首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Asian soybean rust (ASR), caused by the obligate biotrophic fungus Phakopsora pachyrhizi, can cause losses greater than 80%. Despite its economic importance, there is no soybean cultivar with durable ASR resistance. In addition, the P. pachyrhizi genome is not yet available. However, the availability of other rust genomes, as well as the development of sample enrichment strategies and bioinformatics tools, has improved our knowledge of the ASR secretome and its potential effectors. In this context, we used a combination of laser capture microdissection (LCM), RNAseq and a bioinformatics pipeline to identify a total of 36 350 P. pachyrhizi contigs expressed in planta and a predicted secretome of 851 proteins. Some of the predicted secreted proteins had characteristics of candidate effectors: small size, cysteine rich, do not contain PFAM domains (except those associated with pathogenicity) and strongly expressed in planta. A comparative analysis of the predicted secreted proteins present in Pucciniales species identified new members of soybean rust and new Pucciniales‐ or P. pachyrhizi‐specific families (tribes). Members of some families were strongly up‐regulated during early infection, starting with initial infection through haustorium formation. Effector candidates selected from two of these families were able to suppress immunity in transient assays, and were localized in the plant cytoplasm and nuclei. These experiments support our bioinformatics predictions and show that these families contain members that have functions consistent with P. pachyrhizi effectors.  相似文献   

2.
Soybean rust caused by Phakopsora pachyrhizi is a destructive foliar disease in nearly all soybean‐producing countries. Understanding the host responses at the molecular level is certainly essential for effective control of the disease. To identify proteins involved in the resistance to soybean rust, differential proteomic analysis was conducted in soybean leaves of a resistant genotype after P. pachyrhizi infection. A total of 41 protein spots exhibiting a fold change >1.5 between the non‐inoculated and P. pachyrhizi‐inoculated soybean leaves at 12 and 24 h postinoculation (hpi) were unambiguously identified and functionally grouped into seven categories. Twenty proteins were up‐regulated and four proteins were down‐regulated at 12 hpi, whereas 18 proteins were up‐regulated and eight proteins were down‐regulated at 24 hpi. Generally, proteins involved in photosynthesis were down‐regulated, whereas proteins associated with disease and defense response, protein folding and assembly, carbohydrate metabolism and energy production were up‐regulated. Results are discussed in terms of the functional implications of the proteins identified, with special emphasis on their putative roles in defense. Abundance changes of these proteins, together with their putative functions reveal a comprehensive picture of the host response in rust‐resistant soybean leaves and provide a useful platform for better understanding of the molecular basis of soybean rust resistance.  相似文献   

3.
4.
Asian soybean rust (ASR), caused by the obligate fungal pathogen Phakopsora pachyrhizi, often leads to significant yield losses and can only be managed through fungicide applications currently. In the present study, eight urediniospore germination or appressorium formation induced P. pachyrhizi genes were investigated for their feasibility to suppress ASR through a bean pod mottle virus (BPMV)-based host-induced gene silencing (HIGS) strategy. Soybean plants expressing three of these modified BPMV vectors suppressed the expression of their corresponding target gene by 45%–80%, fungal biomass accumulation by 58%–80%, and significantly reduced ASR symptom development in soybean leaves after the plants were inoculated with P. pachyrhizi, demonstrating that HIGS can be used to manage ASR. In addition, when the in vitro synthesized double-stranded RNAs (dsRNAs) for three of the genes encoding an acetyl-CoA acyltransferase, a 40S ribosomal protein S16, and glycine cleavage system H protein were sprayed directly onto detached soybean leaves prior to P. pachyrhizi inoculation, they also resulted in an average of over 73% reduction of pustule numbers and 75% reduction in P. pachyrhizi biomass accumulation on the detached leaves compared to the controls. To the best of our knowledge, this is the first report of suppressing P. pachyrhizi infection in soybean through both HIGS and spray-induced gene silencing. It was demonstrated that either HIGS constructs targeting P. pachyrhizi genes or direct dsRNA spray application could be an effective strategy for reducing ASR development on soybean.  相似文献   

5.
6.
Soybean [Glycine max (L.) Merril], one of the most important crop species in the world, is very susceptible to abiotic and biotic stress. Soybean plants have developed a variety of molecular mechanisms that help them survive stressful conditions. Hybrid proline-rich proteins (HyPRPs) constitute a family of cell-wall proteins with a variable N-terminal domain and conserved C-terminal domain that is phylogenetically related to non-specific lipid transfer proteins. Members of the HyPRP family are involved in basic cellular processes and their expression and activity are modulated by environmental factors. In this study, microarray analysis and real time RT-qPCR were used to identify putative HyPRP genes in the soybean genome and to assess their expression in different plant tissues. Some of the genes were also analyzed by time-course real time RT-qPCR in response to infection by Phakopsora pachyrhizi, the causal agent of Asian soybean rust disease. Our findings indicate that the time of induction of a defense pathway is crucial in triggering the soybean resistance response to P. pachyrhizi. This is the first study to identify the soybean HyPRP group B family and to analyze disease-responsive GmHyPRP during infection by P. pachyrhizi.  相似文献   

7.
Fungal pathogens pose a major challenge to global crop production. Crop varieties that resist disease present the best defence and offer an alternative to chemical fungicides. Exploiting durable nonhost resistance (NHR) for crop protection often requires identification and transfer of NHR‐linked genes to the target crop. Here, we identify genes associated with NHR of Arabidopsis thaliana to Phakopsora pachyrhizi, the causative agent of the devastating fungal disease called Asian soybean rust. We transfer selected Arabidopsis NHR‐linked genes to the soybean host and discover enhanced resistance to rust disease in some transgenic soybean lines in the greenhouse. Interspecies NHR gene transfer thus presents a promising strategy for genetically engineered control of crop diseases.  相似文献   

8.
9.
10.
Soybean aphid, Aphis glycines, has caused serious economic damage to soybean across the North Central US since its introduction to North America in 2000. The management of another invasive soybean pest, Asian soybean rust, Phakopsora pachyrhizi, using foliar fungicide applications has the potential to impact soybean aphid populations by suppressing beneficial fungal entomopathogens. In 2005 and 2006, we applied recommended soybean rust fungicide treatments, consisting of strobilurin and triazole fungicides, to small soybean plots in two locations to assess if such applications might suppress aphid fungal epizootics. In Lamberton, MN, in 2005, during the epizootic, fungicide-treated plots averaged 2.0 ± 0.7% (mean ± SE) disease prevalence while untreated plots averaged 14.2 ± 5.6%. In 2007, we applied strobilurin and strobilurin-triazole mix fungicides to single-plant microplots either before or after release of Pandora neoaphidis, the most commonly observed aphid pathogen in 2005 and 2006. Treatments that contained a mixture of two active ingredients significantly lowered peak and cumulative aphid disease prevalence in both early and late reproductive stage soybeans indicating that fungicide mixtures used to manage soybean rust can negatively impact an aphid-specific fungal pathogen. However, no consistent soybean aphid population response was observed in these studies of low levels of aphid fungal infection.  相似文献   

11.
Volatiles modulate the development of plant pathogenic rust fungi   总被引:1,自引:0,他引:1  
Mendgen K  Wirsel SG  Jux A  Hoffmann J  Boland W 《Planta》2006,224(6):1353-1361
Rust fungi are obligate biotrophic pathogens that differentiate a series of specialized cells to establish infection. One of these cells, the haustorium, which serves to absorb nutrients from living host cells, normally develops only in planta. Here, we show that the rust fungus Uromyces fabae (Pers.) Schroet. stimulates volatile emission of its host, broad bean (Vicia faba L.). Volatiles were identified and shown to be perceived by the fungus in in vitro assays that excluded the host. Three of them, nonanal, decanal, and hexenyl acetate promoted the development of haustoria on artificial membranes. In contrast, the terpenoid farnesyl acetate suppressed this differentiation. In assays using whole plants, farnesyl acetate reduced rust disease not only on broad bean but also on several cereals and legumes including soybean. This natural substance was effective against all rusts tested when directly applied to the host. This demonstrated that farnesyl acetate may serve as a powerful novel tool to combat rust fungi including Phakopsora pachyrhizi that currently threatens the production of soybeans world-wide.  相似文献   

12.
Soybean rust caused by Phakopsora pachyrhizi Sydow is a devastating foliar disease that has spread to most soybean growing regions throughout the world, including the USA. Four independent rust resistance genes, Rpp1Rpp4, have been identified in soybean that recognize specific isolates of P. pachyrhizi. A suppressive subtraction hybridization (SSH) complementary DNA (cDNA) library was constructed from the soybean accession PI200492, which contains Rpp1, after inoculation with two different isolates of P. pachyrhizi that result in susceptible or immune reactions. Both forward and reverse SSH were performed using cDNA from messenger RNA pooled from 1, 6, 12, 24, and 48 h post-inoculation. A total of 1,728 SSH clones were sequenced and compared to sequences in GenBank for similarity. Microarray analyses were conducted on a custom 7883 soybean-cDNA clone array encompassing all of the soybean-rust SSH clones and expressed sequence tags from four other soybean cDNA libraries. Results of the microarray revealed 558 cDNA clones differentially expressed in the immune reaction. The majority of the upregulated cDNA clones fell into the functional category of defense. In particular, cDNA clones with similarity to peroxidases and lipoxygenases were prevalent. Downregulated cDNA clones included those with similarity to cell-wall-associated protein, such as extensins, proline-rich proteins, and xyloglucan endotransglycosylases. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, is one of the most important diseases on soybean. At the moment, ASR is managed mainly with fungicides due to the absence of commercial cultivars with resistance to this disease. This study evaluated the effects of acibenzolar‐Smethyl (ASM), jasmonic acid (JA), potassium silicate (PS) and calcium silicate (CS) on soybean resistance to ASR. The ASM, JA and PS were sprayed to leaves 24 h prior to inoculation with P. pachyrhizi. The CS was amended to the soil. The incubation period (time from the inoculation until symptoms development) was longer for plants growing in soil amended with CS or sprayed with ASM in comparison with plants sprayed with water (control). Plants sprayed with ASM had longer latent period (time from the inoculation until signs appearance) in comparison with the control plants. Plants sprayed with PS showed fewer uredia per cm² of leaf in relation to the control plants. The ASM and PS were the most effective treatments in reducing the ASR symptoms in contrast to the JA and CS treatments. The JA served as an inducer of susceptibility to ASR.  相似文献   

14.
Phakopsora pachyrhizi is a fungal pathogen and the cause of Asian soybean rust. P. pachyrhizi was first detected in the continental USA in 2004 and has since been a threat to the soybean industry. There are six described loci that harbor resistance to P. pachyrhizi (Rpp) genes. The resistance of PI 423972 was previously shown to be within 5 cM of the Rpp4 locus of PI 459025B, yet had differential reactions when challenged with P. pachyrhizi isolates India 1973 and Taiwan 1972. In this study, the resistance of PI 423972 was mapped to a 187.5 kb interval between the SNP markers GSM0543 and GSM0387 on chromosome 18 (51,397,064 to 51,584,617 bp, Glyma.Wm82.a2) that overlaps the interval for Rpp4 and is designated as Rpp4-b. A unique haplotype is described for PI 423972 that separates it from PI 459025B, 32 North American soybean ancestors, and all described sources of Rpp gene resistance.  相似文献   

15.
16.
Soybean rust (Phakopsora pachyrhizi) has recently invaded North America and has the potential to be the most destructive foliar disease of soybean. As part of the response to this threat, the Integrated Aerobiology Modeling System (IAMS) was constructed to forecast the aerial movement of this pathogen from subtropical to middle latitude portions of the continent. IAMS simulations have been conducted daily for the past two growing seasons and integrated with information from a nationwide observation network into a decision support system for soybean farmers. After the 2005 season, the United States Department of Agriculture reported that many millions of United States (U.S.) soybean hectares that would have been treated for soybean rust in 2005 were not due to this decision support system. In 2006, soybean rust appeared for the first time in the major U.S. soybean production region over 1000 km from known areas of inoculum production. IAMS predictions of the geographical extent and timing of disease symptom expression were well matched with subsequent observations of the disease in the field.  相似文献   

17.
Nickel (Ni) and glyphosate (Gl) are able to reduce the symptoms of Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, in soybean. However, their combined effects on the energy balance and ethylene metabolism of soybean plants infected with this fungus has not been elucidated. Therefore, the effects of Ni, Gl, and the combination of Ni + Gl on ASR development, photosynthetic capacity, sugar concentrations, and ethylene concentrations in plants of a Gl-resistant cultivar, uninfected or infected with P. pachyrhizi, were investigated. Inoculated plants supplied with Ni had the highest foliar Ni concentration in all the treatments. Gl had a negative effect on the foliar Ni concentration in Ni-sprayed plants. The ASR severity was reduced in plants sprayed with Ni and Gl. Carotenoid and chlorophyll concentrations were higher in inoculated Ni, Gl, and Ni + Gl plants than in control plants. Based on the chlorophyll a fluorescence parameters, the photosynthetic apparatus of the control inoculated plants was damaged, and the least amount of energy was directed to the photochemistry process in these plants. The reduced capacity of the photosynthetic mechanism to capture light and use the energy absorbed by photosystem II in inoculated plants was reflected in their reduced capacity to process CO2, as indicated by the high internal CO2 concentrations and low rates of net carbon assimilation. The low sugar concentrations in inoculated plants from the control treatment were linked to their reduced photosynthetic capacity due to the high ASR severity. In uninfected plants, the ethylene concentration was not affected by Ni or Gl, while the ethylene concentration decreased in inoculated plants; this decrease was more pronounced in plants from the control treatment than in treated inoculated plants. In conclusion, this study sheds light on the role played by both Ni and Gl in ASR control from a physiological perspective. Soybean plants exposed to Ni and Gl were able to maintain high ethylene concentrations and photosynthetic capacity during the P. pachyrhizi infection process; as a result, these plants consumed less of their reserves than inoculated plants not treated with Ni or Gl.  相似文献   

18.

Key message

A novel Rpp gene from PI 605823 for resistance to Phakopsora pachyrhizi was mapped on chromosome 19.

Abstract

Soybean rust, caused by the obligate biotrophic fungal pathogen Phakopsora pachyrhizi Syd. & P. Syd, is a disease threat to soybean production in regions of the world with mild winters. Host plant resistance conditioned by resistance to P. pachyrhizi (Rpp) genes has been found in numerous soybean accessions, and at least 10 Rpp genes or alleles have been mapped to six genetic loci. Identifying additional disease-resistance genes will facilitate development of soybean cultivars with durable resistance. PI 605823, a plant introduction from Vietnam, was previously identified as resistant to US populations of P. pachyrhizi in greenhouse and field trials. In this study, bulked segregant analysis using an F2 population derived from ‘Williams 82’ × PI 605823 identified a genomic region associated with resistance to P. pachyrhizi isolate GA12, which had been collected in the US State of Georgia in 2012. To further map the resistance locus, linkage mapping was carried out using single-nucleotide polymorphism markers and phenotypic data from greenhouse assays with an F2:3 population derived from Williams 82 × PI 605823 and an F4:5 population derived from ‘5601T’ × PI 605823. A novel resistance gene, Rpp7, was mapped to a 154-kb interval (Gm19: 39,462,291–39,616,643 Glyma.Wm82.a2) on chromosome 19 that is different from the genomic locations of any previously reported Rpp genes. This new gene could be incorporated into elite breeding lines to help provide more durable resistance to soybean rust.
  相似文献   

19.
Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, is one of the most important foliar diseases affecting soybean production worldwide. This study aimed to investigate the photosynthetic performance (leaf gas exchange, chlorophyll (Chl) a fluorescence images and photosynthetic pigment pools) of soybean plants sprayed with Acibenzolar‐S‐Methyl (ASM) and the fungicide epoxiconazole + pyraclostrobin (Epo+Pyr) and further inoculated with P. pachyrhizi. The ASR symptoms progressed much faster on the leaves of plants from the control treatment (water spray) in comparison with the ASM and Epo+Pyr treatments. In general, the values for the leaf gas exchange parameters net carbon assimilation rate (A), stomatal conductance to water vapour (gs), internal CO2 concentration (Ci) and transpiration rate (E) increased for the infected plants sprayed with ASM or Epo+Pyr in comparison with plants from the control treatment. The values for the initial fluorescence (Fo), maximal fluorescence (Fm), maximal photosystem II quantum efficiency (Fv/Fm), effective photosystem II quantum yield (Y(II)) and quantum yield of regulated energy dissipation (Y(NPQ)) were consistently higher for the ASM and Epo+Pyr treatments in comparison with the control treatment at advanced stages of fungal infection. By contrast, the values for quantum yield of non‐regulated energy dissipation (Y(NO) were significantly lower for the ASM and Epo+Pyr treatments. The concentrations of total Chl a+b and carotenoids significantly increased for infected plants sprayed with ASM and Epo+Pyr in comparison with plants from the control treatment. The results of this study demonstrated that the spray of soybean plants with either ASM or Epo+Pyr contributed to reduce the negative effect of ASR on the photosynthesis of soybean plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号