首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Ligand-induced dimer formation of calmodulin   总被引:1,自引:0,他引:1  
Calmodulin (CaM) can bind to numerous proteins in several interaction modes. Recently a new mode of interaction was discovered, in which two CaM molecules form an X-shaped dimer and two binding sites to trap the CaM-binding domain (CBD) of calcineurin subunit A. However, the X-shaped CaM dimer alone without ligand has not been observed. We performed molecular dynamics (MD) simulations and used MM_PBSA approach to investigate the properties of this new binding mode using ligand-bound and -free dimer systems. MD trajectories show that two peptides of CBD play a critical role in stabilizing the X-shaped conformation of the CaM dimer which would otherwise be unstable, leading to dimer disassembly in the absence of the ligands. Furthermore, we have analyzed the interaction free energy of the complex by MM-PBSA method and provide further evidence to demonstrate that the CBD peptide ligands are responsible for the stabilization of the dimer. Comparing this new binding mode with the classical one represented by CaM in complex with smooth muscle myosin light chain kinase, we conclude that this new binding mode is induced by the CBD of calcineurin subunit A. Our results explain the fact that the X-shaped CaM dimer structure has never been observed in the absence of ligands.  相似文献   

2.
3.
HIV-1 retroviral genomic RNA dimerization is initiated by loop-loop interactions between the SL1 stem-loops of two identical RNA molecules. The SL1-SL1 unstable resulting kissing complex (KC) then refolds irreversibly into a more stable complex called extended dimer (ED). Although the structures of both types of complex have been determined, very little is known about the conformational pathway corresponding to the transition, owing to the difficulty of observing experimentally intermediate conformations. In this study, we applied targeted molecular dynamics simulation techniques (TMD) to the phosphorus atoms for monitoring this pathway for the backbone, and a two-step strategy was adopted. In a first step, called TMD(-1), the dimer structure was constrained to progressively move away from KC without indicating the direction, until the RMSD from KC reaches 36A. A total of 20 TMD(-1) simulations were performed under different initial conditions and different simulation parameters. For RMSD ranging between 0 and 22A, the whole set of TMD(-1) simulations follows a similar pathway, then divergences are observed. None of the simulations leads to the ED structure. At RMSD=22A, the dimers look like two parallel Us, still linked by the initial loop-loop interaction, but the strands of the stems (the arms of the Us) are positioned in such a manner that they can form intramolecular as well as intermolecular Watson-Crick base-pairs. This family of structure is called UU. In a second step (TMD simulations), 18 structures were picked up along the pathways generated with TMD(-1) and were constrained to move toward ED by decreasing progressively their RMSD from ED. We found that only structures from the UU family are able to easily reach ED-like conformations of the backbones without exhibiting a large constraint energy.  相似文献   

4.
Galectins are β‐galactoside binding proteins which have the ability to serve as potent antitumor, cancer biomarker, and induce tumor cell apoptosis. Agrocybe cylindracea galectin (ACG) is a fungal galectin which specifically recognizes α(2,3)‐linked sialyllactose at the cell surface that plays extensive roles in the biological recognition processes. To investigate the change in glycan‐binding specificity upon mutations, single point and double point site‐directed in silico mutations are performed at the binding pocket of ACG. Molecular dynamics (MD) simulation studies are carried out for the wild‐type (ACG) and single point (ACG1) and double point (ACG2) mutated ACGs to investigate the dynamics of substituted mutants and their interactions with the receptor sialyllactose. Plausible binding modes are proposed for galectin–sialylglycan complexes based on the analysis of hydrogen bonding interactions, total pair‐wise interaction energy between the interacting binding site residues and sialyllactose and binding free energy of the complexes using molecular mechanics–Poisson–Boltzmann surface area. Our result shows that high contribution to the binding in different modes is due to the direct and water‐mediated hydrogen bonds. The binding specificity of double point mutant Y59R/N140Q of ACG2 is found to be high, and it has 26 direct and water‐mediated hydrogen bonds with a relatively low‐binding free energy of −47.52 ± 5.2 kcal/mol. We also observe that the substituted mutant Arg59 is crucial for glycan‐binding and for the preference of α(2,3)‐linked sialyllactose at the binding pocket of ACG2 galectin. When compared with the wild‐type and single point mutant, the double point mutant exhibits enhanced affinity towards α(2,3)‐linked sialyllactose, which can be effectively used as a model for biological cell marker in cancer therapeutics. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
HIV-1 protease (PR) has been a significant target for design of potent inhibitors curing acquired immunodeficiency syndrome. Molecular dynamics simulations coupled with molecular mechanics Poisson–Boltzmann surface area method were performed to study interaction modes of four inhibitors MKP56, MKP73, MKP86, and MKP97 with PR. The results suggest that the main force controlling interactions of inhibitors with PR should be contributed by van der Waals interactions between inhibitors and PR. The cross-correlation analyses based on MD trajectories show that inhibitor binding produces significant effect on the flap dynamics of PR. Hydrogen bond analyses indicate that inhibitors can form stable hydrogen bonding interactions with the residues from the catalytic strands of PR. The contributions of separate residues to inhibitor bindings are evaluated by using residue-based free energy decomposition method and the results demonstrate that the CH–π and CH–CH interactions between the hydrophobic groups of inhibitors with residues drive the associations of inhibitors with PR. We expect that this study can provide a significant theoretical aid for design of potent inhibitors targeting PR.  相似文献   

6.
We use an integrated computational approach to reconstruct accurately the transition state ensemble (TSE) for folding of the src-SH3 protein domain. We first identify putative TSE conformations from free energy surfaces generated by importance sampling molecular dynamics for a fully atomic, solvated model of the src-SH3 protein domain. These putative TSE conformations are then subjected to a folding analysis using a coarse-grained representation of the protein and rapid discrete molecular dynamics simulations. Those conformations that fold to the native conformation with a probability (P(fold)) of approximately 0.5, constitute the true transition state. Approximately 20% of the putative TSE structures were found to have a P(fold) near 0.5, indicating that, although correct TSE conformations are populated at the free energy barrier, there is a critical need to refine this ensemble. Our simulations indicate that the true TSE conformations are compact, with a well-defined central beta sheet, in good agreement with previous experimental and theoretical studies. A structured central beta sheet was found to be present in a number of pre-TSE conformations, however, indicating that this element, although required in the transition state, does not define it uniquely. An additional tight cluster of contacts between highly conserved residues belonging to the diverging turn and second beta-sheet of the protein emerged as being critical elements of the folding nucleus. A number of commonly used order parameters to identify the transition state for folding were investigated, with the number of native Cbeta contacts displaying the most satisfactory correlation with P(fold) values.  相似文献   

7.
Abstract

Mesenchymal-epithelial transition factor (c-Met) is a member of receptor tyrosine kinase. It involves in various cellular signaling pathways which includes proliferation, motility, migration, and invasion. Over-expression of c-Met has been reported in various cancers. Hence, it is an ideal therapeutic target for cancer. The main objective of the study is to identify crucial residues involved in the inhibition of c-Met kinase and to design a series of potent imidazo [4,5-b] pyrazine derivatives as c-Met inhibitors. Docking was used to identify important active site residues involved in the inhibition of c-Met kinase which was further validated by 100 ns of molecular dynamics simulation and free energy calculation using molecular mechanics generalized born surface area. Furthermore, binding energy decomposition identified that residues Tyr1230, Met1211, Asp1222, Tyr1159, Met1160, Val1092, Ala1108, and Leu1157 contributed favorably to the binding stability of compound 32. Receptor-guided Comparative Molecular Field Analysis (CoMFA) (q2 = 0.751, NOC = 6, r2 = 0.933) and Comparative Molecular Similarity Indices Analysis (COMSIA) (q2 = 0.744, NOC = 6, r2 = 0.950) models were generated based on the docked conformation of the most active compound 32. The robustness of these models was tested using various validation techniques and found to be predictive. The results of CoMFA and CoMSIA contour maps exposed the regions favorable to enhance the activity. Based on this information, 27 novel c-Met inhibitors were designed. These designed compounds exhibited potent activity than the most active compound of the existing dataset.

Communicated by Ramaswamy H. Sarma  相似文献   


8.
Low sampling efficiency in conformational space is the well-known problem for conventional molecular dynamics. It greatly increases the difficulty for molecules to find the transition path to native state, and costs amount of CPU time. To accelerate the sampling, in this paper, we re-couple the critical degrees of freedom in the molecule to environment temperature, like dihedrals in generalized coordinates or nonhydrogen atoms in Cartesian coordinate. After applying to ALA dipeptide model, we find that this modified molecular dynamics greatly enhances the sampling behavior in the conformational space and provides more information about the state-to-state transition, while conventional molecular dynamics fails to do so. Moreover, from the results of 16 independent 100?ns simulations by the new method, it shows that trpzip2 has one-half chances to reach the naive state in all the trajectories, which is greatly higher than conventional molecular dynamics. Such an improvement would provide a potential way for searching the conformational space or predicting the most stable states of peptides and proteins.  相似文献   

9.
The tryptophanyl emission decay of the mesophilic beta-galactosidase from Aspergillus oryzae free in buffer and entrapped in agarose gel is investigated as a function of temperature and compared to that of the hyperthermophilic enzyme from Sulfolobus solfataricus. Both enzymes are tetrameric proteins with a large number of tryptophanyl residues, so the fluorescence emission can provide information on the conformational dynamics of the overall protein structure rather than that of the local environment. The tryptophanyl emission decays are best fitted by bimodal Lorentzian distributions. The long-lived component is ascribed to close, deeply buried tryptophanyl residues with reduced mobility; the short-lived one arises from tryptophanyl residues located in more flexible external regions of each subunit, some of which are involved in forming the catalytic site. The center of both lifetime distribution components at each temperature increases when going from the free in solution mesophilic enzyme to the gel-entrapped and hyperthermophilic enzyme, thus indicating that confinement of the mesophilic enzyme in the agarose gel limits the freedom of the polypeptide chain. A more complex dependence is observed for the distribution widths. Computer modeling techniques are used to recognize that the catalytic sites are similar for the mesophilic and hyperthermophilic beta-galactosidases. The effect due to gel entrapment is considered in dynamic simulations by imposing harmonic restraints to solvent-exposed atoms of the protein with the exclusion of those around the active site. The temperature dependence of the tryptophanyl fluorescence emission decay and the dynamic simulation confirm that more rigid structures, as in the case of the immobilized and/or hyperthermophilic enzyme, require higher temperatures to achieve the requisite conformational dynamics for an effective catalytic action and strongly suggest a link between conformational rigidity and enhanced thermal stability.  相似文献   

10.
The mitochondrial adenosine diphosphate/adenosine triphosphate (ADP/ATP) carrier has been recently crystallized in complex with its specific inhibitor carboxyatractyloside (CATR). In the crystal structure, the six-transmembrane helix bundle that defines the nucleotide translocation pathway is closed on the matrix side due to sharp kinks in the odd-numbered helices. The closed conformation is further sealed by the loops protruding into the matrix that interact through an intricate network of charge-pairs. To gain insight into its structural dynamics we performed molecular dynamics (MD) simulation studies of the ADP/ATP carrier with and without its cocrystallized inhibitor. The two trajectories sampled a conformational space around two different configurations characterized by distinct salt-bridge networks with a significant shift from inter- to intrarepeat bonding on the matrix side in the absence of CATR. Analysis of the geometrical parameters defining the transmembrane helices showed that even-numbered helices can undergo a face rotation, whereas odd-numbered helices can undergo a change in the wobble angle with a conserved proline acting as molecular hinge. Our results provide new information on the dynamical properties of the ADP/ATP carrier and for the first time yield a detailed picture of a stable carrier conformation in absence of the inhibitor.  相似文献   

11.
Actin is a major structural protein of the eukaryotic cytoskeleton and enables cell motility. Here, we present a model of the actin filament (F-actin) that not only incorporates the global structure of the recently published model by Oda et al. but also conserves internal stereochemistry. A comparison is made using molecular dynamics simulation of the model with other recent F-actin models. A number of structural determents such as the protomer propeller angle, the number of hydrogen bonds, and the structural variation among the protomers are analyzed. The MD comparison is found to reflect the evolution in quality of actin models over the last 6 years. In addition, simulations of the model are carried out in states with both ADP or ATP bound and local hydrogen-bonding differences characterized.  相似文献   

12.
Plasminogen activator inhibitor type 1 (PAI-1) is an inhibitor of plasminogen activators such as tissue-type plasminogen activator or urokinase-type plasminogen activator. For this molecule, different conformations are known. The inhibiting form that interacts with the proteinases is called the active form. The noninhibitory, noncleavable form is called the latent form. X-ray and modeling studies have revealed a large change in position of the reactive center loop (RCL), responsible for the interaction with the proteinases, that is inserted into a beta-sheet (s4A) in the latent form. The mechanism underlying this spontaneous conformational change (half-life = 2 h at 37 degrees C) is not known in detail. This investigation attempts to predict a transition path from the active to the latent structure at the atomic level, by using simulation techniques. Together with targeted molecular dynamics (TMD), a plausible assumption on a rigid body movement of the RCL was applied to define an initial guess for an intermediate. Different pathways were simulated, from the active to the intermediate, from the intermediate to the latent structure and vice versa under different conditions. Equilibrium simulations at different steps of the path also were performed. The results show that a continuous pathway from the active to the latent structure can be modeled. This study also shows that this approach may be applied in general to model large conformational changes in any kind of protein for which the initial and final three-dimensional structure is known.  相似文献   

13.
Enzymes involved in the biosynthesis of bacterial peptidoglycan, an essential cell wall polymer unique to prokaryotic cells, represent a highly interesting target for antibacterial drug design. Structural studies of E. coli MurD, a three-domain ATP hydrolysis driven muramyl ligase revealed two inactive open conformations of the enzyme with a distinct C-terminal domain position. It was hypothesized that the rigid body rotation of this domain brings the enzyme to its closed active conformation, a structure, which was also determined experimentally. Targeted molecular dynamics 1 ns-length simulations were performed in order to examine the substrate binding process and gain insight into structural changes in the enzyme that occur during the conformational transitions into the active conformation. The key interactions essential for the conformational transitions and substrate binding were identified. The results of such studies provide an important step toward more powerful exploitation of experimental protein structures in structure-based inhibitor design.  相似文献   

14.
15.
Pan D  Yan Q  Chen Y  McDonald JM  Song Y 《Proteins》2011,79(8):2543-2556
Death-inducing signaling complex (DISC) formation is a critical step in Fas-mediated signaling for apoptosis. Previous experiments have demonstrated that the calmodulin (CaM) antagonist, trifluoperazine (TFP) regulates CaM-Fas binding and affects Fas-mediated DISC formation. In this study, we investigated the anti-cooperative characteristics of TFP binding to CaM and the effect of TFP on the CaM-Fas interaction from both structural and thermodynamic perspectives using combined molecular dynamics simulations and binding free energy analyses. We studied the interactions of different numbers of TFP molecules with CaM and explored the effects of the resulting conformational changes in CaM on CaM-Fas binding. Results from these analyses showed that the number of TFP molecules bound to CaM directly influenced α-helix formation and hydrogen bond occupancy within the α-helices of CaM, contributing to the conformational and motion changes in CaM. These changes affected CaM binding to Fas, resulting in secondary structural changes in Fas and conformational and motion changes of Fas in CaM-Fas complexes, potentially perturbing the recruitment of Fas-associated death domain for DISC formation. The computational results from this study reveal the structural and molecular mechanisms that underlie the role of the CaM antagonist, TFP, in regulation of CaM-Fas binding and Fas-mediated DISC formation in a concentration-dependent manner.  相似文献   

16.
Cuticle-degrading serine protease Ver112, which derived from a nematophagous fungus Lecanicillium psalliotae, has been exhibited to have high cuticle-degrading and nematicidal activities. We have performed molecular dynamics (MD) simulation based on the crystal structure of Ver112 to investigate its dynamic properties and large-scale concerted motions. The results indicate that the structural core of Ver112 shows a small fluctuation amplitude, whereas the substrate binding sites, and the regions close to and opposite the substrate binding sites experience significant conformational fluctuations. The large concerted motions obtained from essential dynamics (ED) analysis of MD trajectory can lead to open or close of the substrate binding sites, which are proposed to be linked to the functional properties of Ver112, such as substrate binding, orientation, catalytic, and release. The significant motion in the loop regions that is located opposite the binding sites are considered to play an important role in modulating the dynamics of the substrate binding sites. Furthermore, the bottom of free energy landscape (FEL) of Ver112 are rugged, which is mainly caused by the fluctuations of substrate binding regions and loops located opposite the binding site. In addition, the mechanism underlying the high flexibility and catalytic activity of Ver112 was also discussed. Our simulation study complements the biochemical and structural studies, and provides insight into the dynamics-function relationship of cuticle-degrading serine protease Ver112.  相似文献   

17.
The c-ros oncogene 1 (ROS1) has proven to be an important cancer target for the treatment of various human cancers. The anaplastic lymphoma kinase inhibitor crizotinib has been granted approval for the treatment of patients with ROS1 positive metastatic non-small-cell lung cancer by the Food and Drug Administration on 2016. However, serious resistance due to the secondary mutation of glycine 2032 to arginine (G2032R) was developed in clinical studies. Loratinib (PF-06463922), a macrocyclic analog of crizotinib, showed significantly improved inhibitory activity against wild–type (WT) ROS1 and ROS1G2032R mutant. To provide insights into the inhibition mechanism, molecular dynamics simulations and free energy calculations were carried out for the complexes of loratinib with WT and G2032R mutated ROS1. The apo-ROS1WT and apo-ROS1G2032R systems showed similar RMSF distributions, while ROS1G2032R-loratinib showed significantly higher than that of WT ROS1-loratinib, which revealed that the binding of loratinib to ROS1G2032R significantly interfered the ?uctuation of protein. Calculations of binding free energies indicate that G2032R mutation significantly reduces the binding affinity of loratinib for ROS1, which arose mostly from the increase of conformation entropy and the decrease of solvation energy. Furthermore, detailed per-residue binding free energies highlighted the increased and decreased contributions of some residues in the G2032R mutated systems. The present study revealed the detailed inhibitory mechanism of loratinib as potent WT and G2032R mutated ROS1 inhibitor, which was expected to provide a basis for rational drug design.  相似文献   

18.
The drying of reduced glutathione from a series of aqueous–ethanol binary solutions at 300 K (below human body temperature) and 330 K (above human body temperature) was investigated in detail by steered molecular simulation and an umbrella sampling method with the Gromacs software package and Gromos96(53a6) united atomic force field. The results show that electrostatic interactions between glutathione and solvent represent the main resistance to drying. When the aqueous solution was gradually changed to pure ethanol, the energy of electrostatic interaction between glutathione and solvent molecules increased by 445.088 kJ/mol, and the drying potential of mean force (PMF) free energy also fell by 253.040 kJ/mol. However, an increase in temperature from 300 to 330 K in the aqueous solution only results in an increase of 23.013 kJ/mol in electrostatic interaction energy and a decrease of 34.956 kJ/mol in drying PMF free energy. Furthermore, we show that hydrogen bonding is the major form of electrostatic interaction involved, and directly affects the drying of glutathione. Therefore, choosing water-miscible solvents that minimise hydrogen-bond formation with glutathione will enhance its drying rate, and this is likely to be more efficient than increasing the temperature of the process. Thus, a power-saving technology can be used to produce the high bioactivity medicines.  相似文献   

19.
20.
On the basis of an all‐atom multiscale analysis theory of nanosystem dynamics, a multiscale molecular dynamics/order parameter extrapolation (MD/OPX) approach has recently been developed. It accelerates MD for long‐time simulation of large bionanosystems and addresses rapid atomistic fluctuations and slowly varying coherent dynamics simultaneously. In this study, MD/OPX is optimized and implemented to simulate viral capsid structural transitions. Specifically, 200 ns MD/OPX simulation of the swollen state of cowpea chlorotic mottle virus capsid reveals that it undergoes significant energy‐driven shrinkage in vacuum, which is a symmetry‐breaking process involving local initiation and front propagation. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 61–73, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号