首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sry‐related high‐mobility box (SOX)‐2 protein has recently been proven to play a significant role in progression, metastasis, and clinical prognosis spanning several cancer types. Research on the role of SOX2 in melanoma is limited and currently little is known about the mechanistic function of this gene in this context. Here, we observed high expression of SOX2 in both human melanoma cell lines and primary melanomas in contrast to melanocytic nevi. This overexpression in melanoma can, in part, be explained by extra gene copy numbers of SOX2 in primary samples. Interestingly, we were able to induce SOX2 expression, mediated by SOX4, via TGF‐β1 stimulation in a time‐dependent manner. Moreover, the knockdown of SOX2 impaired TGF‐β‐induced invasiveness. This phenotype switch can be explained by SOX2‐mediated cross talk between TGF‐β and non‐canonical Wnt signaling. Thus, we propose that SOX2 is involved in the critical TGF‐β signaling pathway, which has been shown to correlate with melanoma aggressiveness and metastasis. In conclusion, we have identified a novel downstream factor of TGF‐β signaling in melanoma, which may have further implications in the clinic.  相似文献   

2.
3.
PP7 is a positive regulator of blue light signaling in Arabidopsis   总被引:6,自引:0,他引:6       下载免费PDF全文
Møller SG  Kim YS  Kunkel T  Chua NH 《The Plant cell》2003,15(5):1111-1119
  相似文献   

4.
The prognosis of advanced gastric cancer is poor and understanding the biology and subsequent development of new targeting therapy is still an urgent need. This study was conducted to explore the effect of BR2 (a 17‐amino acid peptide)‐SOX17 (human sex determining region Y (SRY)‐related high‐mobility group (HMG) box protein family member 17) fusion protein on Klotho gene expression in gastric cancer cells. The regulatory effects of SOX17 on Klotho gene in gastric cancer cells were tested using dual‐luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay. The therapeutic effects of BR2‐SOX17 were evaluated by proliferation, colony formation, invasion assay, and cell apoptosis analysis. Results showed that SOX17 enhanced Klotho gene expression in gastric adenocarcinoma cells through binding to the promoter of Klotho gene. BR2‐SOX17 fusion protein was effective in delivering SOX17 into gastric cancer cells and subsequently inhibited the cell proliferation, colony formation, and invasion, increased E‐cadherin protein expression, decreased vimentin protein expression, as well as induced apoptosis. Our findings suggested SOX17 can bind to the promoter of Klotho gene to enhance Klotho gene expression in gastric cancer cells. The fused BR2‐SOX17 protein is an effective agent for targeting therapy of gastric cancer.  相似文献   

5.
6.
Sponges (phylum: Porifera) react to external light or mechanical signals with contractile or metabolic reactions and are devoid of any nervous or muscular system. Furthermore, elements of a photoreception/phototransduction system exist in those animals. Recently, a cryptochrome-based photoreceptor system has been discovered in the demosponge. The assumption that in sponges the siliceous skeleton acts as a substitution for the lack of a nervous system and allows light signals to be transmitted through its glass fiber network is supported by the findings that the first spicules are efficient light waveguides and the second sponges have the enzymatic machinery for the generation of light. Now, we have identified/cloned in Suberites domuncula two additional potential molecules of the sponge cryptochrome photoreception system, the guanine nucleotide-binding protein β subunit, related to β-transducin, and the nitric oxide synthase (NOS)–interacting protein. Cryptochrome and NOSIP are light-inducible genes. The studies show that the NOS inhibitor L-NMMA impairs both morphogenesis and motility of the cells. Finally, we report that the function of primmorphs to produce reactive nitrogen species can be abolished by a NOS inhibitor. We propose that the sponge cryptochrome-based photoreception system, through which photon signals are converted into radicals, is coupled to the NOS apparatus.  相似文献   

7.
Karenia brevis (C. C. Davis) G. Hansen et Moestrup is a dinoflagellate responsible for red tides in the Gulf of Mexico. The signaling pathways regulating its cell cycle are of interest because they are the key to the formation of toxic blooms that cause mass marine animal die‐offs and human illness. Karenia brevis displays phased cell division, in which cells enter S phase at precise times relative to the onset of light. Here, we demonstrate that a circadian rhythm underlies this behavior and that light quality affects the rate of cell‐cycle progression: in blue light, K. brevis entered the S phase early relative to its behavior in white light of similar intensity, whereas in red light, K. brevis was not affected. A data base of 25,000 K. brevis expressed sequence tags (ESTs) revealed several sequences with similarity to cryptochrome blue‐light receptors, but none related to known red‐light receptors. We characterized the K. brevis cryptochrome (Kb CRY) and modeled its three‐dimensional protein structure. Phylogenetic analysis of the photolyase/CRY gene family showed that Kb CRY is a member of the cryptochrome DASH (CRY DASH) clade. Western blotting with an antibody designed to bind a conserved peptide within Kb CRY identified a single band at ~55 kDa. Immunolocalization showed that Kb CRY, like CRY DASH in Arabidopsis, is localized to the chloroplast. This is the first blue‐light receptor to be characterized in a dinoflagellate. As the Kb CRY appears to be the only blue‐light receptor expressed, it is a likely candidate for circadian entrainment of the cell cycle.  相似文献   

8.
9.
10.
Light signals have profound morphogenic effects on plant development. Signals perceived by the red/far‐red absorbing phytochrome family of photoreceptors and the blue/green/ UV‐A absorbing cryptochrome photoreceptor converge on a group of pleiotropic gene products defined by the COP/DET loci to control the pattern of development. The signaling pathway, although still undefined, includes several classic signaling molecules, such as G‐proteins, calcium, calmodulin, and cGMP. A separate signaling pathway is involved in the modulation of the phototropic response. Additional mutants have been identified that affect subsets of light signaling responses. This review provides an overview of our current understanding of the light signaling process, in particular recent genetic and biochemical advances.  相似文献   

11.
Sponges are the most basal metazoan organisms. As sessile filter feeders in marine or freshwater habitats, they often live in close association with phototrophic microorganisms. Active photosynthesis by the associated microorganisms has been believed to be restricted to the outer tissue portion of the sponge hosts. However, phototrophic microorganisms have also been detected in deeper tissue regions. In many cases they are found around spicules, siliceous skelettal elements of demosponges and hexactinellids. The finding of phototrophic organisms seemingly assembled around spicules led to the hypothesis of a siliceous light transmission system in sponges. The principle ability to conduct light was already shown for sponge derived, explanted spicules. However it was not shown until now, that in deed sponges have a light transmission system, and can harbour photosynthetically active microorganisms in deeper tissue regions.Here we show for the first time, that, as hypothesized 13 year ago, sponge spicules in living specimens transmit light into deeper tissue regions. Our results demonstrate that in opposite to the actual opinion, photosynthetically active microorganisms can also live in deeper tissue regions, and not only directly beneath the surface, when a light transmission system (spicules) is present.Our results show the possibility of massive or globular sponges being supplied with photosynthetic products or pathways throughout their whole body, implying not only a more important role of these endobioses. Our findings also elucidate the in-situ function of a recently more and more interesting biomaterial, which is unique not only for its mechanical, electrical and optical properties. Biosilica is of special interest for the possibility to produce it enzymatically under environmental conditions.  相似文献   

12.
This study was performed to investigate the expressions of the SOX trio, PTHrP (parathyroid hormone‐related peptide) and IHH (Indian hedgehog protein) in OA (osteoarthritis) using surgically induced rat OA model. After 12 weeks, the articular cartilage from the distal femur was harvested. The expressions of the SOX trio, PTHrP and IHH were explored at gene, protein and epigenetic levels by real‐time PCR (n=5), immunohistochemistry (n=5) and MSP (methylation‐specific PCR). The findings from OA cartilage of the right knees were compared with those from the left knees as the control. The gene expressions of SOX‐5, ?6, ?9 decreased by 58, 20 and 40%, respectively, in the OA cartilage, while their respective protein expressions increased. The PTHrP and IHH gene expressions decreased by 75 and 81%, respectively, although their protein expressions increased. Findings from MSP demonstrated increased methylation in the promoter regions of SOX‐5 and ?9 genes. This study demonstrated that increased methylation in the promoters of these genes may explain the low gene expression in the surgically induced OA model, whereas elevated protein expression is speculated to be from lag effect in the gene—protein expression.  相似文献   

13.
《Luminescence》2002,17(1):43-74
Luciferases are enzymes that emit light in the presence of oxygen and a substrate (luciferin) and which have been used for real‐time, low‐light imaging of gene expression in cell cultures, individual cells, whole organisms, and transgenic organisms. Such luciferin–luciferase systems include, among others, the bacterial lux genes of terrestrial Photorhabdus luminescens and marine Vibrio harveyi bacteria, as well as eukaryotic luciferase luc and ruc genes from firefly species (Photinus) and the sea panzy (Renilla reniformis), respectively. In various vectors and in fusion constructs with other gene products such as green fluorescence protein (GFP; from the jellyfish Aequorea), luciferases have served as reporters in a number of promoter search and targeted gene expression experiments over the last two decades. Luciferase imaging has also been used to trace bacterial and viral infection in vivo and to visualize the proliferation of tumour cells in animal models. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
Cryptochromes are blue-light receptors controlling multiple aspects of plant growth and development. They are flavoproteins with significant homology to photolyases, but instead of repairing DNA they function by transducing blue light energy into a signal that can be recognized by the cellular signaling machinery. Here we report the effect of cry1 and cry2 blue light receptors on primary root growth in Arabidopsis thaliana seedlings, through analysis of both cryptochrome-mutant and cryptochrome-overexpressing lines. Cry1 mutant seedlings show reduced root elongation in blue light while overexpressing seedlings show significantly increased elongation as compared to wild type controls. By contrast, the cry2 mutation has the opposite effect on root elongation growth as does cry1, demonstrating that cry1 and cry2 act antagonistically in this response pathway. The site of cryptochrome signal perception is within the shoot, and the inhibitor of auxin transport, 1-N-naphthylphthalamic acid, abolishes the differential effect of cryptochromes on root growth, suggesting the blue-light signal is transmitted from the shoot to the root by a mechanism that involves auxin. Primary root elongation in blue light may thereby involve interaction between cryptochrome and auxin signaling pathways.  相似文献   

15.
Botting, J.P., Muir, L.A., Xiao, S., Li, X. & Lin, J.‐P. 2012: Evidence for spicule homology in calcareous and siliceous sponges: biminerallic spicules in Lenica sp. from the Early Cambrian of South China. Lethaia, Vol. 45, pp. 463–475. The relationships of the extant sponge classes, and the nature of the last common ancestor of all sponges, are currently unclear. Early sponges preserved in the fossil record differ greatly from extant taxa, and therefore information from the fossil record is critical for testing hypotheses of sponge phylogenetic relationships that are based on modern taxa. New specimens of the enigmatic sponge Lenica sp., from the Early Cambrian Hetang Biota of South China, exhibit an unusual spicule structure. Each spicule consists of a siliceous core with an axial canal, an organic outer layer and a middle layer interpreted to have been originally calcium carbonate. This finding confirms previous work suggesting the existence of biminerallic spicules in early sponges. Combined with data from other early sponges, the new findings imply that the two fundamental spicule structures of modern sponges were derived from a compound, biminerallic precursor. Spicules are therefore homologous structures in Calcarea and Silicea, and if sponges are paraphyletic with respect to Eumetazoa, then spicules may also have been a primitive feature of Metazoa. □Calcarea, Early Cambrian, Hetang Biota, phylogeny, Silicea, taphonomy.  相似文献   

16.
The complete larval development of the deep-sea sponge Stylocordyla borealis (from eggs to young sponges) was followed in sponges from the Antarctic waters of Terra Nova Bay. S. borealis shows a viviparous strategy which leads to young complete sponges incubated in the mother body, with cortex, spicules and choanocyte chambers. This development can be considered a K-strategy, which is usually employed by deep-sea organisms and cold-water benthic invertebrates.  相似文献   

17.
In Drosophila melanogaster, disruption of night by even short light exposures results in degradation of the clock protein TIMELESS (TIM), leading to shifts in the fly molecular and behavioral rhythms. Several lines of evidence indicate that light entrainment of the brain clock involves the blue-light photoreceptor cryptochrome (CRY). In cryptochrome-depleted Drosophila (cry(b)), the entrainment of the brain clock by short light pulses is impaired but the clock is still entrainable by light-dark cycles, probably due to light input from the visual system. Whether cryptochrome and visual transduction pathways play a role in entrainment of noninnervated, directly photosensitive peripheral clocks is not known and the subject of this study. The authors monitored levels of the clock protein TIM in the lateral neurons (LNs) of larval brains and in the renal Malpighian tubules (MTs) of flies mutant for the cryptochrome gene (cry(b)) and in mutants that lack signaling from the visual photopigments (norpA(P41)). In cry(b) flies, light applied during the dark period failed to induce degradation of TIM both in MTs and in LNs, yet attenuated cycling of TIM was observed in both tissues in LD. This cycling was abolished in LNs, but persisted in MTs, of norpA(P41);cry(b) double mutants. Furthermore, the activity of the tim gene in the MTs of cry(b) flies, reported by luciferase, seemed stimulated by lights-on and suppressed by lights-off, suggesting that the absence of functional cryptochrome uncovered an additional light-sensitive pathway synchronizing the expression of TIM in this tissue. In constant darkness, cycling of TIM was abolished in MTs; however, it persisted in LNs of cry(b) flies. The authors conclude that cryptochrome is involved in TIM-mediated entrainment of both central LN and peripheral MT clocks. Cryptochrome is also an indispensable component of the endogenous clock mechanism in the examined peripheral tissue, but not in the brain. Thus, although neural and epithelial cells share the core clock mechanism, some clock components and light-entrainment pathways appear to have tissue-specific roles.  相似文献   

18.
We aimed to explore the interaction among lncRNA MALAT1, miR‐129 and SOX2. Besides, we would investigate the effect of MALAT1 on the proliferation of glioma stem cells and glioma tumorigenesis. Differentially expressed lncRNAs in glioma cells and glioma stem cells were screened out with microarray analysis. The targeting relationship between miR‐129 and MALAT1 or SOX2 was validated by dual‐luciferase reporter assay. The expressions of MALAT1, miR‐129 and SOX2mRNA in both glioma non‐stem cells and glioma stem cells were examined by qRT‐PCR assay. The impact of MALAT1 and miR‐129 on glioma stem cell proliferation was observed by CCK‐8 assay, EdU assay and sphere formation assay. The protein expression of SOX2 was determined by western blot. The effects of MALAT1 and miR‐129 on glioma tumour growth were further confirmed using xenograft mouse model. The mRNA expression of MALAT1 was significantly up‐regulated in glioma stem cells compared with non‐stem cells, while miR‐129 was significantly down‐regulated in glioma stem cells. MALAT1 knockdown inhibited glioma stem cell proliferation via miR‐129 enhancement. Meanwhile, miR‐129 directly targeted at SOX2 and suppressed cell viability and proliferation of glioma stem cells by suppressing SOX2 expression. The down‐regulation of MALAT1 and miR‐129 overexpression both suppressed glioma tumour growth via SOX2 expression promotion in vivo. MALAT1 enhanced glioma stem cell viability and proliferation abilities and promoted glioma tumorigenesis through suppressing miR‐129 and facilitating SOX2 expressions.  相似文献   

19.
Blue-light-induced photomorphogenesis is the sum total of a sequence of phenomena involving absorption of light by specific receptors, generation of a signal, processing transmembrane transport of signal, and the activation of a cascade of reactions in the cell interior. Though four blue-light receptors cryptochrome1, cryptochrome2, phototropin1, and phototropin2 have been identified, the signal transduction events associated with blue-light receptor activation are not understood. In this report, we demonstrate the generation and spatiotemporal distribution of H(2)O(2) in wheat coleoptile in response to blue light. Interception of the free-radical generation pathways dithiothreitol and propyl gallate rendered wheat coleoptile tips phototropically non-responsive. Unilateral application of H(2)O(2) onto the sub-apical region of a growing coleoptile brought about curvature in dark. Blue light also caused lipid peroxidation and augmented membrane rigidity of coleoptile cell membranes. We conclude that H(2)O(2) can act as a translocating second messenger that could bring about coleoptile curvature, and the signaling events may trigger Ca(2+) signaling cascades, changes in gene expression, and protein modifications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号