首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Bufalin (BF) exhibited antiproliferation and antimigration effects on human A549 lung cancer cells. To search its target‐related proteins, protein expression profiles of BF‐treated and control cells were compared using two quantitative proteomic methods, iTRAQ‐based and label‐free proteomic analysis. A total of 5428 proteins were identified in iTRAQ‐based analysis while 6632 proteins were identified in label‐free analysis. The number of common identified proteins of both methods was 4799 proteins. By application of 1.20‐fold for upregulated and 0.83‐fold for downregulated cutoff values, 273 and 802 differentially expressed proteins were found in iTRAQ‐based and label‐free analysis, respectively. The number of common differentially expressed proteins of both methods was 45 proteins. Results of bioinformational analysis using MetacoreTM showed that the two proteomic methods were complementary and both suggested the involvement of oxidative stress and regulation of gene expression in the effects of BF, and fibronectin‐related pathway was suggested to be an important pathway affected by BF. Western blotting assay results confirmed BF‐induced change in levels of fibronectin and other related proteins. Overexpression of fibronectin by plasmid transfection ameliorated antimigration effects of BF. Results of the present study provided information about possible target‐related proteins and signal network of BF.  相似文献   

2.
Imbalance in protein homeostasis in specific subcellular organelles is alleviated through organelle‐specific stress response pathways. As a canonical example of stress activated pathway, accumulation of misfolded proteins in ER activates unfolded protein response (UPR) in almost all eukaryotic organisms. However, very little is known about the involvement of proteins of other organelles that help to maintain the cellular protein homeostasis during ER stress. In this study, using iTRAQ‐based LC–MS approach, we identified organelle enriched proteins that are differentially expressed in yeast (Saccharomyces cerevisiae) during ER stress in the absence of UPR sensor Ire1p. We have identified about 750 proteins from enriched organelle fraction in three independent iTRAQ experiments. Induction of ER stress resulted in the differential expression of 93 proteins in WT strains, 40 of which were found to be dependent on IRE1. Our study reveals a cross‐talk between ER‐ and mitochondrial proteostasis exemplified by an Ire1p‐dependent induction of Hsp60p, a mitochondrial chaperone. Thus, in this study, we show changes in protein levels in various organelles in response to ER stress. A large fraction of these changes were dependent on canonical UPR signalling through Ire1, highlighting the importance of interorganellar cross‐talk during stress.  相似文献   

3.
Campylobacter jejuni , a prevalent cause of bacterial gastroenteritis, must adapt to different environments to be a successful pathogen. We previously identified a C. jejuni two-component regulatory system (Cj1226/7c) as upregulated during cell infections. Analyses described herein led us to designate the system CprRS ( C ampylobacter p lanktonic growth r egulation). While the response regulator was essential, a cprS sensor kinase mutant was viable. The Δ cprS mutant displayed an apparent growth defect and formed dramatically enhanced and accelerated biofilms independent of upregulation of previously characterized surface polysaccharides. Δ cprS also displayed a striking dose-dependent defect for colonization of chicks and was modestly enhanced for intracellular survival in INT407 cells. Proteomics analyses identified changes consistent with modulation of essential metabolic genes, upregulation of stress tolerance proteins, and increased expression of MOMP and FlaA. Consistent with expression profiling, we observed enhanced motility and secretion in Δ cprS , and decreased osmotolerance and oxidative stress tolerance. We also found that C. jejuni biofilms contain a DNase I-sensitive component and that biofilm formation is influenced by deoxycholate and the metabolic substrate fumarate. These results suggest that CprRS influences expression of factors important for biofilm formation, colonization and stress tolerance, and also add to our understanding of C. jejuni biofilm physiology.  相似文献   

4.
5.
Chatrath  Apurva  Kumar  Manish  Prasad  Ramasare 《Protoplasma》2022,259(2):263-275

Candida tropicalis is an opportunistic human pathogen with an ability to cause superficial as well as systemic infections in immunocompromised patients. The formation of biofilm by C. tropicalis can cause dreadful and persistent infections which are difficult to treat due to acquired resistance. Presently, available anti-Candida drugs exhibit a high frequency of resistance, low specificity and toxicity at a higher dosage. In addition, the discovery of natural or synthetic anti-Candida drugs is slow paced and often does not pass clinical trials. Citral, a monoterpene aldehyde, has shown effective antimicrobial activities against various microorganisms. However, only few studies have elaborated the action of citral against the biofilm of C. tropicalis. In the present work, the aim was to study the fungicidal effect, differential expression of proteome and changes in extracellular matrix in response to the sub-lethal concentration (16 µg/mL) of citral. The administration of citral on C. tropicalis biofilm leads to a fungicidal effect. Furthermore, the differential expression of proteome has revealed twenty-five proteins in C. tropicalis biofilm, which were differentially expressed in the presence of citral. Among these, amino acid biosynthesis (Met6p, Gln1p, Pha2p); nucleotide biosynthesis (Xpt1p); carbohydrate metabolism (Eno1p, Fba1p, Gpm1p); sterol biosynthesis (Mvd1p/Erg19p, Hem13p); energy metabolism (Dnm1p, Coa1p, Ndk1p, Atp2p, Atp4p, Hts1p); oxidative stress (Hda2p, Gre22p, Tsa1p, Pst2p, Sod2p) and biofilm-specific (Adh1p, Ape1p, Gsp1p) proteins were identified. The overexpression of oxidative stress–related proteins indicates the response of biofilm cell to combating oxidative stress during citral treatment. Moreover, the upregulation of Adh1p is of particular interest because it subsidizes the biofilm inhibition through ethanol production as a cellular response. The augmented expression of Mvd1p/Erg19p signifies the effect of citral on ergosterol biosynthesis. The presence of citral has also shown an increment in hexosamine and ergosterol component in extracellular matrix of C. tropicalis biofilm. Hence, it is indicated that the cellular response towards citral acts through multifactorial processes. This study will further help in the interpretation of the effect of citral on C. tropicalis biofilm and development of novel antifungal agents against these potential protein targets.

  相似文献   

6.
Bacterial plant pathogens often encounter reactive oxygen species (ROS) during host invasion. In foliar bacterial pathogens, multiple regulatory proteins are involved in the sensing of oxidative stress and the activation of the expression of antioxidant genes. However, it is unclear whether xylem‐limited bacteria, such as Xylella fastidiosa, experience oxidative stress during the colonization of plants. Examination of the X. fastidiosa genome uncovered only one homologue of oxidative stress regulatory proteins, OxyR. Here, a knockout mutation in the X. fastidiosa oxyR gene was constructed; the resulting strain was significantly more sensitive to hydrogen peroxide (H2O2) relative to the wild‐type. In addition, during early stages of grapevine infection, the survival rate was 1000‐fold lower for the oxyR mutant than for the wild‐type. This supports the hypothesis that grapevine xylem represents an oxidative environment and that X. fastidiosa must overcome this challenge to achieve maximal xylem colonization. Finally, the oxyR mutant exhibited reduced surface attachment and cell–cell aggregation and was defective in biofilm maturation, suggesting that ROS could be a potential environmental cue stimulating biofilm development during the early stages of host colonization.  相似文献   

7.
8.
Dysregulation of the insulin‐like growth factor 1 receptor signalling network is implicated in tumour growth and resistance to chemotherapy. We explored proteomic changes resulting from insulin‐like growth factor 1 stimulation of MCF‐7 adenocarcinoma cells as a function of time. Quantitative analysis using iTRAQ? reagents and 2‐D LC‐MS/MS analysis of three biological replicates resulted in the identification of 899 proteins (p≤0.05) with an estimated mean false‐positive rate of 2.6%. Quantitative protein expression was obtained from 681 proteins. Further analysis by supervised k‐means clustering identified five temporal clusters, which were submitted to the FuncAssociate server to assign overrepresented gene ontology terms. Proteins associated with vesicle transport were significantly overrepresented. We further analyzed our data set for proteins showing temporal significance using the software, extraction and analysis of differential gene expression, resulting in 20 significantly and temporally changing proteins (p≤0.1). These significant proteins play roles in, among others, altered glucose metabolism (lactate dehydrogenase A and pyruvate kinase M1/M2) and cellular stress (nascent polypeptide‐associated complex subunit α and heat shock (HSC70) proteins). We used multiple reaction monitoring to validate these interesting proteins and have revealed several differences in relative peptide expression corresponding to protein isoforms and variants.  相似文献   

9.
10.
The incidence of bladder conditions such as overactive bladder syndrome and its associated urinary incontinence is highly prevalent in the elderly. However, the mechanisms underlying these disorders are unclear. Studies suggest that the urothelium forms a ‘sensory network’ with the underlying innervation, alterations in which, could compromise bladder function. As the accumulation of reactive oxygen species can cause functional alterations with age, the aim of this study was to investigate whether oxidative stress alters urothelial sensory signalling and whether the mechanism underlying the effect of oxidative stress on the urothelium plays a role in aging. Five‐month‐old(young) and 24‐month‐old (aged) mice were used. H2O2, used to induce oxidative stress, resulted in an increase in bladder afferent nerve activity and urothelial intracellular calcium in preparations from young mice. These functional changes were concurrent with upregulation of TRPM8 in the urothelium. Moreover, application of a TRPM8 antagonist significantly attenuated the H2O2‐induced calcium responses. Interestingly, an upregulation of TRPM8 was also found in the urothelium from aged mice, where high oxidative stress levels were observed, together with a greater calcium response to the TRPM8 agonist WS12. Furthermore, these calcium responses were attenuated by pretreatment with the antioxidant N‐acetyl‐cysteine. This study shows that oxidative stress affects urothelial function involving a TRPM8‐mediated mechanism and these effects may have important implications for aging. These data provide an insight into the possible mechanisms by which oxidative stress causes physiological alterations in the bladder, which may also occur in other organs susceptible to aging.  相似文献   

11.
Melanoma is a lethal form of skin cancer with rising global incidence. However, limited treatment options are available for advanced melanoma and this is further compounded by the development of resistance toward existing drugs. Panduratin A (PA), a cyclohexanyl chalcone found in Boesenbergia rotunda, was investigated for its cytotoxic potentials against human malignant melanoma A375 cells. Our initial findings revealed that mitochondrion is the primary acting site of PA on A375 cancer cells and the cytotoxic mechanisms of PA were further investigated using a temporal quantitative proteomics approach by iTRAQ 2D‐LC‐MS/MS. Comprehensive proteomics analysis identified 296 proteins that were significantly deregulated in PA‐treated A375 cells and revealed the involvement of mitochondrial oxidative phosphorylation, secretory and ER stress pathway, and apoptosis. We further confirmed that the PA‐induced apoptosis was mediated by prolonged ER stress at least in part via the PERK/eIF2α/ATF4/CHOP pathway. Pretreatment with cycloheximide, an ER stress inhibitor rescued PA‐induced cell death, which was accompanied by the suppression of ER‐stress‐related HSPA5 and CHOP proteins. The present study provides comprehensive mechanistic insights into the cytotoxic mechanisms of PA.  相似文献   

12.
This study aimed to identify new diabetic nephropathy (DN)‐related proteins and renal targets of the copper(II)‐selective chelator, triethylenetetramine (TETA) in streptozotocin‐diabetic rats. We used the recently developed iTRAQ? technology to compare renal protein profiles among non‐diabetic, diabetic, and TETA‐treated diabetic rats. In diabetic kidneys, tubulointerstitial nephritis antigen (TINag), voltage‐dependent anion‐selective channel (VDAC) 1, and VDAC2 were up‐regulated in parallel with alterations in expression of proteins with functions in oxidative stress and oxidative phosphorylation (OxPhos) pathways. By contrast, mitochondrial HSP 60, Cu/Zn‐superoxide dismutase, glutathione S‐transferase α3 and aquaporin‐1 were down‐regulated in diabetic kidneys. Following TETA treatment, levels of D ‐amino acid oxidase‐1, epoxide hydrolase‐1, aquaporin‐1, and a number of mitochondrial proteins were normalized, with concomitant amelioration of albuminuria. Changes in levels of TINag, collagen VIα1, actinin 4α, apoptosis‐inducing factor 1, cytochrome C, histone H3, VDAC1, and aquaporin‐1 were confirmed by Western blotting or immunohistochemistry. Changes in expression of proteins related to tubulointerstitial function, podocyte structure, and mitochondrial apoptosis are implicated in the mechanism of DN and their reversal by TETA. These findings are consistent with the hypothesis that this new experimental therapy may be useful for treatment of DN.  相似文献   

13.
The assimilation of the nearly water insoluble substrates hydrocarbons and lipids by bacteria entails specific adaptations such as the formation of oleolytic biofilms. The present article reports that the extracellular matrix of an oleolytic biofilm formed by Marinobacter hydrocarbonoclasticus at n‐hexadecane–water interfaces is largely composed of proteins typically cytoplasmic such as translation factors and chaperones, and a lesser amount of proteins of unknown function that are predicted extra‐cytoplasmic. Matrix proteins appear to form a structured film on hydrophobic interfaces and were found mandatory for the development of biofilms on lipids, alkanes and polystyrene. Exo‐proteins secreted through the type‐2 secretion system (T2SS) were shown to be essential for the formation of oleolytic biofilms on both alkanes and triglycerides. The T2SS effector involved in biofilm formation on triglycerides was identified as a lipase. In the case of biofilm formation on n‐hexadecane, the T2SS effector is likely involved in the mass transfer, capture or transport of alkanes. We propose that M. hydrocarbonoclasticus uses cytoplasmic proteins released by cell lysis to form a proteinaceous matrix and dedicated proteins secreted through the T2SS to act specifically in the assimilation pathways of hydrophobic substrates.  相似文献   

14.
15.
16.
【目的】对大酱中耐盐性较好的植物乳杆菌进行蛋白质组学研究,为植物乳杆菌盐胁迫应激机制的研究提供实验数据。【方法】本项研究以筛选自东北传统农家大酱的耐盐性较好的植物乳杆菌FS5-5为研究对象,绘制了其在0%、6.0%、7.0%和8.0%(W/V)Na Cl浓度下的生长曲线,并利用i TRAQ技术研究了其在0%、6.0%、7.0%和8.0%(W/V)Na Cl浓度下的蛋白质表达情况。【结果】植物乳杆菌FS5-5在0%、6.0%、7.0%和8.0%(W/V)Na Cl浓度下到达对数生长期中期的时间点分别为5、10、12和12 h;以差异倍数在1.2倍以上且P0.05为筛选条件对6.0%、7.0%和8.0%(W/V)Na Cl浓度下与0%进行差异蛋白质的筛选,共筛选出1271个差异蛋白质。这些差异蛋白质主要参与糖代谢、氨基酸代谢、脂肪酸代谢、核苷酸代谢、应激反应、转运、PTS系统和核糖体代谢等。【结论】植物乳杆菌在高盐浓度下生长与能量合成蛋白质、应激蛋白质以及相容性溶质转运蛋白质的表达上调有密切关系。  相似文献   

17.
Bacteria utilize multiple regulatory systems to modulate gene expression in response to environmental changes, including two‐component signalling systems and partner‐switching networks. We recently identified a novel regulatory protein, SypE, that combines features of both signalling systems. SypE contains a central response regulator receiver domain flanked by putative kinase and phosphatase effector domains with similarity to partner‐switching proteins. SypE was previously shown to exert dual control over biofilm formation through the opposing activities of its terminal effector domains. Here, we demonstrate that SypE controls biofilms in Vibrio fischeri by regulating the activity of SypA, a STAS (sulphate transporter and anti‐sigma antagonist) domain protein. Using biochemical and genetic approaches, we determined that SypE both phosphorylates and dephosphorylates SypA, and that phosphorylation inhibits SypA's activity. Furthermore, we found that biofilm formation and symbiotic colonization required active, unphosphorylated SypA, and thus SypA phosphorylation corresponded with a loss of biofilms and impaired host colonization. Finally, expression of a non‐phosphorylatable mutant of SypA suppressed both the biofilm and symbiosis defects of a constitutively inhibitory SypE mutant strain. This study demonstrates that regulation of SypA activity by SypE is a critical mechanism by which V. fischeri controls biofilm development and symbiotic colonization.  相似文献   

18.
Indian mustard (Brassica juncea L.) is known to both accumulate and tolerate high levels of heavy metals from polluted soils. To gain a comprehensive understanding of the effect of cadmium (Cd) treatment on B. juncea roots, two quantitative proteomics approaches – fluorescence two‐dimensional difference gel electrophoresis (2‐D DIGE) and multiplexed isobaric tagging technology (iTRAQ) – were implemented. Several proteins involved in sulfur assimilation, redox homeostasis, and xenobiotic detoxification were found to be up‐regulated. Multiple proteins involved in protein synthesis and processing were down‐regulated. While the two proteomics approaches identified different sets of proteins, the proteins identified in both datasets are involved in similar biological processes. We show that 2‐D DIGE and iTRAQ results are complementary, that the data obtained independently using the two techniques validate one another, and that the quality of iTRAQ results depends on both the number of biological replicates and the number of sample injections. This study determined the involvement of enzymes such as peptide methionine sulfoxide reductase and 2‐nitropropane dioxygenase in alternatives redox‐regulation mechanisms, as well as O‐acetylserine sulfhydrylase, glutathione‐S‐transferase and glutathione‐conjugate membrane transporter, as essential players in the Cd hyperaccumation and tolerance of B. juncea.  相似文献   

19.
20.
We report the discovery of natural competence in Tannerella forsythia and its application to targeted chromosomal mutagenesis. Keeping T. forsythia in a biofilm throughout the procedure allowed efficient DNA uptake and allelic replacement. This simple method is cost-effective and reproducible compared with the conventional protocols using broth culture and electroporation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号