首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Grosdidier A  Zoete V  Michielin O 《Proteins》2007,67(4):1010-1025
In recent years, protein-ligand docking has become a powerful tool for drug development. Although several approaches suitable for high throughput screening are available, there is a need for methods able to identify binding modes with high accuracy. This accuracy is essential to reliably compute the binding free energy of the ligand. Such methods are needed when the binding mode of lead compounds is not determined experimentally but is needed for structure-based lead optimization. We present here a new docking software, called EADock, that aims at this goal. It uses an hybrid evolutionary algorithm with two fitness functions, in combination with a sophisticated management of the diversity. EADock is interfaced with the CHARMM package for energy calculations and coordinate handling. A validation was carried out on 37 crystallized protein-ligand complexes featuring 11 different proteins. The search space was defined as a sphere of 15 A around the center of mass of the ligand position in the crystal structure, and on the contrary to other benchmarks, our algorithm was fed with optimized ligand positions up to 10 A root mean square deviation (RMSD) from the crystal structure, excluding the latter. This validation illustrates the efficiency of our sampling strategy, as correct binding modes, defined by a RMSD to the crystal structure lower than 2 A, were identified and ranked first for 68% of the complexes. The success rate increases to 78% when considering the five best ranked clusters, and 92% when all clusters present in the last generation are taken into account. Most failures could be explained by the presence of crystal contacts in the experimental structure. Finally, the ability of EADock to accurately predict binding modes on a real application was illustrated by the successful docking of the RGD cyclic pentapeptide on the alphaVbeta3 integrin, starting far away from the binding pocket.  相似文献   

2.
Molecular docking is a computational method for predicting the placement of ligands in the binding sites of their receptor(s). In this review, we discuss the methodological developments that occurred in the docking field in 2012 and 2013, with a particular focus on the more difficult aspects of this computational discipline. The main challenges and therefore focal points for developments in docking, covered in this review, are receptor flexibility, solvation, scoring, and virtual screening. We specifically deal with such aspects of molecular docking and its applications as selection criteria for constructing receptor ensembles, target dependence of scoring functions, integration of higher‐level theory into scoring, implicit and explicit handling of solvation in the binding process, and comparison and evaluation of docking and scoring methods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Discovering small molecules that interact with protein targets will be a key part of future drug discovery efforts. Molecular docking of drug-like molecules is likely to be valuable in this field; however, the great number of such molecules makes the potential size of this task enormous. In this paper, a method to screen small molecular databases using cloud computing is proposed. This method is called the hierarchical method for molecular docking and can be completed in a relatively short period of time. In this method, the optimization of molecular docking is divided into two subproblems based on the different effects on the protein–ligand interaction energy. An adaptive genetic algorithm is developed to solve the optimization problem and a new docking program (FlexGAsDock) based on the hierarchical docking method has been developed. The implementation of docking on a cloud computing platform is then discussed. The docking results show that this method can be conveniently used for the efficient molecular design of drugs.  相似文献   

4.
Pitera JW  Kollman PA 《Proteins》2000,41(3):385-397
We have extended and applied a multicoordinate free energy method, chemical Monte Carlo/Molecular Dynamics (CMC/MD), to calculate the relative free energies of different amino acid side-chains. CMC/MD allows the calculation of the relative free energies for many chemical species from a single free energy calculation. We have previously shown its utility in host:guest chemistry (Pitera and Kollman, J Am Chem Soc 1998;120:7557-7567)1 and ligand design (Eriksson et al., J Med Chem 1999;42:868-881)2, and here demonstrate its utility in calculations of amino acid properties and protein stability. We first study the relative solvation free energies of N-methylated and acetylated alanine, valine, and serine amino acids. With careful inclusion of rotameric states, internal energies, and both the solution and vacuum states of the calculation, we calculate relative solvation free energies in good agreement with thermodynamic integration (TI) calculations. Interestingly, we find that a significant amount of the unfavorable solvation of valine seen in prior work (Sun et al., J Am Chem Soc 1992;114:6798-6801)3 is caused by restraining the backbone in an extended conformation. In contrast, the solvation free energy of serine is calculated to be less favorable than expected from experiment, due to the formation of a favorable intramolecular hydrogen bond in the vacuum state. These monomer calculations emphasize the need to accurately consider all significant conformations of flexible molecules in free energy calculations. This development of the CMC/MD method paves the way for computations of protein stability analogous to the biochemical technique of "exhaustive mutagenesis." We have carried out just such a calculation at position 133 of T4 lysozyme, where we use CMC/MD to calculate the relative stability of eight different side-chain mutants in a single free energy calculation. Our T4 calculations show good agreement with the prior free energy calculations of Veenstra et al. (Prot Eng 1997;10:789-807)4 and excellent agreement with the experiments of Mendel et al. (Science 1992;256:1798-1802).  相似文献   

5.
The aim of docking is to accurately predict the structure of a ligand within the constraints of a receptor binding site and to correctly estimate the strength of binding. We discuss, in detail, methodological developments that occurred in the docking field in 2010 and 2011, with a particular focus on the more difficult, and sometimes controversial, aspects of this promising computational discipline. The main developments in docking in this period, covered in this review, are receptor flexibility, solvation, fragment docking, postprocessing, docking into homology models, and docking comparisons. Several new, or at least newly invigorated, advances occurred in areas such as nonlinear scoring functions, using machine‐learning approaches. This review is strongly focused on docking advances in the context of drug design, specifically in virtual screening and fragment‐based drug design. Where appropriate, we refer readers to exemplar case studies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Docking is a computational technique that places a small molecule (ligand) in the binding site of its macromolecular target (receptor) and estimates its binding affinity. This review addresses methodological developments that have occurred in the docking field in 2009, with a particular focus on the more difficult, and sometimes controversial, aspects of this promising computational discipline. These developments aim to address the main challenges of docking: receptor representation (such aspects as structural waters, side chain protonation, and, most of all, flexibility (from side chain rotation to domain movement)), ligand representation (protonation, tautomerism and stereoisomerism, and the effect of input conformation), as well as accounting for solvation and entropy of binding. This review is strongly focused on docking advances in the context of drug design, specifically in virtual screening and fragment-based drug design.  相似文献   

7.
K. Ueda  J. W. Brady 《Biopolymers》1996,38(4):461-469
Molecular mechanics calculations have been performed for the disaccharide neocarrabiose, one of the repeat units of β-carrageenan, as a general model for the (1 → 3)-linkage in the carrageenans. An adiabatic conformational energy map for this molecule has been prepared by constrained energy minimization and compared to previously reported relaxed maps. Neither the experimentally determined crystal structure of neocarrabiose nor the fiber diffraction conformation of β-carrageenan is a low energy conformation on the relaxed Ramachandran map. Molecular dynamics simulations in vacuum produced trajectories consistent with this relaxed vacuum surface. However, a simulation with explicitly included solvent water molecules produced a trajectory that remained in the region of the two experimental structures. This dramatic solvation effect is apparently the result of the breaking of an interring hydrogen bond between the O2 hydroxyl groups of neocarrabiose as both groups hydrogen bond to solvent. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
Wee1-like protein kinase (Wee1) is a tyrosine kinase that regulates the G2 checkpoint and prevents entry into mitosis in response to DNA damage. Based on a series of signaling pathways initiated by Wee1, Wee1 has been recognized as a potential target for cancer therapy. To discover potent Wee1 inhibitors with novel scaffolds, ligand-based pharmacophore model has been built based on 101 known Wee1 inhibitors. Then the best pharmacophore model, AADRRR.340, with good partial least square (PLS) statistics (R2?=?0.9212, Q2?=?0.7457), was selected and validated. The validated model was used as a three-dimensional (3D) search query for databases virtual screening. The filtered molecules were further analyzed and refined by Lipinski’s rule of 5, multiple docking procedures (high throughput virtual screening (HTVS), standard precision (SP), genetic optimization for ligand docking (GOLD), extra precision (XP), and unique quantum polarized ligand docking (QPLD)); absorption, distribution, metabolism, excretion, and toxicity (ADMET) screening; and the Prime/molecular mechanics generalized born surface area (MM-GBSA) method binding free energy calculations. Eight leads were identified as potential Wee1 inhibitors, and a 50?ns molecular dynamics (MD) simulation was carried out for top four inhibitors to predict the stability of ligand–protein complex. Molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) based on MD simulation and the energy contribution per residue to the binding energy were calculated. In the end, three hits with good stabilization and affinity to protein were identified.

Communicated by Ramaswamy H. Sarma  相似文献   


9.
A preliminary MMFF implementation of selenium atom parameters necessary to model the nucleoside 1 is reported. X-ray structures of two compounds 1 and 2 have been used as references. Ab initio methods have been adopted for checking torsional energy profile and charge distribution. Monte Carlo calculations and energy minimization in solvation complete the conformational search.  相似文献   

10.
Discovery of Cdc25B phosphatase inhibitors has been actively pursued with the aim to develop anticancer agents. We have been able to identify eight novel Cdc25B inhibitors by means of a computer-aided drug design protocol involving the virtual screening with docking simulations under consideration of the effects of ligand solvation in the binding free energy function. Structural features relevant to the interactions of the newly identified inhibitors with the active-site residues of Cdc25B are also discussed in detail.  相似文献   

11.
Neuropathological cascades leading to reduced cholinergic transmission in Alzheimer’s disease led to development of AChE-inhibitors. Although lethal dose of some inhibitors cause interruption with AChE mediated mechanism but reversible AChE inhibitors can assist in protection from inhibition of AChE and hence in an aim to probe potential molecules as anticholinesterase and as reactivators, computationally structure-based approach has been exploited in this work for designing new 2-amino-3-pyridoixime-dipeptides conjugates. We have combined MD simulations with flexible ligand docking approach to determine binding specificity of 2-amino-3-pyridoixime dipeptides towards AChE (PDB 2WHP). PAS residues are found to be responsible for oxime-dipeptides binding along with ππ interactions with Trp86 and Tyr286, hydrogen bonding with side chains of Asp74 and Tyr341 (Gscore –10.801 and MM-GBSA free energy –34.89?kcal/mol). The docking results depicted complementary multivalent interactions along with good binding affinity as predicted from MM-GBSA analysis. The 2-amino-3-pyridoxime-(Arg-Asn) AChE systems subjected to MD simulations under explicit solvent systems with NPT and NVT ensemble. MD simulations uncovered dynamic behavior of 2-amino-3-pyridoxime-(Arg-Asn) and exposed its mobile nature and competence to form strong long range-order contacts towards active site residues to approach inhibited serine residue and facilitated via large contribution from hydrogen bonding and water bridges along with slow and large movements of adjacent important residues. In an effort to evaluate the complete potential surface profile, 2-amino-3-pyridoxime induced reactivation pathway of sarin–serine adduct has been investigated by the DFT approach at the vacuum MO6/6–311G (d, p) level along with the Poisson-Boltzmann solvation model and found to be of relatively low energy barrier. The pKa evaluation has revealed the major deprotonated 2-amino-3-pyridoixime species having pKa of 6.47 and hence making 2-amino-3-pyridoxime-(Arg-Asn) potential anticholinesterase and reactivator for AChE under the physiological pH.  相似文献   

12.
In this study, the influences of initial settings, i.e. initial conformations, configurations and docking parameters, on docking results were investigated. The conformations used in the study were generated by the CAMDAS program. After the conformational search calculations, five structures were selected from the conformer groups according to their conformation energies and root mean square deviations against crystal structures; for example, the lowest energy conformer, as well as the closest and farthest conformers to the crystal structure, was retrieved. Several docking parameter settings were used (default, high speed, generating 50 poses). In this study, docking calculations were conducted using the GOLD, eHiTS, AutoDock, AutoDock vina, FRED and DOCK programs. The success rates of GOLD, eHiTS and FRED were better than those of AutoDock, AutoDock vina and DOCK. The docking results using the farthest conformations were worse than those obtained using other conformations, indicating that some conformation search for the ligand molecule should be performed before the docking calculations.  相似文献   

13.
In the present work, several computational methodologies were combined to develop a model for the prediction of PDE4B inhibitors' activity. The adequacy of applying the ligand docking approach, keeping the enzyme rigid, to the study of a series of PDE4 inhibitors was confirmed by a previous molecular dynamics analysis of the complete enzyme. An exhaustive docking procedure was performed to identify the most probable binding modes of the ligands to the enzyme, including the active site metal ions and the surrounding structural water molecules. The enzyme-inhibitor interaction enthalpies, refined by using the semiempirical molecular orbital approach, were combined with calculated solvation free energies and entropy considerations in an empirical free energy model that enabled the calculation of binding free energies that correlated very well with experimentally derived binding free energies. Our results indicate that both the inclusion of the structural water molecules close to the ions in the binding site and the use of a free energy model with a quadratic dependency on the ligand free energy of solvation are important aspects to be considered for molecular docking investigations involving the PDE4 enzyme family.  相似文献   

14.
Lupeol is one of the secondary metabolite (triterpenoid) present in many medicinally effective plants. It has numerous biological and pharmacological actions. Lupeol is found to have effective herbs and has immense biological activity against several diseases including its cytotoxic effect on cancer cells. In recent drug designing, molecular study of analysis is usually used for understanding the target and the ligand interaction. Therefore, it is of interest to document the molecular docking analysis data of lupeol with different cancer targets such as Caspase- 3, BCL-2, Topoisomerase, PTK, mTOR, H-Ras, PI3K, and AKT. These molecular docking studies were carried out by using AutoDock tools 4.2 version software. Molecular docking analyses of lupeol with target protein were found to have good dock score and minimum inhibition constant. BCL-2, Topoisomerase, PTK, mTOR and PI3Kdocking studies showed the best binding energy inhibition constant and ligand efficiency. The in-silico molecular docking analysis showed that the lupeol having relatively good docking energy, affinity and efficiency towards the active macromolecule, thus it may be considered as good inhibitor of proliferating cancer cells. By this knowledge of docking results, the lupeol can be used as promising drug for anticancer activity.  相似文献   

15.
Solvation plays an important role in ligand‐protein association and has a strong impact on comparisons of binding energies for dissimilar molecules. When databases of such molecules are screened for complementarity to receptors of known structure, as often occurs in structure‐based inhibitor discovery, failure to consider ligand solvation often leads to putative ligands that are too highly charged or too large. To correct for the different charge states and sizes of the ligands, we calculated electrostatic and non‐polar solvation free energies for molecules in a widely used molecular database, the Available Chemicals Directory (ACD). A modified Born equation treatment was used to calculate the electrostatic component of ligand solvation. The non‐polar component of ligand solvation was calculated based on the surface area of the ligand and parameters derived from the hydration energies of apolar ligands. These solvation energies were subtracted from the ligand‐receptor interaction energies. We tested the usefulness of these corrections by screening the ACD for molecules that complemented three proteins of known structure, using a molecular docking program. Correcting for ligand solvation improved the rankings of known ligands and discriminated against molecules with inappropriate charge states and sizes. Proteins 1999;34:4–16. © 1999 Wiley‐Liss, Inc.  相似文献   

16.
The theoretically possible stable conformer of the cyclic heptapeptide, that has significant anti-metastatic activity, was examined by conformational analysis followed by DFT calculations. Experimental infrared and Raman spectroscopy, together with theoretical DFT (6-31G (d,p) basis set)-based quantum chemical calculations, have been used to understand the structural and spectral characteristics of cyclo(Gly-Arg-Gly-Asp-Ser-Pro-Ala) {cyclo(GRGDSPA)}. A complete analysis of the vibrational spectrum has been reported on the basis of potential energy distribution (PED%) data of the vibrational modes. Finally, the calculation results were applied to simulate infrared and Raman spectra of the title compound. The simulated spectra satisfactorily coincide with the experimental spectra. In addition, molecular electrostatic potential and frontier molecular orbital analysis were investigated using theoretical calculations. The stability of the molecule, arising from hyperconjugative interaction and charge delocalization, has been analyzed using natural bond orbital analysis and a high E(2) value reveals the presence of strong interaction between donors and acceptors. Molecular docking studies with fibronectin were performed on cyclo(GRGDSPA) in order to understand its inhibitory nature. The results indicate that the docked ligand {cyclo(GRGDSPA)} forms a stable complex with human fibronectin and gives a binding affinity value of ?7.7 kcal/mol, which points out that cyclo(GRGDSPA) might exhibit inhibitory activity against the attachment of melanoma cells to human fibronectin.  相似文献   

17.
18.
Through experimental and theoretical approaches, it has been shown that bovine β-lactoglobulin (βlg) uses its hydrophobic cavity or calyx as the primary binding site for hydrophobic molecules, whereas the existence of a second ligand binding site at the dimeric interface has only been structurally identified for vitamin D3 (VD3). This binding exists even in the thermally denatured state, suggesting the prevalence of this secondary site. Although crystallographic experiments have suggested that VD3 can bind to both monomeric and dimeric states without significant structural differences, theoretical and experimental reports have proposed some structural requirements. Thus, in this study, based on known experimental data, the dynamic interaction of VD3 with the monomeric or dimeric forms of βlg was investigated through a protocol combining blind docking and 2 microsecond molecular dynamics simulations coupled with binding free energy and per-residue binding free energy decomposition analyses using the Molecular Mechanics Generalized Born Surface Area approach. Binding free energy calculations allowed us to estimate the energetic differences of coupling VD3 at the calyx and the dimeric interface for the monomeric or dimeric state, revealing that the dimeric structure is required to form a stable complex with VD3 at the dimeric interface. This also has an important impact on the dimerization process, whereas although the monomeric state also forms a stable complex with VD3 at the dimeric interface, the incorporation of the entropy component contributed to producing a marginally favorable binding free energy. Finally, the per-residue decomposition analysis provided energetic information about the most relevant residues in stabilizing the different systems.  相似文献   

19.
Mu Y  Stock G 《Biophysical journal》2006,90(2):391-399
Molecular dynamics simulations of the binding of the heterochiral tripeptide KkN to the transactivation responsive (TAR) RNA of HIV-1 is presented, using an all-atom force field with explicit water. To obtain starting structures for the TAR-KkN complex, semirigid docking calculations were performed that employ an NMR structure of free TAR RNA. The molecular dynamics simulations show that the starting structures in which KkN binds to the major groove of TAR (as it is the case for the Tat-TAR complex of HIV-1) are unstable. On the other hand, the minor-groove starting structures are found to lead to several binding modes, which are stabilized by a complex interplay of stacking, hydrogen bonding, and electrostatic interactions. Although the ligand does not occupy the binding position of Tat protein, it is shown to hinder the interhelical motion of free TAR RNA. The latter is presumably necessary to achieve the conformational change of TAR RNA to bind Tat protein. Considering the time evolution of the trajectories, the binding process is found to be ligand-induced and cooperative. That is, the conformational rearrangement only occurs in the presence of the ligand and the concerted motion of the ligand and a large part of the RNA binding site is necessary to achieve the final low-energy binding state.  相似文献   

20.
This article describes the implementation of a new docking approach. The method uses a Tabu search methodology to dock flexibly ligand molecules into rigid receptor structures. It uses an empirical objective function with a small number of physically based terms derived from fitting experimental binding affinities for crystallographic complexes. This means that docking energies produced by the searching algorithm provide direct estimates of the binding affinities of the ligands. The method has been tested on 50 ligand-receptor complexes for which the experimental binding affinity and binding geometry are known. All water molecules are removed from the structures and ligand molecules are minimized in vacuo before docking. The lowest energy geometry produced by the docking protocol is within 1.5 Å root-mean square of the experimental binding mode for 86% of the complexes. The lowest energies produced by the docking are in fair agreement with the known free energies of binding for the ligands. Proteins 33:367–382, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号