首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is believed that the mammalian epididymis participates in the maturation of the sperm due to its secretory activity. High concentrations of several secreted acid hydrolases are found in the epididymal lumen. Moreover, some of these enzymes are secreted by the epididymal epithelium in an androgen‐dependent fashion. In this study, we attempted to discern whether mannose‐6‐phosphate receptors (MPRs) regulate transport and secretion of lysosomal enzymes in the rat epididymis, and if these events are altered when the animals are subjected to hormonal manipulation. We observed that expression of cation‐dependent MPR (CD‐MPR) and cation‐independent MPR (CI‐MPR) increased significantly in caudal epididymis of castrated rats by immunoblot. This increase was corroborated by quantitation of MPRs, by binding assays. This change could be due to androgen deprivation, as a similar effect was observed after treatment with the anti‐androgenic drug flutamide. Furthermore, we observed that the CD‐MPR was redistributed to the apical area of the epithelium on castrated rats by immunohistochemistry, which is compatible with the redistribution of the receptors toward lighter fractions in a Percoll gradient. Consistent with a possible involvement of the CD‐MPR in the secretion, we observed an increase in pro‐cathepsin D levels in epididymal fluid after castration. We conclude that the CD‐MPR might be regulated by hormones and that this receptor might be involved in the secretion of specific enzymes into the rat epididymis. J. Cell. Biochem. 110: 1101–1110, 2010. Published 2010 Wiley‐Liss, Inc.  相似文献   

2.
A specific 135-kDa protein was purified from porcine cauda epididymal fluid. Analysis of its N-terminal amino acid sequence revealed it to be a new protein. Stable clones of hybridomas that produced monoclonal antibodies against the purified 135-kDa protein were established. A clone, B-11, reacting both with epididymal fluid and with sperm plasma membranes was selected and used in this study. Immunoblotting analysis showed that B-11 reacted only with a 135-kDa protein among epididymal fluid proteins. In contrast, B-11 did not recognize a similar 135-kDa sperm protein but did strongly react with a 27-kDa protein among sperm membrane proteins, extracted by NP-40 in the presence of protease inhibitors. B-11 also reacted only with a 27-kDa protein fragment among trypsin digests of the 135-kDa epididymal protein. The 135-kDa protein was first detected, by ELISA or immunoblotting analysis, at the beginning of the corpus epididymis. Maximal levels were reached in the distal corpus and levels were slightly decreased in the cauda epididymis. On the other hand, the surface of caput sperm were found to contain small amounts of antigen(s), the concentration of which gradually increased during epididymal transit. In immunocytochemical studies, the antigen was detectable in the epithelial cells from the initial segment to the corpus of the epididymis but not in the caudal cells. In the lumen, the presence of the 135 kDa protein was apparent in the corpus (at a maximum in the middle and distal corpus) and to a lesser degree in the caudal lumen. The 27-kDa protein was distributed all over the equatorial region of the acrosome of less than 10% of caput epididymal sperm. As sperm passed through the corpus epididymis, the percentage of immunoreactive cells increased and the protein was restricted to specific domains of the sperm head. Thus, on the mature sperm, antigen was localized in a crescent-shaped area of the equatorial segment just behind the anterior part of the acrosome and on the apical rim of the sperm head. This is the first observation of a sperm surface antigen derived from an epididymal protein as a proteolytic fragment that interacts with specific regions of the sperm membrane during the process of spermatozoa maturation.  相似文献   

3.
Acquisition of sperm fertilizing ability is due, in part, to the reorganization of plasma membrane proteins that occurs during epididymal sperm transit. Using polyclonal antibodies against angiotensin I-converting enzyme (ACE), we showed that this enzyme is immunolocalized mainly on the middle piece of rat and mouse testicular sperm and with less intensity along the initial part of the principal piece of the flagellum. In both species, only some sperm from the caput epididymis were still reactive, whereas no labeling was observed on cauda epididymal sperm. The 105- to 110-kDa germinal ACE was absent from the rat testicular fluid but appeared in the fluid of the anterior epididymis. Thereafter, its molecular weight shifted to 94 kDa in the corpus epididymal fluid and remained at this weight in the caudal region. The 105- to 110-kDa immunoreactive protein was present in testicular rat sperm extract but was completely absent from epididymal sperm extracts. Western blot analysis of testicular and epididymal tissue extracts from the rat and mouse also confirmed that the germinal enzyme was absent from the epididymal sperm cell. Our results demonstrated that the rodent germinal ACE is released from the testicular sperm membrane when sperm enter the epididymis, a process similar to that observed in domestic mammals. This result is discussed in view of the suggested role for this enzyme in sperm fertility.  相似文献   

4.
During epididymal transit, mammalian sperm acquire selected proteins secreted by the epididymis. We previously showed that a disintegrin and metalloprotease (ADAM) 7 is expressed specifically in the epididymis and transferred to the sperm surface during epididymal transit. Here, we show that mouse ADAM7 secreted to the epididymal lumen is associated with membranous vesicles known as epididymosomes. Furthermore, we found that ADAM7 can be transferred directly from epididymal vesicles to sperm and that it is an integral plasma membrane protein in sperm. Thus, our study provides new information regarding the unique mode of secretion and interaction of ADAM7 during the epididymis-to-sperm transfer process.  相似文献   

5.
Recently, a new head-to-head sperm association was described in the rat during epididymal transit. This association was called a rosette and a filamentous and PAS-positive material was also described joining the sperm heads. The begining of rosette formation in the epididymis and the linking material between heads have remained unclear. Epididymides of adult rats were fixed by vascular perfussion and thin sections of the principal regions were studied by transmission electron microscopy (TEM). The first evidence of rosette formation was observed in the distal corpus. Rosettes were isolated from the distal corpus and processed for immunogold and immunofluorescence microscopy to detect an epididymal glycoprotein called DE. This glycoprotein is secreted by the corpus epididymis and appears to be involved in sperm maturation. Colloidal gold marks and fluorescence were observed in the linking material between the sperm heads. The results presented here show that rosettes begin to appear following the sites of DE secretion and permit us to postulate that DE is involved in rosette formation and constitutes another example of gamete-epididymal interaction. © 1994 Wiley-Liss, Inc.  相似文献   

6.
The epididymis is a long, tightly coiled tube within the lumen of which sperm matures. Sperm maturation involves morphological and biochemical changes in the sperm plasma membrane in response to epididymal secretions and their various proteins. Some of these proteins become outer membrane components while others become integral membrane proteins; transfer of some proteins to the sperm plasma membrane may be mediated by epididymosomes. Nevertheless, the molecular pathways by which spermatozoa acquire fertilizing capacity during their transit through the epididymis remain ambiguous. In a recent study of stallion epididymal sperm, we found that sperm harvested from different parts of the epididymis (caput, corpus and cauda) had a varying, but generally poor, ability to undergo the acrosome reaction in vitro. At ejaculation, however, sperm mix with seminal plasma which contains various components, including the small membranous vesicles known as prostasomes, that may enable the sperm to undergo physiological activation. Seminal plasma components may have a 'washing' effect and help to remove 'de-capacitation' factors that coat the sperm during storage in the cauda epididymis; alternatively seminal plasma and prostasomes may contain factors that more directly promote sperm activation. This article reviews current information on the roles of epididymal and accessory gland fluids on the acquisition of fertilizing capacity by stallion sperm.  相似文献   

7.
In this study, we investigated the subcellular compartmentalization of arylsulfatase-A (AS-A) in the testis and epididymis as well as the surface distribution in rat epididymal sperm. Testicular AS-A was compartmentalized specifically to the area underneath the outer acrosomal membrane of the acrosomal granule and to the dorsal aspect of the sperm acrosome. Epididymal AS-A was synthesized in the endoplasmic reticular (ER) network of principal cells and secreted into epididymal lumen as evident by its reactivity in the apical cytoplasm and vesicles therein underneath stereocilia. In clear cells, AS-A reactivity was found throughout the cytoplasmic machineries involved in endocytosis. Surface distribution of AS-A was initially detectable at the concave ridge as early as in sperm of the initial segment (IS). AS-A was additionally localized to the post-acrosomal region in caput (CP), corpus (CO) and cauda (CD) epididymal sperm. The expression levels of surface AS-A gradually increased during sperm transit from IS to CD epididymidis. These results favored the adsorption of AS-A from epididymal fluid onto the sperm surface, rather than shunting from the acrosome as a consequence of capacitation-associated membrane priming.This work was supported by Research Initiate Grant funded by Faculty of Science, Mahidol University to W.W.  相似文献   

8.
9.
The present study evaluates the protective effect of α‐lipoic acid (LA) against arsenic‐induced testicular and epididymal oxidative damage in rats. Arsenic caused significant reduction in the reproductive organ weights, serum testosterone levels, testicular daily sperm count, epididymal sperm count, sperm motility, sperm viability, and sperm membrane integrity. Significant reduction in the activity levels of superoxide dismutase, catalase, and glutathione levels with a concomitant increase in the lipid peroxidation and protein carbonyl content in the testis and the cauda epididymis of arsenic‐exposed rats. Arsenic intoxication also enhanced the testicular caspase‐3 mRNA levels, disorganization of testicular and cauda epididymal architecture as well as increased arsenic content in the testis and the cauda epididymis of rats. Arsenic exposure also deteriorated fertility ability in male rats over controls. Conversely, α‐LA negated the testicular and cauda epididymal oxidative stress and restored the male reproductive health in arsenic‐exposed rats.  相似文献   

10.
Sperm acquire motility and fertility capacity during epididymal transit, under the control of androgens and sympathetic innervations. It is already known that the acceleration of epididymal sperm transit time can lead to lower sperm quality. In a previous work we showed that rats exposed to the anorexigen sibutramine, a non-selective serotonin-norepinephrine reuptake inhibitor, presented faster sperm transit time, lower epididymal sperm reserves and potentiation of the tension of epididymal duct to norepinephrine exposed acutely in vitro to sibutramine. In the present work we aimed to further investigate pharmacological mechanisms involved in these alterations and the impact on rat sperm quality. For this, adult male Wistar rats were treated with sibutramine (10 mg/kg/day) or vehicle for 30 days. Sibutramine decreased final body, seminal vesicle, ventral prostate and epididymal weights, as well as sperm transit time in the epididymal cauda. On the contrary of the in vitro pharmacological assays, in which sibutramine was added directly to the bath containing strips of distal epididymal cauda, the ductal tension was not altered after in vivo sub-chronic exposure to sibutramine. However, there is pharmacological evidence that the endogenous epididymal norepinephrine reserves were reduced in these animals. It was also shown that the decrease in prostate weight can be related to increased tension developed of the gland, due to sibutramine sympathomimetic effects. In addition, our results showed reduced sperm quality after in utero artificial insemination, a more sensitive procedure to assess fertility in rodents. The epididymal norepinephrine depletion exerted by sibutramine, associated with decreases in sperm transit time, quantity and quality, leading to reduced fertility in this experimental model, reinforces the concerns about the possible impact on fertility of man taking sibutramine as well as other non-selective serotonin-norepinephrine reuptake inhibitors, especially considering the lower reproductive efficiency of humans compared to males of other species.  相似文献   

11.
Sperm‐associated α‐L ‐fucosidases have been implicated in fertilization in many species. Previously, we documented the existence of α‐L ‐fucosidase in mouse cauda epididymal contents, and showed that sperm‐associated α‐L ‐fucosidase is cryptically stored within the acrosome and reappears within the sperm equatorial segment after the acrosome reaction. The enrichment of sperm membrane‐associated α‐L ‐fucosidase within the equatorial segment of acrosome‐reacted cells implicates its roles during fertilization. Here, we document the absence of α‐L ‐fucosidase in mouse oocytes and early embryos, and define roles of sperm associated α‐L ‐fucosidase in fertilization using specific inhibitors and competitors. Mouse sperm were pretreated with deoxyfuconojirimycin (DFJ, an inhibitor of α‐L ‐fucosidase) or with anti‐fucosidase antibody; alternatively, mouse oocytes were pretreated with purified human liver α‐L ‐fucosidase. Five‐millimolar DFJ did not inhibit sperm–zona pellucida (ZP) binding, membrane binding, or fusion and penetration, but anti‐fucosidase antibody and purified human liver α‐L ‐fucosidase significantly decreased the frequency of these events. To evaluate sperm‐associated α‐L ‐fucosidase enzyme activity in post‐fusion events, DFJ‐pretreated sperm were microinjected into oocytes, and 2‐pronuclear (2‐PN) embryos were treated with 5 mM DFJ with no significant effects, suggesting that α‐L ‐fucosidase enzyme activity does not play a role in post‐fusion events and/or early embryo development in mice. The recognition and binding of mouse sperm to the ZP and oolemma involves the glycoprotein structure of α‐L ‐fucosidase, but not its catalytic action. These observations suggest that deficits in fucosidase protein and/or the presence of anti‐fucosidase antibody may be responsible for some types of infertility. Mol. Reprod. Dev. 80: 273–285, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
Sperm‐associated and semen‐specific isoforms of α‐L ‐fucosidase are thought to function in fertilization in numerous organisms. Here, we report the localization, distribution, crypticity, and stability of this enzyme in mouse cauda epididymal sperm and cauda fluid. Western analysis revealed that the sperm‐associated α‐L ‐fucosidase is present as two isoforms (Mr ~49 and 56 kDa), whereas the cauda fluid α‐L ‐fucosidase shows a single band at 50 kDa. α‐L ‐Fucosidase activity was detected using the fluorogenic substrate 4‐MU‐FUC. Of the total α‐L ‐fucosidase activity recovered in the cauda epididymal contents, 74% was found in the cell‐free cauda fluid and about 7% was found in sperm cells. During capacitation or permeabilization, cryptic intracellular stores of soluble enzyme were released to the supernatant, while leaving bound enzyme concentrated within the small volume of sperm. Moreover, membrane‐associated enzyme activity was still detectable in acrosome‐reacted cells. Immunofluorescence studies support the presence of α‐L ‐fucosidase (originally localizing at the acrosomal area) at the equatorial segment after the acrosome reaction. α‐L ‐Fucosidase activity of both cauda fluid and sperm at 37°C, 5% CO2 was relatively stable and detectable up to 72 hr. The stability and appearance of mouse sperm‐associated α‐L ‐fucosidase in the equatorial segment after the acrosome reaction suggest that α‐L ‐fucosidase may be involved in sperm–egg interaction. Mol. Reprod. Dev. 79: 208–217, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

13.
Proacrosin from guinea pig cauda epididymal sperm has a lower molecular weight compared with the testicular zymogen. In this study, we have examined the structural basis of this change and where the conversion in proacrosin molecular weight occurs during sperm maturation. Immunoblotting of trifluoromethanesulfonic acid-deglycosylated testicular and cauda epididymal sperm extracts with antibody to guinea pig testicular proacrosin demonstrated that the polypeptide backbones of proacrosins from the testis and cauda epididymal sperm had the same molecular weights (approximately 44,000). Keratanase, an endo-beta-galactosidase specific for lactosaminoglycans, partially digested testicular proacrosin but had no effect on proacrosin from cauda epididymal sperm. In extracts of testis, caput epididymis, and corpus epididymis analyzed by immunoblotting, anti-proacrosin recognized a major antigen with an apparent molecular weight (Mr) of 55,000, although a 50,000-Mr minor antigen began to appear in the corpus epididymis. By contrast, extracts of cauda epididymis, vas deferens, and cauda epididymal sperm had the 50,000 Mr protein as the only immunoreactive antigen. By enzymography following electrophoresis, the major bands of proteolytic activity in extracts of testis, caput epididymis, and corpus epididymis had 55,000 Mr. A band of protease activity with 55,000 Mr also appeared in extracts of the corpus epididymis. However, the most prominent bands of proteolytic activity in cauda epididymis, vas deferens, and cauda epididymal sperm had 50,000 Mr. In addition, two other major protease activities were detected with 32,000 and 34,000 Mr; the relationships of these proteases to proacrosin are unclear. From these results, we conclude that the oligosaccharides of proacrosin are altered during epididymal transit and that this modification occurs in the corpus epididymis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Mammalian sperm capacitation is an essential prerequisite to fertilizion. Although progress had been made in understanding the physiology and biochemistry of capacitation, little is known about the potential roles of epididymal proteins during this process. Here we report that HongrES1, a new member of the SERPIN (serine proteinase inhibitor) family exclusively expressed in the rat cauda epididymis and up-regulated by androgen, is secreted into the lumen and covers the sperm head. Co-culture of caudal sperms with HongrES1 antibody in vitro resulted in a significant increase in the percentage of capacitated spermatozoa. Furthermore, the percentage of capacitated spermatozoa clearly increased in rats when HongrES1 was down-regulated by RNAi in vivo. Remarkably, knockdown of HongrES1 in vivo led to reduced fertility accompanied with deformed appearance of fetuses and pups. These results identify HongrES1 as a novel and critical molecule in the regulation of sperm capacitation and male fertility.  相似文献   

15.
Histochemical activity of malate dehydrogenase (MDH: E.C. 1.1.1.37) in rat sperm mitochondria decreased during the epididymal transit of sperm. In an electrophoretic study two major MDH isozymes (MDH-A and MDH-B) were demonstrated in the sperm. The epididymal sperm showed two minor isozymes associated with MDH-A, while the testicular sperm did not.  相似文献   

16.
A glycoprotein of molecular weight 32K has been isolated and purified from the rat caudal epididymal fluid by gel filtration, ion-exchange and affinity chromatography. The highly purified protein was labeled with radioactive iodine and the binding of the 125I-labeled 32K rat epididymal protein (REP) to washed rat caudal epididymal sperm was studied under various conditions. Scatchard plots of the binding data revealed two binding kinetics. One bound with high affinity (KD = 2.6 X 10(-10) ) but low capacity. The other bound with lower affinity (KD = 2.2 X 10(-9)M) but high capacity. The rate of binding of the labeled protein to sperm was dependent on the temperature of the incubation medium. At the scrotal temperature of 33 degrees C, maximal binding was obtained after 40 min. However, at 22 degrees C equilibrium state was reached after 90 min and at 0 degrees C, the equilibrium rate was not reached even after 120 min of incubation. Binding showed dependence on extracellular pH (optimal pH at 4) and ionic strength of the incubation medium. High ionic strength was found to inhibit binding of the 125I-labeled 32K REP to rat caudal epididymal sperm. Specific binding was abolished by 100-fold molar excess unlabeled 32K REP or by native rat caudal epididymal fluid proteins, but not by albumin or ovalbumin. This indicates high specificity of binding. This study has provided direct evidence for the interaction of an epididymal protein with epididymal spermatozoa.  相似文献   

17.
18.
Novel epididymal protease inhibitors with Kazal or WAP family domain   总被引:1,自引:0,他引:1  
The epididymal maturation of spermatozoa is regulated by changes in the luminal ion concentration and the processing of the sperm surface membrane by several glycosidases and proteases. In the present study, we identified five novel protease inhibitors that are highly expressed in the mouse epididymis. Four of the proteins were found to belong to the Kazal protease inhibitor family and were named SPINK8, SPINK10, SPINK11, and SPINK12, whereas one of the proteins, WFDC10, contained the WAP four-disulfide core domain structure. The novel genes showed very specific segmental expression patterns. The expression of all the five genes was regulated by testis-derived factors and decreased after gonadectomy. With the exception of Spink11, mRNA levels could be restored by testosterone replacement. We hypothesize that the protease inhibitors discovered represent a group of epididymal genes that contribute to the regulation of sperm maturation by regulating the proteolytic processing of the sperm membrane during epididymal transit.  相似文献   

19.
Secretions from the mammalian epididymis contain proteins that bind to developing sperm and are presumed to play a role in sperm maturation. The biochemical functions in sperm of most of these proteins are not known. In this report we describe the presence of a low molecular weight compound in bovine caudal epididymal luminal fluid (CF) that has a potent stimulatory effect on calcium (45Ca2+) uptake in immature caput epididymal spermatozoa. The studies were initially undertaken to characterize the effect of the protein caltrin, present in bovine seminal plasma (BSP), on calcium uptake into caput spermatozoa. Caltrin is known to block calcium influx into mature bovine sperm. Unexpectedly, the kinetics of calcium uptake into caput sperm showed a biphasic response when treated with BSP, namely, a stimulation of uptake at 1 to 5 min and inhibition of uptake after this time. Since caudal sperm do not show this biphasic response, we reasoned that BSP contained a factor derived from CF that must interact with developing sperm before the binding of caltrin to sperm can prevent further calcium uptake. We first demonstrated that preincubation of caput sperm with CF eliminated the biphasic calcium uptake effect induced in caput sperm by BSP and that caudal fluid alone had a potent stimulatory effect on calcium uptake in caput sperm. Half-maximal stimulation (fivefold over control) occurred at a caudal fluid protein concentration of 0.27 mg/ml. Partial purification of the factor indicates that it is of low molecular weight (MW ~ 1,000), but further chemical characterization has not been carried out and its epididymal site of origin is not known. The results indicate that the regulation of intracellular calcium levels in sperm differs in immature and mature bovine sperm in that an epididymal factor promotes calcium uptake during epididymal maturation, and the seminal fluid protein caltrin prevents it at ejaculation.  相似文献   

20.
Although the overall performance of modern mass spectrometers has increased, proteomic analysis of complex samples still requires prefractionation either at the protein or peptide level to allow for in-depth analysis of normal cellular function. Here, we report a novel way to identify protein changes occurring during sperm development through the epididymis. Phosphopeptides were first enriched from either the rat caput or caudal regions of the epididymides using TiO(2), and the profiles then quantitatively compared. We show that 77 TiO(2)-enriched peptides become significantly modified in the epididymis, equating to 53 proteins. Through the use of immunoblot analysis, we confirmed that three proteins, ornithine-decarboxylase antizyme 3, heat-shock protein 90α, and testis-lipid binding protein, undergo major protein loss during epididymal passage. Many other proteins, including t-complex protein 10 and Spata18 show testis unique expression, appear to undergo phosphorylation during this same time frame. These data provide mechanistic insight into the means by which spermatozoa acquire functionality during epididymal transit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号