRNA associated with spermatocytes and spermatids. Evidence for the presence of GAD protein in the rat testis was obtained from the demonstration of GAD-like immunoreactivity in seminiferous tubules, predominantly at a position where spermatids and spermatozoa are found. Furthermore, GAD-like immunoreactivity was seen in the midpiece of ejaculated human spermatozoa, the part that is responsible for generating energy for spermatozoan motility.  相似文献   

4.
5.
6.
The role of Chicken-type (c-type) lysozyme, a prototype lysozyme, in immunity has been characterized in many organisms. In this study, we cloned a novel c-type lysozyme-like gene, Lyzl4, which was located on mouse chromosome 9F4 and encoded 145 amino acids with a putative signal peptide and a protease cleavage site. The mature recombinant Lyzl4 protein expressed in yeast did not show the bacteriolytic activity. Sequence alignment analysis demonstrated that 3 of the 20 invariant residues in c-type lysozymes were changed in Lyzl4. One of the 'changed' amino acids (D52G) is located in the catalytic domain. Lyzl4 mRNA was selectively expressed in testis and epididymis in adult mice, with varying expression level across different developmental stages. High level of Lyzl4 protein was found on the spermatozoa of acrosomal region and principal piece of tail. Immuno-neutralization of Lyzl4 protein in spermatozoa with its specific antibody significantly decreased in vitro fertilization percentage in a dose-dependent manner, suggesting that Lyzl4 might be important for fertilization.  相似文献   

7.
8.
Spermatozoa were collected from the rete testis of conscious boars, from the cauda epididymidis by retro-flushing, and by ejaculation. Testicular spermatozoa showed no progressive motility, and that of ejaculated was greater than that of epididymal spermatozoa. Glycolysis and respiration of testicular spermatozoa, while lower than that of the more mature cells, were only slightly affected by the incubation conditions. Epididymal spermatozoa converted 83% of the glucose they utilized to CO2 or lactate, but testicular cells converted only 35% to these metabolites. Synthesis of lipid was greatest by testicular spermatozoa. With the more mature cells hyperosmolar conditions depressed CO2 production, but increased lactate production, and these changes were greater for ejaculated than for epididymal spermatozoa. Glycolysis plus respiration of these cells was related to their motility. These results were interpreted as showing increasing motility, glycolysis and respiration with maturation, but also decreased synthetic capacity and increased sensitivity to the environment.  相似文献   

9.
10.
11.
Sperm motility is dependent on mitochondrial ATP production that relies on the coordinated expression of the mitochondrial and nuclear genomes. It is generally accepted that mammalian ejaculated spermatozoa retain the ability to synthesize mtDNA-encoded proteins but not most of the nuclear ones. This implies an asynchronous regulation of the oxidative phosphorylation-related genes encoded by each genome. Trying to investigate this issue, we unexpectedly found that ejaculated human spermatozoa do not synthesize mtDNA-encoded proteins. Moreover, we estimated that the discrepancy between our observations and those published elsewhere was due to a chloramphenicol-sensitive protein synthesis attributed to mitochondria that instead corresponds to contaminating bacteria.  相似文献   

12.
The glucose transporter 8 (GLUT8) is a recently identified member of the family of sugar transport facilitators. In human tissues GLUT8 is predominantly expressed in testis in a gonadotropin-dependent manner. It is shown here that the onset of mRNA synthesis of GLUT8 during the maturation of mouse testis coincides with the appearance of mature spermatozoa. Furthermore, immunohistochemistry with antiserum against the C-terminus of GLUT8 indicated that the protein was associated with spermatozoa within the seminiferous and the epididymal tubules. The GLUT8 immunoreactivity was detected within the head of mouse and human spermatozoa in the acrosomal region, and appeared to be located at the plasma membrane as well as within the cells. This specific expression and localization of GLUT8 suggests that the transport facilitator plays a major role in the fuel supply of mature spermatozoa, and that it is a potential target for inhibition of sperm cell function.  相似文献   

13.
A sperm antigen corresponding to baboon sperm monoclonal antibody 1A9 was localized in the testis and ejaculated sperm in this animal, using the immunofluorescence technique and immunogold labelling. Immunohistochemical studies of the baboon testis showed that the antigenic determinant was localized in the late spermatid cells and spermatozoa close to the seminiferous tubules. Immunofluorescence studies indicate that the protein was localized on the acrosome region of ejaculated baboon sperm. At the electron-microscopic level, gold particles indicative of the presence of this determinant recognized by 1A9 monoclonal antibody were detected on the inner acrosomal region of ejaculated baboon sperm.  相似文献   

14.
15.
Despite its importance in harboring genes critical for spermatogenesis and male-specific functions, the Y chromosome has been largely excluded as a priority in recent mammalian genome sequencing projects. Only the human and chimpanzee Y chromosomes have been well characterized at the sequence level. This is primarily due to the presumed low overall gene content and highly repetitive nature of the Y chromosome and the ensuing difficulties using a shotgun sequence approach for assembly. Here we used direct cDNA selection to isolate and evaluate the extent of novel Y chromosome gene acquisition in the genome of the domestic cat, a species from a different mammalian superorder than human, chimpanzee, and mouse (currently being sequenced). We discovered four novel Y chromosome genes that do not have functional copies in the finished human male-specific region of the Y or on other mammalian Y chromosomes explored thus far. Two genes are derived from putative autosomal progenitors, and the other two have X chromosome homologs from different evolutionary strata. All four genes were shown to be multicopy and expressed predominantly or exclusively in testes, suggesting that their duplication and specialization for testis function were selected for because they enhance spermatogenesis. Two of these genes have testis-expressed, Y-borne copies in the dog genome as well. The absence of the four newly described genes on other characterized mammalian Y chromosomes demonstrates the gene novelty on this chromosome between mammalian orders, suggesting it harbors many lineage-specific genes that may go undetected by traditional comparative genomic approaches. Specific plans to identify the male-specific genes encoded in the Y chromosome of mammals should be a priority.  相似文献   

16.
17.
18.
The morphology of testicular mitochondria changes markedly during spermatogenesis from a form normally seen in somatic cells to a “germ cell” form in which the matrix is diffuse and vacuolated and finally to a form with a condensed matrix seen in spermatozoa. Colloidal silica gel gradients and high-resolution, two-dimensional gel electrophoresis were used to define the changes in density and polypeptide composition that occur in testicular mitochondria during spermatogenesis. Similar densities were observed for mitochondria isolated from the same bovine or murine tissue, but mitochondria from different tissues usually had different densities. Mitochondria from testis of calf, bull, or sexually mature mouse had densities of 1.06 gm/cm3 while liver mitochondria were more dense, having a density of 1.09 gm/cm3. “Somatic-type” testicular mitochondria from calf and “germ cell-type” mitochondria from sexually mature mouse or bull had similar densities, 1.06 gm/cm3, while the density of mitochondria from ejaculated spermatozoa differed, ρ = 1.08 gm/cm3. Analysis of polypeptide composition of somatic and germ cell mitochondria from testes of prepuberal and sexually mature animals and from highly enriched populations of pachytene primary spermatocytes and round spermatids revealed a staining pattern of mitochondrial proteins that was markedly constant throughout development with most polypeptides being conserved and a few specific spots changing in abundance. Marked differences were detected, however, when mitochondria from ejaculated spermatozoa were compared with those from testis with many minor and major polypeptides missing and several new polypeptides present at high concentration.  相似文献   

19.
20.
Spermatogenesis is a key developmental process allowing for a formation of a mature male gamete. During its final phase, spermiogenesis, haploid round spermatids undergo cellular differentiation into spermatozoa, which involves extensive restructuring of cell morphology, DNA, and epigenome. Using mouse models with abrogated Y chromosome gene complements and Y-derived transgene we identified Y chromosome encoded Zfy2 as the gene responsible for sperm formation and function. In the presence of a Zfy2 transgene, mice lacking the Y chromosome and transgenic for two other Y-derived genes, Sry driving sex determination and Eif2s3y initiating spermatogenesis, are capable of producing sperm which when injected into the oocytes yield live offspring. Therefore, only three Y chromosome genes, Sry, Eif2s3y and Zfy2, constitute the minimum Y chromosome complement compatible with successful intracytoplasmic sperm injection in the mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号