首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monoclonal antibodies specific to 22, 67 and 135 kDa proteins of yellow-head virus (YHV) were produced from a mouse immunized with partially purified YHV isolated from the haemolymph of experimentally YHV-infected Penaeus monodon. Four groups of monoclonal antibodies were identified. One group of antibodies bound only to native protein of YHV while the others were specific to 135, 67 and 22 kDa proteins in both native and denatured forms. All antibodies could be used to detect YHV infection by means of dot blot and immunohistochemistry. However, antibodies specific to the 22 kDa protein gave the best immunohistochemistry results in terms of intensity and sharpness of staining.  相似文献   

2.
The properties of antibodies generated in rabbits against native riboflavin carrier protein (cRCP), riboflavin carrier protein that had been denatured/renatured by SDS treatment (SDS-RCP) or disulphide-bond-reduced then S-carboxymethylated (Carb-RCP) were studied. SDS-RCP could displace native RCP in radioimmunoassay (r.i.a.), whereas Carb-RCP could not. By using antibodies raised in five different rabbits against native cRCP, 125I-labelled Carb-RCP could bind between 0 and 30% of the native antibodies. Antibodies raised against native RCP appear to be largely directed towards specific conformational determinants of RCP. Carb-RCP displaced native RCP in an r.i.a. using antibodies raised against SDS-RCP. SDS denaturation presumably unmasks cryptic epitopes in native RCP. Carb-RCP was a weak immunogen and elicited, presumably, antibodies to sequential epitope/epitopes. When injected into pregnant mice the antibodies caused neutralization of RCP, leading to termination of pregnancy, indicating highly conserved sequential epitopes in chicken and rodent RCP. Antibodies raised against Carb-RCP or native RCP reacted with CNBr fragments of native RCP, further confirming the presence of sequence-specific antibodies elicited by Carb-RCP.  相似文献   

3.
The F1-ATPase from Micrococcus lysodeikticus has been purified to 95% protein homogeneity in this laboratory and as all other bacterial F1S, possesses five distinct subunits with molecular weights ranging from 60 000 to 10 000 (Huberman, M. and Salton, M.R.J. (1979) Biochim. Biophys. Acta 547, 230-240). In this communication, we demonstrate the immunochemical reactivities of antibodies to native and SDS-dissociated subunits with the native and dissociated F1-ATPase and show that: (1) the antibodies generated to the native or SDS-dissociated subunits react with the native molecule; (2) all of the subunits comprising the F1 are antigenically unique as determined by crossed immunoelectrophoresis and the Ouchterlony double-diffusion techniques; (3) antibodies to the SDS-denatured individual delta- and epsilon-subunits can be used to destabilize the interaction of these specific subunits with the rest of the native F1; and (4) all subunit antibodies as well as anti-native F1 were found to inhibit ATPase activity to varying degrees, the strongest inhibition being seen with antibodies to the total F1 and anti-alpha- and anti-beta-subunit antibodies. The interaction of specific subunit antibodies may provide a new and novel way to study further and characterize the catalytic portions of F1-ATPases and in general may offer an additional method for the examination of multimeric proteins.  相似文献   

4.
Lactococcus lactis strains produce an extracellular subtilisin-related serine proteinase in which immunologically different components can be distinguished. Monoclonal antibodies specific for the different proteinase components have been raised and their epitopes were identified. By Western-blot analysis it was found that all monoclonal antibodies recognize all denatured proteinase components. The distinction between the different components could be made under native conditions only, indicating that binding regions are masked in the native molecule. In a L. lactis proteinase which was inactivated by the substitution Asp30----Asn under native conditions, only one epitope could be detected. This demonstrates that autoproteolytic activity is required to make specific binding regions accessible for (monoclonal) antibodies.  相似文献   

5.
Spleen lymphocytes from mice immunized with locust native low-density lipophorin A+ (LDLp) were fused with nonproducing myeloma cells, strain Sp 2/0. Hybridomas that were isolated from the fused cells produced antibodies specific for LDLp and the high-density lipophorin Ayellow (HDLp). Monoclonal strains were generated through cloning by limiting dilution from those hybridomas synthesizing antibodies specific for apolipophorins (apoLp)-I, -II, and -III of LDLp. Additionally, a hybridoma strain that was obtained after fusion of lymphocytes from mice immunized with apoLp-III produced antibodies that bind to apoLp-III and native LDLp. Some features of LDLp and HDLp were studied using these antibodies. It could be demonstrated that apoLp-I and apoLp-II are not immunochemically identical and are exposed in the native particle of both LDLp and HDLp. It was also shown that in both lipophorins apoLp-II is less exposed than apoLp-I, whereas in LDLp apoLp-III is mainly exposed; some apoLp-III could also be detected in HDLp. Tween-20, a nonionic detergent, appears to affect the binding of anti-apoLp-I, -II, and -III to both LDLp and HDLp. The monoclonal antibodies specific for locust apolipophorins do not bind to the respective apoproteins of lipophorins from other insects.  相似文献   

6.
7.
The major merozoite surface Ag (gp195) of Plasmodium falciparum has been shown to protect monkeys against parasite infection, and gp195-based synthetic peptides and recombinant polypeptides have been evaluated as potential malaria vaccines. A major problem in developing a gp195-based recombinant vaccine has been the difficulty in obtaining a recombinant polypeptide that is immunologically equivalent to the native protein. In this study, the carboxyl-terminal processing fragment (p42) of gp195 was produced in yeast and in a baculovirus recombinant system. Immunologic analyses indicated that the secreted baculovirus p42 (BVp42) expressed native, disulfide-dependent conformational epitopes, whereas these epitopes were poorly represented in the intracellular yeast p42. BVp42, but not yeast p42, was also recognized by the majority of gp195-specific antibodies of animals immunized with purified native gp195, indicating that the anti-gp195 response of these animals was focused on conformational determinants of the p42 processing fragment. Sera against native gp195 of congenic mice of diverse H-2 haplotypes recognized the BVp42 polypeptide, demonstrating that a genetically heterogeneous population is capable of responding to p42 epitopes. BVp42 was highly immunogenic and induced high titers of antibodies that were cross-reactive with purified native gp195 in an ELISA and also reacted with schizonts and merozoites by immunofluorescence. Anti-BVp42 antibodies completely inhibited the in vitro growth of the malaria parasite, whereas anti-yeast p42 antibodies had no effect. These results indicate that native, conformational epitopes of p42 are critical for the induction of gp195-specific, parasite growth-inhibitory antibodies and that the BVp42 polypeptide efficiently induces antibodies specific for these native determinants.  相似文献   

8.
Mice immunized to ungulate insulins were found to develop antibodies of two specificities: insulin antibodies that were mostly IgG1 and IgG2 antibodies that acted both as anti-idiotypes to specific mouse insulin antibodies and as antibodies to the insulin receptor. There was a negative association between the presence of anti-idiotypic receptor antibodies and insulin antibodies bearing the specific idiotype; the specific idiotypic antibodies were confined to the early phase of the primary response while the anti-idiotypic receptor antibodies were detected only after the idiotypic antibodies had disappeared. To map the insulin epitope that triggered the specific idiotypic response, we chemically altered the insulin molecule so as to inhibit its interaction with the insulin receptor. The altered insulins triggered high titers of antibodies binding to antigenic determinants on native insulin, but no anti-idiotypic receptor antibodies. Thus, the epitope responsible for the specific idiotypic-anti-idiotypic network was probably the part of the insulin molecule whose conformation is recognized by the insulin receptor.  相似文献   

9.
Carl Urban  Milton R.J. Salton 《BBA》1983,724(2):230-240
The F1-ATPase from Micrococcus lysodeikticus has been purified to 95% protein homogeneity in this laboratory and as all other bacterial F1s, possesses five distinct subunits with molecular weights ranging from 60 000 to 10 000 (Huberman, M. and Salton, M.R.J. (1979) Biochim. Biophys. Acta 547, 230–240). In this communication, we demonstrate the immunochemical reactivities of antibodies to native and SDS-dissociated subunits with the native and dissociated F1-ATPase and show that: (1) the antibodies generated to the native or SDS-dissociated subunits react with the native molecule; (2) all of the subunits comprising the F1 are antigenically unique as determined by crossed immunoelectrophoresis and the Ouchterlony double-diffusion techniques; (3) antibodies to the SDS-denatured individual δ- and ?-subunits can be used to destabilize the interaction of these specific subunits with the rest of the native F1; and (4) all subunit antibodies as well as anti-native F1 were found to inhibit ATPase activity to varying degrees, the strongest inhibition being seen with antibodies to the total F1 and anti-α- and anti-β-subunit antibodies. The interaction of specific subunit antibodies may provide a new and novel way to study further and characterize the catalytic portions of F1-ATPases and in general may offer an additional method for the examination of multimeric proteins.  相似文献   

10.
Antiviral activity of recombinant human leukocyte A interferon was inactivated by heating at 65 degrees C or by reduction of disulfide bonds. The specific immunoreactivity, as measured by radioimmunoassays measuring binding to monoclonal antibodies, decreased concomitantly with the antiviral activity. Although the monoclonal antibodies did bind to inactivated interferon, their binding affinity to inactivated interferon was in general very much lower than their binding affinity to active interferon. Therefore, this immunoassay could replace the antiviral assay for detection of biologically active interferon. In addition, most of these antibodies should be especially useful for purification of the interferons since they discriminate between the native active and inactive denatured species. Screening for such antibodies is convenient and simple. The general use of antibodies that preferentially interact with native molecules provides a powerful new principle for choosing monoclonal antibodies with extraordinary potential in assay and purification.  相似文献   

11.
Antibodies to DNA   总被引:18,自引:0,他引:18  
Antibodies that recognize specific conformational variations of DNA structure provide sensitive reagents for testing the extent to which such conformational heterogeneity occurs in nature. A most dramatic recent example has been the development and application of antibodies to left-handed Z-DNA. They provided the first identification of Z-DNA in fixed nuclei and chromosomes, and of DNA sequences that form Z-DNA under the influence of supercoiling. Antibodies have also been induced by chemically modified DNA and by synthetic polydeoxyribonucleotides that differ from the average B-DNA structure. These antibodies recognize only the features that differ from native DNA. In most experiments, native DNA itself is not immunogenic. Antibodies that do react with native DNA occur in sera of patients with autoimmune disease, but even monoclonal anti-DNA autoantibodies usually react with other polynucleotides as well. Anti-DNA antibodies, especially those of monoclonal origin, provide a model for the study of protein-nucleic acid recognition.  相似文献   

12.
The native state of common-type acylphosphatase (AcP) elicits two alpha-helices spanning residues 22-32 and 55-67 in the protein sequence. A peptide corresponding to the second alpha-helix (helix-2) of the protein was used to select phage antibodies consisting of a single chain fragment variable. The selection was performed in the presence of trifluoroethanol, a cosolvent known to induce the formation of helical structure in peptides and proteins. Phage scFv antibodies capable of binding the peptide specifically in a trifluoroethanol-induced alpha-helical conformation were isolated by affinity selection (biopanning). Some of these scFvs were also able to bind the native protein but not the peptide in a non-helical unstructured state. This indicates that the structural determinant recognized by the selected antibodies is the alpha-helical conformation of this specific region, rather than simply its amino acid sequence. This study shows that phage display libraries can be used to raise antibodies one can use as reagents able to target regions of a protein with a specific native-like secondary structure.  相似文献   

13.
Horse cytochrome c (cyt c) and two large, overlapping cyanogen bromide-cleaved fragments (1-80 and 66-104), together encompassing the entire length of the polypeptide chain, were examined for their abilities to stimulate into antibody production individual secondary B lymphocytes primed against the intact protein. T cell help was provided against the carrier protein, hemocyanin, to which cyt c and its peptides were conjugated by using glutaraldehyde. All the B cells activated by both of the fragments elicited antibodies that reacted with intact cyt c in enzyme-linked immunosorbent assay, whereas only a fraction of the antibodies elicited by the intact protein reacted with the peptides. However, in general, antibodies reactive with the polypeptide fragments, whether elicited by the intact protein or by the fragments, could not be effectively inhibited from binding plate-bound cyt c in enzyme-linked immunosorbent assay in the presence of soluble native cyt c. This indicates that these antibodies are specific for denatured forms of cyt c that apparently arise during the chemical coupling of cyt c to carrier molecules for immunization and/or during emulsification of the immunogen in adjuvant. Whereas, at most, 5% of the secondary B cells specific for native cyt c could be activated by the 1-80 fragment, even fewer were activated by the 66-104 fragment. Therefore, it is unlikely that smaller peptides which fail to assume native conformation would be effective. Antibodies elicited in vivo in a primary response to the 1-80 fragment also failed to bind native cyt c. These results suggest that linear peptides intended to mimic epitopes on globular proteins, and which have not been engineered to adopt native conformation, will not be very effective either as primary or as secondary vaccines for B cell activation.  相似文献   

14.
Optimization of humanized IgGs in glycoengineered Pichia pastoris   总被引:4,自引:0,他引:4  
As the fastest growing class of therapeutic proteins, monoclonal antibodies (mAbs) represent a major potential drug class. Human antibodies are glycosylated in their native state and all clinically approved mAbs are produced by mammalian cell lines, which secrete mAbs with glycosylation structures that are similar, but not identical, to their human counterparts. Glycosylation of mAbs influences their interaction with immune effector cells that kill antibody-targeted cells. Here we demonstrate that human antibodies with specific human N-glycan structures can be produced in glycoengineered lines of the yeast Pichia pastoris and that antibody-mediated effector functions can be optimized by generating specific glycoforms. Glycoengineered P. pastoris provides a general platform for producing recombinant antibodies with human N-glycosylation.  相似文献   

15.
The identification of marker molecules specific for blood and lymphatic endothelium may provide new diagnostic tools and identify new targets for therapy of immune, microvascular and cancerous diseases. Here, we used a phage display library expressing human randomized single-chain Fv (scFv) antibodies for direct panning against live cultures of blood (BECs) and lymphatic (LECs) endothelial cells in solution. After six panning rounds, out of 944 sequenced antibody clones, we retrieved 166 unique/diverse scFv fragments, as indicated by the V-region sequences. Specificities of these phage clone antibodies for respective compartments were individually tested by direct cell ELISA, indicating that mainly pan-endothelial cell (EC) binders had been selected, but also revealing a subset of BEC-specific scFv antibodies. The specific staining pattern was recapitulated by twelve phage-independently expressed scFv antibodies. Binding capacity to BECs and LECs and differential staining of BEC versus LEC by a subset of eight scFv antibodies was confirmed by immunofluorescence staining. As one antigen, CD146 was identified by immunoprecipitation with phage-independent scFv fragment. This antibody, B6-11, specifically bound to recombinant CD146, and to native CD146 expressed by BECs, melanoma cells and blood vessels. Further, binding capacity of B6-11 to CD146 was fully retained after fusion to a mouse Fc portion, which enabled eukaryotic cell expression. Beyond visualization and diagnosis, this antibody might be used as a functional tool. Overall, our approach provided a method to select antibodies specific for endothelial surface determinants in their native configuration. We successfully selected antibodies that bind to antigens expressed on the human endothelial cell surfaces in situ, showing that BECs and LECs share a majority of surface antigens, which is complemented by cell-type specific, unique markers.  相似文献   

16.
The effects of seven monoclonal antibodies on various functions of rat brain hexokinase (ATP:D-hexose-6-phosphotransferase, EC 2.7.1.1) have been assessed. Specifically, effects on catalytic properties (Km values for substrates, glucose and ATP X Mg2+; Ki for inhibition by glucose 6-phosphate), binding to the outer mitochondrial membrane, and glucose 6-phosphate-induced solubilization of mitochondrially bound hexokinase were examined. Epitope mapping studies with the native enzyme provided information about the relative spatial distribution of the epitopes on the surface of the native molecule. Binding of nucleotides (ATP or ATP X Mg2+) was shown to perturb the epitopes recognized by two of these antibodies. Neither nucleotides nor other ligands (glucose, glucose 6-phosphate, Pi) had detectable effect on epitopes recognized by the other five antibodies. Peptide mapping techniques in conjunction with immunoblotting permitted assignment of the epitopes recognized by several of the antibodies to specific segments within the overall primary structure. These results, together with previous work relating to the organization of structural domains within the molecule, permitted development of a three-dimensional model which provides a useful representation of major structural and immunological features of the enzyme, and depicts the association of those features with specific functions.  相似文献   

17.
Porphyromonas gingivalis, a gram-negative anaerobic oral bacterium, causes periodontal disease by binding to saliva-coated oral surfaces. The FimA protein from P. gingivalis is a crucial pathogenic component of the bacterium and a target for vaccine development against periodontal disease. Complementary DNAs encoding the heavy and light chains of two monoclonal antibodies that bind specifically to the FimA protein were cloned into a plant expression vector under the control of the duplicated Cauliflower Mosaic Virus 35S promoter, and agroinfiltration was used to allow the vectors to infiltrate tobacco plants. The expressions of the heavy and light chains in the leaf tissue were detected using antibodies specific to each antibody chain. Western blot analysis showed the specific binding of the plant-derived monoclonal antibodies to the native FimA protein purified from P. gingivalis. Our finding that plant-derived monoclonal antibodies bound specifically to the native FimA protein indicates that plantderived monoclonal antibodies can protect against P. gingivalis invasion.  相似文献   

18.
Ten peptides that corresponded to portions of the T cell lymphokine pan-specific hemopoietin interleukin 3 (IL 3) were synthesized, coupled to keyhole limpet hemocyanin, and used to raise antipeptide antibodies in rabbits. These antisera reacted to varying degrees with native biologically active IL 3. Antibodies directed against peptides corresponding to residues 1-29 at the NH2 terminus, 123-140 at the COOH terminus, and to residues 64-82 and 91-112 were affinity-purified on peptide columns. Immunoabsorbent columns produced from affinity-purified antibodies to the 1-29, 91-112, and 123-140 although not the 64-82 peptide were effective in depleting biologically active IL 3 from conditioned medium. However, the antibodies specific for peptides 91-112 and 123-140 had only a low affinity for native IL 3 and it was only in the case of the anti-1-29 antibodies that a significant amount of IL 3 remained bound after extensive washing and could be recovered from the column by acid elution. The affinity-purified antibodies directed to peptides 1-29, 91-112, and 123-140 significantly inhibited the biological activity of IL 3, although with different dose-response characteristics. Anti-1-29 antibodies inhibited bioactivity over a wide range of concentrations (down to 20 ng/ml) although the inhibition was never complete. In contrast, the anti-91-112 antibodies, although effective only at high concentrations, produced complete inhibition of biological activity. These experiments demonstrated that antibodies to defined peptides can be used to generate antibodies to native IL 3 and should form useful tools in analyzing the structure and function of the native molecules.  相似文献   

19.
Radioimmunological techniques were utilized to probe possible changes in conformation of gonadotropins (human chorionic gonadotropin-hCG; and ovine luteinizing hormone—oLH) following chemical deglycosylation (DG-hCG and DG-LH). All antisera produced in rabbits, rats or mice contained antibodies that were specific to the deglycosylated hormones with the native hormones showing weak and non-parallel cross-reaction (<5%), but with rabbit antibodies to native hormones the deglycosylated hormones were fully reactive. Using hCG, asialo-hCG (A-hCG) and DG-hCG, we have shown that removal of sugars internal to sialic acid is required to produce these specific antibodies. These are in complete agreement with the observations that extensive deglycosylation of these hormones is necessary to induce changes in biological activity at the cellular level. Based on these data, we suggest that chemical deglycosylation results in changes in antigenic structure of these hormones by generation of new determinants or exposure of previously buried sites and these changes are of no consequence to receptor recognition.  相似文献   

20.
To identify malaria antigens for vaccine development, we selected alpha-helical coiled coil domains of proteins predicted to be present in the parasite erythrocytic stage. The corresponding synthetic peptides are expected to mimic structurally "native" epitopes. Indeed the 95 chemically synthesized peptides were all specifically recognized by human immune sera, though at various prevalence. Peptide specific antibodies were obtained both by affinity-purification from malaria immune sera and by immunization of mice. These antibodies did not show significant cross reactions, i.e., they were specific for the original peptide, reacted with native parasite proteins in infected erythrocytes and several were active in inhibiting in vitro parasite growth. Circular dichroism studies indicated that the selected peptides assumed partial or high alpha-helical content. Thus, we demonstrate that the bioinformatics/chemical synthesis approach described here can lead to the rapid identification of molecules which target biologically active antibodies, thus identifying suitable vaccine candidates. This strategy can be, in principle, extended to vaccine discovery in a wide range of other pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号