首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although antiviral drugs are available for the treatment of influenza infection, it is an urgent requirement to develop new antiviral drugs regarding the emergence of drug‐resistant viruses. The nucleoprotein (NP) is conserved among all influenza A viruses (IAVs) and has no cellular equivalent. Therefore, NP is an ideal target for the development of new IAV inhibitors. In this study, we identified a novel anti‐influenza compound, ZBMD‐1, from a library of 20,000 compounds using cell‐based influenza A infection assays. We found that ZBMD‐1 inhibited the replication of H1N1 and H3N2 influenza A virus strains in vitro, with an IC50 ranging from 0.41–1.14 μM. Furthermore, ZBMD‐1 inhibited the polymerase activity and specifically impaired the nuclear export of NP. Further investigation indicated that ZBMD‐1 binds to the nuclear export signal 3 (NES3) domain and the dimer interface of the NP pocket. ZBMD‐1 also protected mice that were challenged with lethal doses of A/PR/8/1934 (H1N1) virus, effectively relieving lung histopathology changes, as well as strongly inhibiting the expression of pro‐inflammatory cytokines/chemokines, without inducing toxicity effects in mice. These results suggest that ZBMD‐1 is a promising anti‐influenza compound which can be further investigated as a useful strategy against IAVs in the future.  相似文献   

2.
禽流感病毒核蛋白 (NP) 在病毒的转录、复制以及决定病毒的宿主特异性方面都具有重要作用。通过酵母双杂交系统筛选与核蛋白相互作用的蛋白,为进一步了解NP蛋白与细胞内蛋白质的相互关系以及流感病毒与宿主的相互关系奠定基础。应用酵母双杂交系统,构建NP诱饵质粒,进而筛选人脑cDNA文库,寻找可能与禽流感病毒NP相互作用的蛋白质。经过酵母双杂交共验证,得到7个与NP相互作用的阳性克隆。该结果为深入了解病毒复制的分子机理及其在蛋白质水平上与宿主蛋白的相互作用关系提供了线索。  相似文献   

3.
The recent emergence of a novel avian A/H7N9 influenza virus in poultry and humans in China, as well as laboratory studies on adaptation and transmission of avian A/H5N1 influenza viruses, has shed new light on influenza virus adaptation to mammals. One of the biological traits required for animal influenza viruses to cross the species barrier that received considerable attention in animal model studies, in vitro assays, and structural analyses is receptor binding specificity. Sialylated glycans present on the apical surface of host cells can function as receptors for the influenza virus hemagglutinin (HA) protein. Avian and human influenza viruses typically have a different sialic acid (SA)‐binding preference and only few amino acid changes in the HA protein can cause a switch from avian to human receptor specificity. Recent experiments using glycan arrays, virus histochemistry, animal models, and structural analyses of HA have added a wealth of knowledge on receptor binding specificity. Here, we review recent data on the interaction between influenza virus HA and SA receptors of the host, and the impact on virus host range, pathogenesis, and transmission. Remaining challenges and future research priorities are also discussed.  相似文献   

4.
目的:获得H3N2亚型禽流感病毒核蛋白(NP)全长基因,并在大肠杆菌中表达,以用于对NP功能的研究。方法:从感染了H3N2亚型禽流感病毒的MDCK细胞培养液中收获病毒,提取病毒RNA,用RT-PCR扩增出NP基因的编码区序列,将其定向克隆到pTIG-TRX原核表达载体并测序,在大肠杆菌BL21(DE3)plysS中表达,用SDS-PAGE和Western印迹检测表达产物。结果:所克隆的核苷酸片段包含了NP基因编码区完整阅读框架,编码498个氨基酸;构建的重组表达载体在大肠杆菌BL21(DE3)plysS中表达出相对分子质量约66000的重组蛋白。结论:克隆和表达了禽流感病毒核蛋白编码区基因,为获得大量NP以制备抗体,以及对其进行功能性研究奠定了基础。  相似文献   

5.
The nucleoprotein (NP) of influenza A virus plays a crucial role in virus replication, infectivity, and host adaptation. As a major component of the viral ribonucleoprotein complexes (vRNP), NP initiates vRNP shuttling between the nucleus and cytoplasm in the host cell. However, the characteristics of the nucleocytoplasmic shuttling of NP from H1N1 influenza A virus still remain unclear. In the present study, the subcellular localization and the related key residues of the H1N1 influenza virus NP were identified and evaluated. The NP of influenza virus A/WSN/33 (H1N1; WSN) displayed a more obvious nuclear accumulation than A/Anhui/1/2013 (H7N9; AH) and A/chicken/Shandong/lx1023/2007 (H9N2; SD). NP residue K4, located in NLS1, and residue F253, located in NES3, from WSN NP are not conserved in H7N9 and H9N2, which instead encode Q4 and I253, respectively. Crucially, these residues are involved in the regulation of NP nucleocytoplasmic shuttling through interactions with CRM1 and importin‐α. Moreover, residues at position 253 also play important roles in the replication of the virus, resulting in an increase in vRNP polymerase activity and an alteration of the cell tropism and pathogenicity in mice. The present data revealed a pivotal role of the Q4 and I253 residues of NP from H7N9 in enhancing the cytoplasmic accumulation of NP and vRNP activity compared to the K4 and F253 residues in WSN‐NP. In addition, an F253I substitution in the NP of WSN altered the survival ratio of infected mice and the growth curve in infected avian‐origin cells (DF‐1). The current data indicate that the F253I mutation results in attenuated pathogenicity of the virus in mice and altered cell tropism. The present study demonstrated the dissimilarity in subcellular NP transport processes between H1N1 virus WSN and other influenza A virus strains, as well as uncovered the mechanism responsible for this difference.  相似文献   

6.
Induction of CD8+ cytotoxic T cells (CTLs) to conserved internal influenza antigens, such as nucleoprotein (NP), is a promising strategy for the development of cross‐protective influenza vaccines. However, influenza NP protein alone cannot induce CTL immunity due to its low capacity to activate antigen‐presenting cells (APCs) and get access to the MHC class I antigen processing pathway. To facilitate the generation of NP‐specific CTL immunity the authors develop a novel influenza vaccine consisting of virosomes with the Toll‐like receptor 4 (TLR4) ligand monophosphoryl lipid A (MPLA) and the metal‐ion‐chelating lipid DOGS‐NTA‐Ni incorporated in the membrane. In vitro, virosomes with incorporated MPLA induce stronger activation of APCs than unadjuvanted virosomes. Virosomes modified with DOGS‐NTA‐Ni show high conjugation efficacy for his‐tagged proteins and facilitate efficient uptake of conjugated proteins by APCs. Immunization of mice with MPLA‐adjuvanted virosomes with attached NP results in priming of NP‐specific CTLs while MPLA‐adjuvanted virosomes with admixed NP are inefficient in priming CTLs. Both vaccines induce equally high titers of NP‐specific antibodies. When challenged with heterosubtypic influenza virus, mice immunized with virosomes with attached or admixed NP are protected from severe weight loss. Yet, unexpectedly, they show more weight loss and more severe disease symptoms than mice immunized with MPLA‐virosomes without NP. Taken together, these results indicate that virosomes with conjugated antigen and adjuvant incorporated in the membrane are effective in priming of CTLs and eliciting antigen‐specific antibody responses in vivo. However, for protection from influenza infection NP‐specific immunity appears not to be advantageous.  相似文献   

7.
组织转谷酰胺酶(transglutaminase 2,TGM2)是一种普遍存在的多功能蛋白,与不同细胞的粘附和肿瘤形成有关.有证据表明,TGM2参与了宿主细胞与病毒间的相互作用,但是对于流感病毒在细胞内增殖的影响还未有报道.为了探究MDCK细胞中TGM2对H1N1亚型流感病毒增殖的影响,本研究构建了TGM2过表达和敲除...  相似文献   

8.
The Crimean-congo hemorrhagic fever virus (CCHFV) is a geographically widespread fatal pathogen. Identification of the epitope regions of the virus is important for the diagnosis and epidemiological studies of CCHFV infections. In this study, expression vectors carrying series truncated fragments of the NP (nucleocapsid protein) gene from the S fragment of CCHFV strain YL04057 were constructed. The recombinant proteins were expressed in E.coli and purified for detection. The antigenic of the truncated fragments of NP was detected with a polyclonal serum (rabbit) and 2 monoclonal (mAbs) (14B7 and 43E5) against CCHFV by Western-blot analyses. The results showed that the three expressed constructs, which all contained the region 235AA to 305AA could be detected by mAbs polyclonal serum. The results suggest that region 235-305 aa of NP is a highly antigenic region and is highly conserved in the NP protein.  相似文献   

9.
10.
11.
The nucleocapsid protein (NP) (56 kDa) of human influenza A viruses is cleaved in infected cells into a 53-kDa form. Likewise, influenza B virus NP (64 kDa) is cleaved into a 55-kDa protein with a 62-kDa intermediate (O. P. Zhirnov and A. G. Bukrinskaya, Virology 109:174-179, 1981). We show now that an antibody specific for the N terminus of influenza A virus NP reacted with the uncleaved 56-kDa form but not with the truncated NP53 form, indicating the removal of a 3-kDa peptide from the N terminus. Amino acid sequencing revealed the cleavage sites ETD16*G for A/Aichi/68 NP and sites DID7*G and EAD61*V for B/Hong Kong/72 NP. With D at position -1, acidic amino acids at position -3, and aliphatic ones at positions -2 and +1, the NP cleavage sites show a recognition motif typical for caspases, key enzymes of apoptosis. These caspase cleavage sites demonstrated evolutionary stability and were retained in NPs of all human influenza A and B viruses. NP of avian influenza viruses, which is not cleaved in infected cells, contains G instead of D at position 16. Oligopeptide DEVD derivatives, specific caspase inhibitors, were shown to prevent the intracellular cleavage of NP. All three events, the NP cleavage, the increase of caspase activity, and the development of apoptosis, coincide in cells infected with human influenza A and B viruses. The data suggest that intracellular cleavage of NP is exerted by host caspases and is associated with the development of apoptosis at the late stages of infection.  相似文献   

12.
Avian influenza viruses (AIV), the causative agent of avian flu or bird flu, cause widespread morbidity and mortality in poultry. The symptoms of the disease range from mild flu like symptoms to death. These viruses possess two important surface glycoproteins, namely hemagglutinin (HA) and neuraminidase (NA) against which neutralizing antibodies are produced. Due to the highly mutative nature of the genes which encode these proteins, the viruses often confer resistance to the current anti-viral drugs making the prevention and treatment of infection challenging. In our laboratory, we have recently identified a novel anti-viral peptide (P1) against the AIV H9N2 from a phage displayed peptide library. This peptide inhibits the replication of the virus in ovo and in vitro by its binding to the HA glycoprotein. In the current study, we demonstrate that the peptide inhibits the virus replication by preventing the attachment to the host cell but it does not have any effect on the viral fusion. The reduction in the viral nucleoprotein (NP) expression inside the host cell has also been observed during the peptide (P1) treatment. This novel peptide may have the potential to be developed as a therapeutic agent for the treatment and control of avian influenza virus H9N2 infections.  相似文献   

13.
Influenza virus‐like particles (VLPs) are noninfectious particles resembling the influenza virus representing a promising vaccine alternative to inactivated influenza virions as antigens. Medicago inc. has developed a plant‐based VLP manufacturing platform allowing the large‐scale production of GMP‐grade influenza VLPs. In this article, we report on the biochemical compositions of these plant‐based influenza candidate vaccines, more particularly the characterization of the N‐glycan profiles of the viral haemagglutinins H1 and H5 proteins as well as the tobacco‐derived lipid content and residual impurities. Mass spectrometry analyses showed that all N‐glycosylation sites of the extracellular domain of the recombinant haemagglutinins carry plant‐specific complex‐type N‐glycans having core α(1,3)‐fucose, core β(1,2)‐xylose epitopes and Lewisa extensions. Previous phases I and II clinical studies have demonstrated that no hypersensibility nor induction of IgG or IgE directed against these glycans was observed. In addition, this article showed that the plant‐made influenza vaccines are highly pure VLPs preparations while detecting no protein contaminants coming either from Agrobacterium or from the enzymes used for the enzyme‐assisted extraction process. In contrast, VLPs contain few host cell proteins and glucosylceramides associated with plant lipid rafts. Identification of such raft markers, together with the type of host cell impurity identified, confirmed that the mechanism of VLP formation in planta is similar to the natural process of influenza virus assembly in mammals.  相似文献   

14.
15.
Previous biochemical data identified a host cell fraction, designated RAF-2, which stimulated influenza virus RNA synthesis. A 48-kDa polypeptide (RAF-2p48), a cellular splicing factor belonging to the DEAD-box family of RNA-dependent ATPases previously designated BAT1 (also UAP56), has now been identified as essential for RAF-2 stimulatory activity. Additionally, RAF-2p48 was independently identified as an influenza virus nucleoprotein (NP)-interacting protein, NPI-5, in a yeast two-hybrid screen of a mammalian cDNA library. In vitro, RAF-2p48 interacted with free NP but not with NP bound to RNA, and the RAF-2p48-NP complex was dissociated following addition of free RNA. Furthermore, RAF-2p48 facilitated formation of the NP-RNA complexes that likely serve as templates for the viral RNA polymerase. RAF-2p48 was shown, in both in vitro binding assays and the yeast two-hybrid system, to bind to the amino-terminal region of NP, a domain essential for RNA binding. Together, these observations suggest that RAF-2p48 facilitates NP-RNA interaction, thus leading to enhanced influenza virus RNA synthesis.  相似文献   

16.
抗禽流感病毒多表位DNA疫苗的构建及其免疫效力研究   总被引:17,自引:1,他引:17  
多表位DNA疫苗是建立在常规DNA疫苗基础上的一种新型疫苗。它是用表位作免疫原,这样就比较容易在一个表达载体上克隆病原体的多个抗原基因中具有免疫活性的部分。本试验以H5N1亚型禽流感病毒的HA和NP基因及其表位为基础构建了4个重组质粒:1 pIRES/HA(表达全长的HA基因);2 pIRES/tHA(只表达HA基因的主要抗原表位区);3 pIRES/tHANpep(融合表达HA基因的抗原表位区和NP基因的3个CTL表位);4 pIRES/tHANpep-IFN-γ(用鸡的IFN-γ基因取代质粒pIRES/tHANpep中的neo基因)。分别用这4个重组质粒和空载体质粒pIRES1neo肌注免疫30日龄SPF鸡。免疫3次,间隔为2周,每次每只鸡的剂量为200μg。第3次免疫后两周以高致病性禽流感病毒H5N1强毒攻击,免疫及攻毒前后均采血检测HI抗体效价和外周血CD4+、CD8+T细胞的变化。结果发现,攻毒前各质粒免疫组均检测不到HI抗体,攻毒后1周存活鸡HI抗体效价迅速升高到64~256。流式细胞仪检测显示外周血CD4+、CD8+T细胞在疫苗免疫后都有不同程度的升高。空载体质粒对照组鸡(10只)在攻毒后3~8 d内全部死亡,其他各重组质粒免疫组鸡都获得了部分保护,保护率分别是:pIRES/HA组为545%(6/11),pIRES/tHA组为30%(3/10),pIRES/tHANPep组为36.3%(4/11), pIRES/tHANPepIFNγ组为50%(5/10)。这些结果表明我们构建的多表位DNA疫苗能够诱导机体产生特异性免疫应答,并在同型禽流感强毒攻击时对鸡只提供了一定的保护。  相似文献   

17.
Yu M  Liu X  Cao S  Zhao Z  Zhang K  Xie Q  Chen C  Gao S  Bi Y  Sun L  Ye X  Gao GF  Liu W 《Journal of virology》2012,86(9):4970-4980
The nuclear export of the influenza A virus ribonucleoprotein (vRNP) is crucial for virus replication. As a major component of the vRNP, nucleoprotein (NP) alone can also be shuttled out of the nucleus by interacting with chromosome region maintenance 1 (CRM1) and is therefore hypothesized to promote the nuclear export of the vRNP. In the present study, three novel nuclear export signals (NESs) of the NP--NES1, NES2, and NES3--were identified as being responsible for mediating its nuclear export. The nuclear export of NES3 was CRM1 dependent, whereas that of NES1 or NES2 was CRM1 independent. Inactivation of these NESs led to an overall nuclear accumulation of NP. Mutation of all three NP-NESs significantly impaired viral replication. Based on structures of influenza virus NP oligomers, these three hydrophobic NESs are found present on the surface of oligomeric NPs. Functional studies indicated that oligomerization is also required for nuclear export of NP. Together, these results suggest that the nuclear export of NP is important for virus replication and relies on its NESs and oligomerization.  相似文献   

18.
禽流感病毒 (AIV)是甲 (A)型流感病毒 ,常引起禽类全身性感染或主要限于呼吸器官传染病 ,带来巨大的经济损失并严重威胁人类健康。对AIV的基因组、所编码的蛋白质及其功能、AIV毒力变异的分子基础、禽流感疫苗以及AIV与人流感的关系等进行概述。  相似文献   

19.

Background

Double-stranded RNA dependent protein kinase (PKR) is a key regulator of the anti-viral innate immune response in mammalian cells. PKR activity is regulated by a 58 kilo Dalton cellular inhibitor (P58IPK), which is present in inactive state as a complex with Hsp40 under normal conditions. In case of influenza A virus (IAV) infection, P58IPK is known to dissociate from Hsp40 and inhibit PKR activation. However the influenza virus component responsible for PKR inhibition through P58IPK activation was hitherto unknown.

Principal Findings

Human heat shock 40 protein (Hsp40) was identified as an interacting partner of Influenza A virus nucleoprotein (IAV NP) using a yeast two-hybrid screen. This interaction was confirmed by co-immunoprecipitation studies from mammalian cells transfected with IAV NP expressing plasmid. Further, the IAV NP-Hsp40 interaction was validated in mammalian cells infected with various seasonal and pandemic strains of influenza viruses. Cellular localization studies showed that NP and Hsp40 co-localize primarily in the nucleus. During IAV infection in mammalian cells, expression of NP coincided with the dissociation of P58IPK from Hsp40 and decrease PKR phosphorylation. We observed that, plasmid based expression of NP in mammalian cells leads to decrease in PKR phosphorylation. Furthermore, inhibition of NP expression during influenza virus replication led to PKR activation and concomitant increase in eIF2α phosphorylation. Inhibition of NP expression also led to reduced IRF3 phosphorylation, enhanced IFN β production and concomitant reduction of virus replication. Taken together our data suggest that NP is the viral factor responsible for P58IPK activation and subsequent inhibition of PKR-mediated host response during IAV infection.

Significance

Our findings demonstrate a novel role of IAV NP in inhibiting PKR-mediated anti-viral host response and help us understand P58IPK mediated inhibition of PKR activity during IAV infection.  相似文献   

20.
The influenza A virus is a causative agent of influenza, which infects human cells and uses host factors to accomplish viral genome replication as part of its life cycle. The nucleoprotein (NP) and PB2 of the influenza virus associate with importin α1 to gain access to the host nucleus through a ternary import complex. Killer cell-mediated cytotoxicity is the primary mechanism of eliminating the influenza virus. Here, we showed that lymphokine-activated killer cells participated in the elimination of the influenza virus. Granzyme (Gzm) K inhibition elevated viral replication in vitro and aggravated viral infection in vivo. We identified that importin α1 and its transport partner protein importin β are physiological substrates of GzmK. Proteolysis of these two substrates wrecked their association to generate the importin α1/β dimer and disrupted transportation of viral NP to the nucleus, leading to inhibition of influenza virus replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号