首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the mammalian testis, preleptotene and leptotene spermatocytes residing in the basal compartment of the seminiferous epithelium must traverse the blood-testis barrier (BTB) at late stage VIII through early stage IX of the epithelial cycle during spermatogenesis, entering the adluminal compartment for further development. However, until recently the regulatory mechanisms that regulate BTB dynamics remained largely unknown. We provide a critical review regarding the significance of cytokines in regulating the 'opening' and 'closing' of the BTB. We also discuss how cytokines may be working in concert with adaptors that selectively govern the downstream signaling pathways. This process, in turn, regulates the dynamics of either Sertoli-Sertoli tight junction (TJ), Sertoli-germ cell adherens junction (AJ), or both junction types in the epithelium, thereby permitting TJ opening without compromising AJs, and vice versa. We also discuss how adaptors alter their protein-protein association with the integral membrane proteins at the cell-cell interface via changes in their phosphorylation status, thereby altering adhesion function at AJ. These findings illustrate that the testis is a novel in vivo model to study the biology of junction restructuring. Furthermore, a molecular model is presented regarding how cytokines selectively regulate TJ/AJ restructuring in the epithelium during spermatogenesis.  相似文献   

2.
During spermatogenesis, preleptotene and leptotene spermatocytes, residing in the basal compartment of the seminiferous epithelium, must traverse the blood-testis barrier (BTB) to gain entry to the adluminal compartment for further development at late stage VIII and early stage IX of the epithelial cycle. As such, the timely opening and closing of the BTB is crucial to spermatogenesis. A compromise in this process can lead to infertility. Moreover, the BTB is unique in its relative localization in the seminiferous epithelium compared to the tight junctions (TJs) found in other epithelia. Sertoli cell TJs are situated near the basal lamina in the testis, closest to the basement membrane (a modified form of extracellular matrix [ECM]), unlike TJs found in other epithelia, which are found nearest the apical portion of an epithelium, farthest away from ECM. Needless to say, BTB function in the testis is maintained by intricate regulatory mechanisms. In addition to hormones and cytokines, nitric oxide (NO) was recently shown to be a putative TJ regulator in the testis. Perhaps equally important, TJ dynamics in the testis were shown to be regulated, at least in part, by occludin, a TJ-integral membrane protein, via the NO/soluble guanylate cyclase/cGMP/protein kinase G signaling pathway. This minireview summarizes recent advances in the field regarding the role of NO in testicular function, with special emphasis regarding its role in TJ dynamics and the likely implications of these studies for male contraceptive development.  相似文献   

3.
During spermatogenesis, both adherens junctions (AJ) (such as ectoplasmic specialization (ES), a testis-specific AJ type at the Sertoli cell-spermatid interface (apical ES) or Sertoli-Sertoli cell interface (basal ES) in the apical compartment and BTB, respectively) and tight junctions (TJ) undergo extensive restructuring to permit germ cells to move across the blood-testis barrier (BTB) as well as the seminiferous epithelium from the basal compartment to the luminal edge to permit fully developed spermatids (spermatozoa) to be sloughed at spermiation. However, the integrity of the BTB cannot be compromised throughout spermatogenesis so that postmeiotic germ cell-specific antigens can be sequestered from the systemic circulation at all times. We thus hypothesize that AJ disruption in the seminiferous epithelium unlike other epithelia, can occur without compromising the BTB-barrier, even though these junctions, namely TJ and basal ES, co-exist side-by-side in the BTB. Using an intratesticular androgen suppression-induced germ cell loss model, we have shown that the disruption of AJs indeed was limited to the Sertoli-germ cell interface without perturbing the BTB. The testis apparently is using a unique physiological mechanism to induce the production of both TJ- and AJ-integral membrane proteins and their associated adaptors to maintain BTB integrity yet permitting a transient loss of cell adhesion function by dissociating N-cadherin from beta-catenin at the apical and basal ES. The enhanced production of TJ proteins, such as occludin and ZO-1, at the BTB site can supersede the transient loss of cadherin-catenin function at the basal ES. This thus allows germ cell depletion from the epithelium without compromising BTB integrity. It is plausible that the testis is using this novel mechanism to facilitate the movement of preleptotene and leptotene spermatocytes across the BTB at late stage VIII through early stage IX of the epithelial cycle in the rat while maintaining the BTB immunological barrier function.  相似文献   

4.
Throughout spermatogenesis, leptotene spermatocytes traverse the blood–testis barrier (BTB) to enter the adluminal compartment of the seminiferous epithelium for continued development. At the same time, the integrity of the BTB, which is constituted by co-existing tight junctions (TJ), basal ectoplasmic specializations (basal ES) and desmosome-like junctions, must be maintained since a breach in barrier function can result in spermatogenic arrest and even infertility. There is evidence to suggest that drug transporters may function at the BTB, but little is known about how they contribute to spermatogenesis. In this study, we investigate the role of P-glycoprotein (P-gp), a drug efflux pump, in BTB dynamics. A survey by RT-PCR revealed several transporter genes to be expressed by the testis, including Mdr1 (gene symbol for P-gp), Mrp1, Abcc5 and Slc15a1. It was also demonstrated that P-gp localizes to the BTB in all stages of the seminiferous epithelial cycle in the adult rat testis, as well as to the Sertoli cell–elongated spermatid interface in stages VII and VIII. We continued our study by examining the levels of several transporters in the testis following oral administration of Adjudin, a compound known to affect Sertoli–germ cell adhesion. In this experiment, the steady-state levels of P-gp, MRP1, ABCG1 and SLC15A1 were all found to increase by several-fold within hours of Adjudin treatment during junction restructuring. More importantly, an increase in P-gp association with TJ proteins (e.g., occludin, claudin-11 and JAM-A) was noted when testis lysates from Adjudin-treated rats were used for co-immunoprecipitation experiments, suggesting that P-gp may enhance BTB function during Sertoli–germ cell junction restructuring.  相似文献   

5.
Sertoli cell tight junction dynamics: their regulation during spermatogenesis   总被引:11,自引:0,他引:11  
During spermatogenesis, developing preleptotene and leptotene spermatocytes must translocate from the basal to the adluminal compartment of the seminiferous epithelium so that fully developed spermatids (spermatozoa) can be released to the tubular lumen at spermiation. It is conceivable that the opening and closing of the inter-Sertoli tight junctions (TJs) that constitute the blood-testis barrier are regulated by an array of intriguingly coordinated signaling pathways and molecules. Several molecules have been shown to regulate Sertoli cell TJ dynamics; they include, for example, transforming growth factor beta3 (TGFbeta3), occludin, protein kinase A, protein kinase C, and signaling pathways such as the TGFbeta3/p38 mitogen-activated protein kinase pathway. Yet the mechanisms that regulate these events are essentially not known. This minireview summarizes some of the recent advances in the study of TJ dynamics in the testis and reviews several models that can be used to study TJ dynamics. It also highlights specific areas for future research toward understanding the precise physiological relationship between junction dynamics and spermatogenesis.  相似文献   

6.
The intricate interaction between protein endocytosis, transcytosis, recycling and endosome- or ubiquitin-mediated protein degradation determines the junction integrity in epithelial cells including Sertoli cells at the blood-testis barrier (BTB). Studies have shown that androgens and cytokines (e.g., TGF-β3) that are known to promote and disrupt BTB integrity, respectively, accelerate protein endocytosis at the BTB. We hypothesized that testosterone-induced endocytosed proteins are transcytosed and recycled back to the Sertoli cell surface, whereas cytokine-induced endocytosed proteins are degraded so that androgens and cytokines have opposing effects on BTB integrity. Herein, we report that both testosterone and TGF-β3 induced the steady-state level of clathrin, an endocytic vesicle protein. Testosterone and TGF-β3 also induced the association between internalized occludin (a BTB integral membrane protein) and clathrin, as well as early endosome antigen-1 (EEA-1). Interestingly, testosterone, but not TGF-β3, also induced the levels of proteins that regulate protein transcytosis (e.g., caveolin-1) and recycling (e.g., Rab11), and their association with internalized occludin and N-cadherin from the cell surface. In contrast, TGF-β3, but not testosterone, induced the level of ubiquitin-conjugating enzyme E2 J1 (Ube2j1), a protein crucial to the intracellular protein degradation pathway, and its association with internalized occludin. Based on these findings and recent reports in the field, we hypothesize that the concerted effects of testosterone and TGF-β3 likely facilitate the transit of preleptotene spermatocytes at the BTB while maintaining the immunological barrier in that testosterone induces the assembly of “new” tight junction (TJ)-fibrils below migrating spermatocytes via protein transcytosis and recycling before cytokines induce the disassembly of “old” TJ-fibrils above spermatocytes via endocytic vesicle-mediated degradation of internalized proteins. This thus provides a unique mechanism in the testis to facilitate the transit of preleptotene spermatocytes, many of which are connected in "clones" via cytoplasmic bridges, at the BTB while maintaining the immunological barrier during stage VIII of the seminiferous epithelial cycle of spermatogenesis.  相似文献   

7.
Throughout spermatogenesis, inter-Sertoli tight junctions (TJs) that constitute the blood-testis barrier must be disassembled and reassembled to permit the timely movement of preleptotene and leptotene spermatocytes from the basal to the adluminal compartment of the seminiferous epithelium. However, the mechanism and the participating molecules that regulate the bioavailability of TJ proteins are entirely unknown. Using Sertoli cell culture, it was shown that there was an increase in occludin level, concomitant with a reduction of an E3 ubiquitin ligase, Itch, at the time when inter-Sertoli TJs were assembled. By co-immunoprecipitation, occludin was shown to associate with Itch at the TJs. A novel interaction between Itch and UBC4 (an ubiquitin-conjugating enzyme) was identified. When TJs were disrupted by dibutyryl-cAMP (db-cAMP), an increase in protein levels of Itch and UBC4 along with a significant reduction in endogenous occludin was detected. These results seemingly suggest that the interaction of Itch and UBC4 on occludin is potentially involved in regulating Sertoli TJ dynamics. Addition of a proteasome inhibitor, MG-132, into Sertoli cells cultured with db-cAMP blocked the db-cAMP-induced occludin loss in vitro. Accumulations of ubiquitin-conjugated and Itch-conjugated occludin were detected in Sertoli cells cultured in the presence of both MG-132 and db-cAMP. These results suggest that MG-132 prevented db-cAMP-induced TJ disruption by altering the rate of occludin degradation. Taken collectively, the results reported herein support the notion that db-cAMP-induced TJ disruption was mediated by an induction of Itch protein expression, which in turn triggered the ubiquitination of occludin resulting in TJ disruption.  相似文献   

8.
Throughout spermatogenesis, leptotene spermatocytes must traverse the blood-testis barrier (BTB) at stages VIII-XI to gain entry into the adluminal compartment for continued development. However, the mechanism underlying BTB restructuring remains somewhat elusive. In this study, interleukin 1 alpha (IL1A) was administered intratesticularly to adult rats in order to assess its effects on spermatogenesis. IL1A was shown to perturb Sertoli-germ cell adhesion, resulting in germ cell loss from approximately 50% of seminiferous tubules by 15 days posttreatment. Equally important, the functional integrity of the BTB was compromised when inulin-fluorescein isothiocyanate was detected in the adluminal compartment of the seminiferous epithelium following its administration via the jugular vein. Interestingly, IL1A did not affect the steady-state levels of proteins that confer BTB function, namely OCLN, CLDN1, F11R, TJP1, and CDH2. Instead, the localizations of OCLN, F11R, and TJP1 in the seminiferous epithelium were altered; these proteins appeared to move away from sites of cell-cell contact. Moreover, IL1A was shown to perturb the orderly arrangement of filamentous actin at the BTB and apical ectoplasmic specialization with distinct areas illustrating loss of actin filaments. Taken collectively, these results suggest that IL1A-induced BTB disruption is not mediated via the reduction of target protein levels. Instead, IL1A's primary cellular target appears to be the Sertoli cell actin cytoskeleton. It is possible that localized production of IL1A by Sertoli and/or germ cells in vivo results in BTB restructuring, and this may facilitate the movement of leptotene spermatocytes across the BTB.  相似文献   

9.
The biochemical basis that regulates the timely and selective opening of the blood-testis barrier (BTB) to migrating preleptotene/leptotene spermatocytes at stage VIII of the epithelial cycle in adult rat testes is virtually unknown. Recent studies have shown that cytokines (e.g. transforming growth factor (TGF)-beta3) may play a crucial role in this event. However, much of this information relies on the use of toxicants (e.g. CdCl(2)), making it difficult to relay these findings to normal testicular physiology. Here we report that overexpression of TGF-beta3 in primary Sertoli cells cultured in vitro indeed perturbed the tight junction (TJ) barrier with a concomitant decline in the production of BTB constituent proteins as follows: occludin, N-cadherin, and ZO-1. Additionally, local administration of TGF-beta3 to testes in vivo was shown to reversibly perturb the BTB integrity and Sertoli-germ cell adhesion via the p38 MAPK and ERK signaling pathways. Most importantly, the simultaneous activation of p38 and ERK signaling pathways is dependent on the association of the TGF-beta3-TbetaR1 complex with adaptors TAB1 and CD2AP because if TbetaR1 was associated preferentially with CD2AP, only Sertoli-germ cell adhesion was perturbed without compromising the BTB. Collectively, these data illustrate that local production of TGF-beta3, and perhaps other TGF-betas and cytokines, by Sertoli and germ cells into the microenvironment at the BTB during spermatogenesis transiently perturbs the BTB and Sertoli-germ cell adhesion to facilitate germ cell migration when the activated TbetaRI interacts with adaptors TAB1 and CD2AP. However, TGF-beta3 selectively disrupts Sertoli-germ cell adhesion in the seminiferous epithelium to facilitate germ cell migration without compromising BTB when TbetaRI interacts only with adaptor CD2AP.  相似文献   

10.
The blood-testis barrier (BTB) is conferred by co-existing tight junctions (TJs), basal ectoplasmic specialization (basal ES), desmosome-like junctions and gap junctions (GJs) between adjacent Sertoli cells near the basement membrane in the seminiferous epithelium. While the concept of the BTB has been known for more than a century and its significance to spermatogenesis discerned for more than five decades, its regulation has remained largely unknown. Recent studies, however, have demonstrated that focal adhesion kinase (FAK), a modulator of the integrin-based signaling that plays a crucial role on cell movement, apoptosis, cell survival and gene expression at the focal adhesion complex (FAC, also known as focal contact, a cell-matrix anchoring junction type), is an integrated component of the BTB, associated with the TJ-integral membrane protein occludin and its adaptor zonula occludens-1 (ZO-1). Herein, we summarize recent findings in the field regarding the significance of FAK in conferring BTB integrity based on some unexpected observations. We also critically discuss the role of FAK in regulating the timely "opening" and "closing" of the BTB to facilitate the transit of primary preleptotene spermatocytes across the BTB at stage VIII of the seminiferous epithelial cycle of spermatogenesis. Lastly, we propose a working model, which can be used to design future functional experiments to explore the involvement of FAK in BTB dynamics by investigators in the field.  相似文献   

11.
One of the major roles of Sertoli cells is to establish the blood-testis (Sertoli cell) barrier (BTB), which is permanently assembled and disassembled to accommodate the translocation of leptotene spermatocytes from the basal into the adluminal compartment of the seminiferous epithelium and to guarantee completion of meiosis and spermiogenesis. Recently, we have demonstrated spermatogenesis to be arrested before spermatid elongation in Gnpat-null mice with selective deficiency of ether lipids (ELs) whose functions are poorly understood. In this study, we have focused on the spatio-temporal expression of several BTB tight-junctional proteins in the first wave of spermatogenesis to obtain insights into the physiological role of ELs during BTB establishment and dynamics. Our data confirm the transient existence of Russell’s intermediate or translocation compartment delineated by two separate claudin-3-positive luminal and basal tight junctions and reveal that EL deficiency blocks BTB remodeling. This block is associated with (1) downregulation and mistargeting of claudin-3 and (2) impaired BTB disassembly resulting in deficient sealing of the intermediate compartment as shown by increased BTB permeability to biotin. These results suggest that ELs are essential for cyclic BTB dynamics ensuring the sluice mechanism for leptotene translocation into the adluminal compartment. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. This work was supported by the German Research Foundation (grants Go 432/2-1, Ju 166/3-1, and Sa 172/1-1).  相似文献   

12.
During spermatogenesis, the blood-testis barrier (BTB) segregates the adluminal (apical) and basal compartments in the seminiferous epithelium, thereby creating a privileged adluminal environment that allows post-meiotic spermatid development to proceed without interference of the host immune system. A key feature of the BTB is its continuous remodeling within the Sertoli cells, the major somatic component of the seminiferous epithelium. This remodeling is necessary to allow the transport of germ cells towards the seminiferous tubule interior, while maintaining intact barrier properties. Here we demonstrate that the actin nucleation promoting factor Neuronal Wiskott-Aldrich Syndrome Protein (N-WASP) provides an essential function necessary for BTB restructuring, and for maintaining spermatogenesis. Our data suggests that the N-WASP-Arp2/3 actin polymerization machinery generates branched-actin arrays at an advanced stage of BTB remodeling. These arrays are proposed to mediate the restructuring process through endocytic recycling of BTB components. Disruption of N-WASP in Sertoli cells results in major structural abnormalities to the BTB, including mis-localization of critical junctional and cytoskeletal elements, and leads to disruption of barrier function. These impairments result in a complete arrest of spermatogenesis, underscoring the critical involvement of the somatic compartment of the seminiferous tubules in germ cell maturation.  相似文献   

13.
The interrelationships of the Sertoli cells and germ cells in the Syrian hamster were examined using the electron microscope. Demosome-like junctions were observed attaching Sertoli cells to spermatogonia and spermatocytes. In the region of the junctions dense plaques lay on the cytoplasmic surfaces of the plasmalemma of the opposing cells. Sertoli cell cytoplasmic filaments converged in the area of the junctions and inserted into the subsurface densities. Filaments were not observed associated with the subsurface densities of the germ cells. In the region of the junctions a 15...20 nm gap, filled with an attenuate amorphous substance, separated the plasmalemmata. Another attachment device termed "junctional specialization" occurred between Sertoli cells, and preleptotene spermatocytes and all successive developmental steps in the germ cell line in the hamster. The junctional specializations consisted of a mantel of Sertoli cell cytoplasmic filament lying subjacent to the Sertoli cell plasmalemma and an opposed cisterna of the endoplasmic reticulum. In stages VII-VIII preleptotene supermatocytes were observed in transit from the basal compartment to the adluminal compartment. While Sertoli-Sertoli junctions adluminal to the spermatocytes remained intact, typical Sertoli-Sertoli junctions formed between opposed Sertoli cell processes basal to the spermatocytes. It is proposed that, during the passage of spermatocytes in to the adluminal compartment, junctional specializations associated with preleptotene spermatocytes in the basal compartment migrate basal to the spermatocytes and contribute to formation of Sertoli-Sertoli junctions. Treatment of seminiferous tubules with hypertonic media was used to demonstrate that the junctional specializations function in cell-to-cell adhesion. Data indicated that these junctions function to retain the developing spermatids within the seminiferous epithelijm until the time of spermiation. At spermination the junctional specializations disappear and the spermatids drift off into the tubule lumen.  相似文献   

14.
beta-Nerve growth factor (NGF) is expressed in spermatogenic cells and has testosterone-downregulated low-affinity receptors on Sertoli cells suggesting a paracrine role in the regulation of spermatogenesis. An analysis of the stage-specific expression of NGF and its low affinity receptor during the cycle of the seminiferous epithelium in the rat revealed NGF mRNA and protein at all stages of the cycle. Tyrosine kinase receptor (trk) mRNA encoding an essential component of the high-affinity NGF receptor was also present at all stages. In contrast, expression of low affinity NGF receptor mRNA was only found in stages VIIcd and VIII of the cycle, the sites of onset of meiosis. The low-affinity NGF receptor protein was present in the plasma membrane of the apical Sertoli cell processes as well as in the basal plasma membrane of these cells at stages VIIcd to XI. NGF was shown to stimulate in vitro DNA synthesis of seminiferous tubule segments with preleptotene spermatocytes at the onset of meiosis while other segments remained nonresponsive. We conclude that NGF is a meiotic growth factor that acts through Sertoli cells.  相似文献   

15.
In adult mammals such as rats, the blood-testis barrier (BTB) conferred by adjacent Sertoli cells in the seminiferous epithelium segregates post-meiotic germ cell development from the systemic circulation and is one of the tightest blood-tissue barriers. Yet it must “open” transiently at stages VIII to IX of the epithelial cycle to accommodate the migration of preleptotene/leptotene spermatocytes. While this is a vital event of spermatogenesis, the mechanism(s) that regulates BTB dynamics is virtually unknown. Recent studies have suggested that transforming growth factor-β3 (TGF-β3) and tumor necrosis factor α (TNFα) secreted by Sertoli and germ cells into the microenvironment of the BTB are capable of inducing reversible BTB disruption in vivo, apparently by reducing the steady-state levels of occludin and zonula occludens-1 (ZO-1) at the BTB via the p38 mitogen activated protein (MAP) kinase signaling pathway. In this study, local administration of TGF-β3 (200 ng/testis) to the testis was shown to reversibly perturb the BTB integrity in vivo. We next sought to delineate the mechanism by which these cytokines maintain the steady-state level of integral membrane proteins: occludin, junctional adhesion molecule-A (JAM-A) and N-cadherin at the BTB. Primary Sertoli cells cultured in vitro were shown to establish intact tight junctions and functional BTB within two days when assessed by transepithelial electrical resistance (TER) measurement across the cell epithelium. Sertoli cell integral membrane protein internalization at the BTB was assessed by biotinylation of cell surface proteins, to be followed by tracking the endocytosed/biotinylated proteins by using specific antibodies. Both TGF-β3 (3 ng/ml) and TNFα (10 ng/ml) were shown to significantly accelerate the kinetics of internalization of JAM-A, N-cadherin, and occludin versus controls. Treatment of cells with phenylarsine oxide (PAO) at 10 μM that blocks clathrin-mediated endocytosis was shown to inhibit the TGF-β3-induced protein internalization. This inhibition of TGF-β3-mediated protein endocytosis was further validated by silencing of clathrin. The specific effect of TGF-β3 on protein internalization was further confirmed by RNAi using specific TGF-β receptor I (TβR1) siRNA duplexes. When TβR1 was knocked down, the TGF-β3-induced increase in the kinetics of JAM-A and occludin endocytosis was abolished, making them indistinguishable from controls, illustrating the specificity of the TGF-β3 effects on protein endocytosis. In summary, this report demonstrates for the first time that BTB dynamics are regulated by TGF-β3 and TNFα via an enhancement of protein endocytosis at the BTB.  相似文献   

16.
Spermatogenesis takes place in the seminiferous epithelium of the mammalian testis in which one type A1 spermatogonium (diploid, 2n) gives rise to 256 spermatids (haploid, 1n). To accomplish this, developing germ cells, such as preleptotene and leptotene spermatocytes, residing in the basal compartment of the seminiferous epithelium must traverse the blood-testis barrier (BTB) entering into the adluminal compartment for further development into round, elongating, and elongate spermatids. Recent studies have shown that the basement membrane in the testis (a modified form of extracellular matrix, ECM) is important to the event of germ cell movement across the BTB because proteins in the ECM were shown to regulate BTB dynamics via the interactions between collagens, proteases, and protease inhibitors, possibly under the regulation of cytokines. While these findings are intriguing, they are not entirely unexpected. For one, the basement membrane in the testis is intimately associated with the BTB, which represents the basolateral region of Sertoli cells. Also, Sertoli cell tight junctions (TJs) that constitute the BTB are present side-by-side with cell-cell actin-based adherens junctions (AJ, such as basal ectoplasmic specialization [ES]) and intermediate filament-based desmosome-like junctions. As such, the relative morphological layout between TJs, AJs, and desmosome-like junctions in the seminiferous epithelium is in sharp contrast to other epithelia where TJs are located at the apical portion of an epithelium or endothelium, furthest away from ECM, to be followed by AJs and desmosomes, which in turn constitute the junctional complex. For another, anchoring junctions between a cell epithelium and ECM found in multiple tissues, also known as focal contacts (or focal adhesion complex, FAC, an actin-based cell-matrix anchoring junction type), are the most efficient junction type that permits rapid junction restructuring to accommodate cell movement. It is therefore physiologically plausible, and perhaps essential, that the testis is using some components of the focal contacts to regulate rapid restructuring of AJs between Sertoli and germ cells when germ cells traverse the seminiferous epithelium. Indeed, recent findings have shown that the apical ES, a testis-specific AJ type in the seminiferous epithelium, is equipped with proteins of FAC to regulate its restructuring. In this review, we provide a timely update on this exciting yet rapidly developing field regarding how the homeostasis of basement membrane in the tunica propria regulates BTB dynamics and spermatogenesis in the testis, as well as a critical review on the molecular architecture and the regulation of ES in the seminiferous epithelium.  相似文献   

17.
Three spermatogenic cell populations isolated from prepuberal mice--type B spermatogonia, preleptotene spermatocytes, and leptotene/zygotene spermatocytes--were used to elicit distinct polyclonal antisera. Surface binding specificities were determined for purified IgGs by indirect immunofluorescence and rosette assays on live cells. Binding activities were assayed both before and after absorptions with a variety of somatic and spermatogenic cells. Each of these antisera binds to surface antigens that are present on germ cells throughout spermatogenesis and are not shared by splenocytes, thymocytes, and erythrocytes. Only the antiserum raised against leptotene and zygotene spermatocytes (ALZ) recognizes a stage-specific subset of surface determinants. After appropriate absorptions, ALZ binds to the surface of early pachytene spermatocytes and germ cells at subsequent stages of differentiation, including vas deferens spermatozoa. Antigens which react with this absorbed IgG are not detected on the surface of spermatogonia or meiotic cells prior to pachynema, including leptotene and zygotene spermatocytes. The observed binding specificities may result from the synthesis of one or more surface molecules during the early meiotic stages, followed by delayed insertion into the plasma membrane during the pachytene stage of meiotic prophase. Stage-specific antigens recognized by ALZ, including both protein and probably lipid, have been localized immunochemically on nitrocellulose blots from one-dimensional SDS gels. A dithiothreitol-sensitive constituent (Mr approximately 39,000) recognized by ALZ has been identified as the major protein determinant present in early meiotic cells but absent in 8-day-old seminiferous cell suspensions containing spermatogonia and Sertoli cells. This determinant is present in populations of preleptotene, leptotene/zygotene, and early pachytene spermatocytes isolated from 17-day-old animals, an observation consistent with the hypothesis of delayed insertion into the plasma membrane.  相似文献   

18.
In this study the cellular mechanisms of male sterility in F1 hybrids (BNF1) between BALB/c and wild-derived M.MUS-NJL (NJL) was investigated. Cell proliferation and differentiation in the sterile testis were examined by bromodeoxyuridine-labeling and use of germ cell stage-specific antibodies. In BNF1 testes, spermatogonia actively proliferated with a seminiferous epithelial cycle, and were retained in the basal layer of the tubules. However, preleptotene, leptotene and zygotene spermatocytes moved to the adluminal region. Immunohistological data with germ cell stage-specific antibodies indicated the presence of few, if any, pachytene spermatocytes in BNF1 testes. Thus, spermatogenesis seemed to be blocked at the zygotene stage. For examination of germ cell-Sertoli cell interactions, testes of aggregation chimeras between BNF1 and C3H/HeN were analyzed immunohistologically with C3H-specific antibody. Results showed that spermatogenesis of C3H-germ cells was normal, even when these cells in contact with BNF1-Sertoli cells. Differentiation of BNF1-germ cells progressed from zygotene to pachytene stage spermatocytes when these cells were surrounded by C3H-Sertoli cells, but never proceeded beyond the pachytene stage. These observations suggest that at least two different cellular factors may be involved in spermatogenesis, one acting in the germ cells and the other mediated by Sertoli cells. Furthermore, mating experiments revealed that the degree of spermatogenesis varied in different F1 hybrids, and that the major sterility factor was closely linked to the T -locus on chromosome 17.  相似文献   

19.
It has been established that experimental avitaminosis A in rats results in a 'Sertoli cell-only situation' after about 10 weeks, and that replacing the vitamin immediately reinitiates spermatogenesis. The present study deals with testicular recovery after prolonged deprivation (up to 19 weeks). The Sertoli cell-only situation reached under this condition was thought to be refractory to Vitamin A replacement. However, spermatogenesis did reinitiate about 11 weeks after vitamin restoration, although in an atypical manner. The blood-testis barrier, normally assembled when spermatocytes reaches the zygotene stage, remained under this condition permeable to the lanthanum intercellular tracer. Concomitantly, primary spermatocytes normally found in the adluminal compartment isolated by the barrier (zygotene onward) became massively apoptotic. All the tubules containing early spermatocytes (preleptotene or leptotene cells), normally found in the basal compartment, exhibited normal features with no signs of degeneration. Based on these results, a possible relationship between blood-testis barrier assembly and spermatocyte differentiation is proposed.  相似文献   

20.
During spermatogenesis in adult rat testes, fully developed spermatids (i.e. spermatozoa) at the luminal edge of the seminiferous epithelium undergo “spermiation” at stage VIII of the seminiferous epithelial cycle. This is manifested by the disruption of the apical ectoplasmic specialization (apical ES) so that spermatozoa can enter the tubule lumen and to complete their maturation in the epididymis. At the same time, the blood–testis barrier (BTB) located near the basement membrane undergoes extensive restructuring to allow transit of preleptotene spermatocytes so that post-meiotic germ cells complete their development behind the BTB. While spermiation and BTB restructuring take place concurrently at opposite ends of the Sertoli cell epithelium, the biochemical mechanism(s) by which they are coordinated were not known until recently. Studies have shown that fragments of laminin chains are generated from the laminin/integrin protein complex at the apical ES via the action of MMP-2 (matrix metalloprotease-2) at spermiation. These peptides serve as the local autocrine factors to destabilize the BTB. These laminin peptides also exert their effects on hemidesmosome which, in turn, further potentiates BTB restructuring. Thus, a novel apical ES-BTB-hemidesmosome regulatory loop is operating in the seminiferous epithelium to coordinate these two crucial cellular events of spermatogenesis. This functional loop is further assisted by the Par3/Par6-based polarity protein complex in coordination with cytokines and testosterone at the BTB. Herein, we provide a critical review based on the latest findings in the field regarding the regulation of these cellular events. These recent findings also open up a new window for investigators studying blood–tissue barriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号