首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
内侧前额叶与社会认知   总被引:2,自引:0,他引:2  
早期的研究表明杏仁核、前额叶、颞上沟、前扣带回等与人类的社会认知活动有关;随着多种新技术的应用。越来越多的研究发现其它一些脑区结构(如岛叶、基底节、白质等)也与社会认知和行为有关。本文综述了内侧前额叶在社会认知中的作用,重点介绍了内侧前额叶在心灵理论、情绪认知、社会推理与决策、道德判断、自我认知等社会认知活动中的作用。未来研究希望能从整体和动态上认识内侧前额叶在社会认知活动中的作用。  相似文献   

3.
Amphetamine is more effective than methamphetamine at raising dopamine levels in the prefrontal cortex. The current study tested the hypothesis that norepinephrine transporters are involved in this difference. Using microdialysis, dopamine, norepinephrine, and serotonin were measured in the rat prefrontal cortex after administration of methamphetamine or amphetamine, with and without perfusion of desipramine. Amphetamine raised norepinephrine levels more than methamphetamine did. Desipramine raised dopamine and serotonin levels but did not alter metabolite levels. Desipramine attenuated the increase in dopamine by amphetamine while increasing the dopamine released by methamphetamine. These data suggest that methamphetamine and amphetamine differ in altering prefrontal cortical dopamine levels and in interacting with norepinephrine transporters. It is proposed that amphetamine releases dopamine in the prefrontal cortex primarily through norepinephrine transporters, whereas methamphetamine interacts minimally with norepinephrine transporters.  相似文献   

4.
The present study was undertaken to examine the effects of different muscarinic receptor agonists on glutamate and GABA concentrations in the medial prefrontal cortex of the rat. In vivo perfusions were made in the conscious rat using a concentric push-pull cannulae system. Amino acid concentrations in samples were determined by HPLC with fluorometric detection. The intracortical perfusion of arecoline, a M1-M2 muscarinic receptor agonist, produced a significant increase in extracellular [GLU] and [GABA]. McN-A-343, a M1 muscarinic receptor agonist, but not the M2 muscarinic receptor agonist, oxotremorine, produced a significant increase in extracellular [GLU] and [GABA]. The effects of McN-A-343 on extracellular [GLU] and [GABA] were blocked by pirenzepine, a M1 muscarinic receptor antagonist. These results suggest that M1 muscarinic receptor stimulation increases the extracellular concentrations of GLU and GABA in the medial prefrontal cortex of the rat.  相似文献   

5.
Evoked Extracellular Dopamine In Vivo in the Medial Prefrontal Cortex   总被引:3,自引:2,他引:3  
Abstract: The measurement of evoked extracellular dopamine in the medial prefrontal cortex by using fast-scan cyclic voltammetry with carbon-fiber microelectrodes was established and release characteristics of mesoprefrontal dopamine neurons were examined in vivo in anesthetized rats. Despite the sparse dopaminergic innervation and the presence of more dense noradrenergic and serotonergic innervations overall in the medial prefrontal cortex, the measurement of extracellular dopamine was achieved by selective recording in dopamine-rich terminal fields and selective activation of ascending dopamine neurons. This was confirmed by electrochemical, pharmacological, and anatomical evidence. An increased release capacity for mesoprefrontal dopamine neurons was also demonstrated by the slower decay of the evoked dopamine response after inhibition of catecholamine synthesis and the maintenance of the evoked dopamine response at higher levels in the medial prefrontal cortex compared with the striatum during supraphysiological stimulation.  相似文献   

6.
《Cell reports》2020,30(13):4433-4444.e5
  1. Download : Download high-res image (228KB)
  2. Download : Download full-size image
  相似文献   

7.
Using microdialysis, the effect was investigated of intracerebral infusions of different doses of amphetamine (1.25, 2.5, 5, 10, and 20 g/l) on the extracellular concentrations of glutamate in the medial prefrontal cortex of the rat. Amphetamine produced a dose-related increase in extracellular concentrations of glutamate. At the highest dose, amphetamine increased extracellular glutamate by 445% of baseline as well as extracellular concentrations of taurine, and reduced extracellular concentrations of glutamine. Amphetamine did not modify other amino acids such as arginine. Increases in extracellular concentrations of glutamate and taurine were independent of calcium in the perfusion medium. This is the first study showing that amphetamine produces a calcium-independent increase in extracellular concentrations of glutamate and taurine in the medial prefrontal cortex of the rat.  相似文献   

8.
We report a computer simulation of the visuospatial delayed-response experiments of Funahashi et al. (1989), using a firing-rate model that combines intrinsic cellular bistability with the recurrent local network architecture of the neocortex. In our model, the visuospatial working memory is stored in the form of a continuum of network activity profiles that coexist with a spontaneous activity state. These neuronal firing patterns provide a population code for the cue position in a graded manner. We show that neuronal persistent activity and tuning curves of delay-period activity (memory fields) can be generated by an excitatory feedback circuit and recurrent synaptic inhibition. However, if the memory fields are constructed solely by network mechanisms, noise may induce a random drift over time in the encoded cue position, so that the working memory storage becomes unreliable. Furthermore, a distraction stimulus presented during the delay period produces a systematic shift in the encoded cue position. We found that the working memory performance can be rendered robust against noise and distraction stimuli if single neurons are endowed with cellular bistability (presumably due to intrinsic ion channel mechanisms) that is conditional and realized only with sustained synaptic inputs from the recurrent network. We discuss how cellular bistability at the single cell level may be detected by analysis of spike trains recorded during delay-period activity and how local modulation of intrinsic cell properties and/or synaptic transmission can alter the memory fields of individual neurons in the prefrontal cortex.  相似文献   

9.
10.
社交行为对于个体身心健康和社会发展都极其重要。社交行为障碍已成为多种精神类疾病的典型临床表征,对个体的发展有严重不良影响。前额叶皮层作为调节社交行为的关键脑区之一,参与了社交、情绪、决策等高级功能,其内部神经元、神经胶质细胞的活动变化及相互作用对调节社交行为有着重要影响,而且前额叶皮层与其他脑区之间的协作也会影响不同的社会行为。本文回顾了前额叶皮层中神经元、神经胶质细胞以及脑区投射与社交行为关系的最新研究,系统综述了前额叶皮层在社交行为调节中的作用,以期为社交障碍的神经机制和有效诊疗提供参考。  相似文献   

11.
12.
目的:观察细胞外信号调节激酶1/2(ERK1/2)的活化在脊髓损伤引起抑郁中的作用。方法:应用Western blot和行为药理学方法,观察脊髓损伤后(SCI)大鼠内侧前额叶皮质内(mPFC)ERK1/2及磷酸化-ERK1/2(p-ERK1/2)的表达情况及ERK1/2磷酸化抑制剂U0126对抑郁样行为的影响。结果:脊髓损伤后的第2天到第8周,SCI模型大鼠的BBB评分均显著低于假手术组,差异具有统计学意义(p0.05)。脊髓损伤后8周-12周,SCI模型大鼠强迫游泳不动时间与假手术组相比明显缩短,mPFC内pERK1/2蛋白表达水平明显升高,总ERK 1/2的蛋白水平则未见组间差异,而给予U0126的大鼠的不动时间与给药之前相比明显延长增加,mPFC内pERK1/2蛋白表达水平较SCI模型大鼠明显降低,差异均具有统计学意义(P0.05)。结论:内侧前额叶皮质内ERK1/2的激活参与了脊髓损伤后引起的突触可塑性,在相关的抑郁样行为的产生中发挥了重要的作用。  相似文献   

13.
In experiments on surviving rat forebrain slices, we studied the characteristics of glutamatergic synaptic transmission in the medial prefrontal cortex (MPFC) and nucl. accumbens. It was found that in rats with behavioral depression induced by zoosocial isolation (72 h), the mean amplitude of field EPSP (fEPSP) in the MPFC demonstrated no significant alterations. At the same time, the developments of rhythmic stimulation-caused long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission were suppressed, as compared with the control. In the nucl. accumbens of rats with behavioral depression, the mean fEPSP amplitude increased by nearly 25%, whereas rhythmic stimulation-induced LTD of transmission through synaptic connections between the cortex and nucl. accumbens weakened. Changes in the relay and plastic properties of glutamatergic synapses typical of behavioral depression were reproduced under conditions of chronic (for 3 days) i.p. injections of 1 mg/kg dexamethasone into the experimental animals. The influences exerted on brain slices in vitro by a synthetic glucocorticoid, dexamethasone, and a mineralocorticoid, deoxycorticosterone acetate, applied over 2 h in concentrations of 100 nM, did not significantly affect glutamatergic synaptic transmission in the MPFC and nucl. accumbens. In brain slices from animals with behavioral depression or from those subjected to chronic injection of dexamethasone, we observed a reduction of the modulatory effect of dexamethasone and a nonselective agonist of dopamine receptors, apomorphine hydrochloride, on glutamatergic synaptic transmission in the MPFC and nucl. accumbens. This is considered an indirect reflection of a decrease in the efficiency (down-regulation) of glucocorticoid and dopamine receptors in neurons of the brain structures under study. It is hypothesized that changes in the main properties of glutamatergic synapses in the forebrain structures (MPFC and nucl. accumbens), which were observed under conditions of behavioral depression, are determined by both direct effects of glucocorticoids on cortical and mesolimbic neurons and indirect effects mediated by the cerebral dopaminergic system.  相似文献   

14.
One of the challenges in the analysis of gene expression data is placing the results in the context of other data available about genes and their relationships to each other. Here, we approach this problem in the study of gene expression changes associated with age in two areas of the human prefrontal cortex, comparing two computational methods. The first method, "overrepresentation analysis" (ORA), is based on statistically evaluating the fraction of genes in a particular gene ontology class found among the set of genes showing age-related changes in expression. The second method, "functional class scoring" (FCS), examines the statistical distribution of individual gene scores among all genes in the gene ontology class and does not involve an initial gene selection step. We find that FCS yields more consistent results than ORA, and the results of ORA depended strongly on the gene selection threshold. Our findings highlight the utility of functional class scoring for the analysis of complex expression data sets and emphasize the advantage of considering all available genomic information rather than sets of genes that pass a predetermined "threshold of significance."  相似文献   

15.
16.
《Cell reports》2020,30(5):1613-1626.e4
  1. Download : Download high-res image (125KB)
  2. Download : Download full-size image
  相似文献   

17.
18.
Catecholamine turnover in brain areas innervated by dopaminergic neurons was examined 2, 6, and 12 days after bilateral, N-methyl-D-aspartate lesions confined to the rat medial prefrontal cortex. The lesion produced a significant regional increase in the concentration of 3,4-dihydroxyphenylethylamine (DA, dopamine) in both the medial prefrontal cortex and the ventral tegmental area. DA concentrations were increased in the nucleus accumbens on day 6 (128% of control), in the ventral tegmental area on day 2 (130% of control), and in the medial prefrontal cortex on days 2 (145% of control) and 6 (127% of control). The only significant changes in the concentration of 3,4-dihydroxyphenylacetic acid (DOPAC) (197% of control), and in the ratio DOPAC/DA (163% of control) were found in the medial prefrontal cortex on day 6 post-lesion. All parameters had returned to control levels by day 12. DA depletion after the administration of alpha-methyl-p-tyrosine (AMPT) was not significantly different between excitotoxin-lesioned and sham animals on day 6 in all brain regions. Noradrenaline (NA) and 3,4-dihydroxyphenylethyleneglycol concentrations and their ratios, and the depletion of noradrenaline after AMPT were also determined, and the lesion resulted in a significant regional increase in NA in both the nucleus accumbens and the ventral tegmental area. An elevation of NA (147% of control) in the nucleus accumbens was found on day 12. Since the excitotoxin lesion destroys corticofugal efferents from medial prefrontal cortex to the nucleus accumbens, the anterior corpus striatum and the ventral tegmental area, our results provide no evidence for a role of these cortical projections in the regulation of subcortical DA metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Abstract: In vivo electrochemistry was used to characterize dopamine clearance in the medial prefrontal cortex and to compare it with clearance in the dorsal striatum and nucleus accumbens. When calibrated amounts of dopamine were pressure-ejected into the cortex from micropipettes adjacent to the recording electrodes, transient and reproducible dopamine signals were detected. The local application of the selective uptake inhibitors GBR-12909, desipramine, and fluoxetine before the application of dopamine indicated that at the lower recording depths examined (2.5–5.0 mm below the brain surface), locally applied dopamine was cleared from the extracellular space primarily by the dopamine transporter. The norepinephrine transporter played a greater role at the more superficial recording sites (0.5–2.25 mm below the brain surface). To compare clearance of dopamine in the medial prefrontal cortex (deeper sites only), striatum, and nucleus accumbens, varying amounts of dopamine were locally applied in all three regions of individual animals. The signals recorded from the cortex were of greater amplitude and longer time course than those recorded from the striatum or accumbens (per picomole of dopamine applied), indicating less efficient dopamine uptake in the medial prefrontal cortex. The fewer number of transporters in the medial prefrontal cortex may be responsible, in part, for this difference, although other factors may also be involved. These results are consistent with the hypothesis that regulation of dopaminergic function is unique in the medial prefrontal cortex.  相似文献   

20.
Balla  Andrea  Hashim  Audrey  Burch  Sarah  Javitt  Daniel C.  Lajtha  Abel  Sershen  Henry 《Neurochemical research》2001,26(8-9):1001-1006
Phencyclidine (PCP) administration in rodents has been used to model aspects of schizophrenia. One aspect of such treatment has been the enhancement of amphetamine-induced increase of dopamine in the prefrontal cortex and striatum. To further characterize this mechanism rats were treated for 2 weeks with continuous PCP (15 mg/kg per day via Alzet minipump). Rats were implanted with a microdialysis probe into the prefrontal cortex (PFC) or striatum. Amphetamine was administered locally via the dialysis probe during one collection period and changes in extracellular dopamine were monitored. The effect of local administration of the dopamine uptake blocker nomifensine was also measured. Amphetamine (10 M) and nomifensine (10 M) increased the level of dopamine in both the PFC and striatum. PCP administration did not alter the response to amphetamine or nomifensine in the PFC, but reduced this response about 2-fold in striatum. To examine effects of continuous PCP administration on dopamine autoreceptor function, release of [3H]dopamine in response to electrical stimulation and in the presence of a dopamine agonist or antagonist was tested in striatal and prefrontal cortical tissue. Autoreceptor responses were similar in control and PCP-treated tissues. We conclude that the brain region-specific enhancement of dopamine release by peripheral amphetamine administration in rats after PCP is not likely mediated by alterations in the dopamine autoreceptors or changes in the dopamine transporter. The selective local responses of amphetamine indicates heterogeneous regional effects of continuous PCP on NMDA receptor function; effects that influence both regional excitatory responses and the overall dynamics of tonic excitatory/inhibitory inputs to the PFC and striatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号